From Differential Calculus to Automatic Differentiation

Gabriel Peyré

November 10, 2019

Part 1 - Gradients

1) For $g: \mathbb{R} \rightarrow \mathbb{R}$, compute the derivative of $x \in \mathbb{R} \mapsto g(a x+b) \in \mathbb{R}$ using the definition of the derivative and using the chain rule.
2) For $g: \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $A \in \mathbb{R}^{p, n}, b \in \mathbb{R}^{p}$, compute the derivative of $x \in \mathbb{R}^{n} \mapsto g(A x+b) \in \mathbb{R}$ using the definition of the derivative and using the chain rule.
3) What is the gradient of $x \in \mathbb{R}^{n} \mapsto\|x\|_{p}$ where $\|x\|_{p}^{p} \stackrel{\text { def. }}{=} \sum_{i}\left|x_{i}\right|^{p}$ (and give the domain on which it is differentiable)?
4) Compute the gradient of $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{tr}(X)=\sum_{i} X_{i, i}$, and $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}(A)$.

Part 2 - Jacobians

1) Using the definition of the Jacobian, compute the Jacobian of $X \in \mathbb{R}^{n \times p} \mapsto X^{\top}, X \in \mathbb{R}^{n \times p} \mapsto$ $X X^{\top}, X \in \mathbb{R}^{n \times n} \mapsto X^{2}, X \mapsto X^{-1}$.
2) What is the Jacobian of $X \in \mathbb{R}^{n \times p} \mapsto A X B$ where A and B are also matrices (you will indicate their size and the size of the output matrix).
3) If $X \in \mathcal{S}_{n}^{+}$is symmetric positive semi-definitive (i.e. its eigenvalues are positives), show that there exists a unique matrix $\sqrt{X} \in \mathcal{S}_{n}^{+}$such that $X=\sqrt{X} \sqrt{X}$. Compute the Jacobian of $X \mapsto \sqrt{X}$.

Part 3 - Gradients for matrix functions

1) Compute the gradient of $X \in \mathbb{R}^{n \times n} \mapsto \operatorname{tr}\left(X^{2}\right), X \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}\left(X^{2}\right)$ using the definition of a differential and the chain rule.
2) Same question for $X \in \mathbb{R}^{n \times p} \mapsto \operatorname{tr}\left(X X^{\top}\right), X \in \mathbb{R}^{n \times p} \mapsto \operatorname{det}\left(X X^{\top}\right)$.
3) Same question for $X \in \mathbb{R}^{n \times p} \mapsto \operatorname{tr}\left(\sqrt{X X^{\top}}\right)$. When $X \in \mathbb{R}^{n \times 1}$ or $X \in \mathbb{R}^{1 \times p}$, what formula do you recognize?

Part 4 - Smoothed total variation

1) What are the derivative and second derivative of $f: x \in \mathbb{R} \mapsto \sqrt{x^{2}+\varepsilon^{2}}$. Prove that f has a Lipschitz derivative and give an upper bound on the Lipschitz constant.
2) Same question with $x \in \mathbb{R}^{n} \mapsto\|x\|_{\varepsilon} \stackrel{\text { def. }}{=} \sum_{i=1}^{n} \sqrt{x_{i}^{2}+\varepsilon^{2}}$.
3) For $x \in \mathbb{R}^{n}$, we consider the vector of finite differences ("discretized gradient") $G x \stackrel{\text { def. }}{=}\left(x_{2}-x_{1}, x_{3}-\right.$ $\left.x_{2}, \ldots, x_{n}-x_{n-1}\right) \in \mathbb{R}^{n-1}$. Show that G is linear and compute its adjoint $u \in \mathbb{R}^{n-1} \mapsto G^{\top} u \in \mathbb{R}^{n}$.
4) Compute the gradient of the 1-D smoothed total variation $x \in \mathbb{R}^{n} \mapsto\|G x\|_{\varepsilon} \in \mathbb{R}$.
5) What is the limit as $\varepsilon \rightarrow 0$ of $\|\cdot\|_{\varepsilon}$ and of its gradient? When is this limit differentiable?

Part 5 - Calculus graph and differentiation modes

1) Produce an efficient computational graph (DAG) for the function

$$
f(x)=\frac{\log \left(x+\sqrt{x^{2}+1}\right)}{\sqrt{x^{2}+1}}-\log ^{3}\left(x+\sqrt{x^{2}+1}\right) .
$$

2) Write the pseudo-code associated to the forward differentiation method applied to this graph (i.e. using the classical chain rule).
3) Write the pseudo-cove associated to the backward differentiation method applied to this graph (i.e. using the adjoint chain rule).
4) Which one is the fastest? Why?

Part 6 - Differential calculus for neural layers

We consider a function computed using a neural network with two-layers $f(x, A, b)=b \rho(A x)$, where $x \in \mathbb{R}^{p}, A \in \mathbb{R}^{q \times p}$ (q is the number of neurons) and $b \in \mathbb{R}^{1 \times q}$. Here $\rho: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth non-linearity and with a slight abuse of notation, for $u \in \mathbb{R}^{q}$, we denote $\rho(u)=\left(\rho\left(u_{k}\right)\right)_{k=1}^{q} \in \mathbb{R}^{q}$.

1) What is the Jacobian of $\rho: \mathbb{R}^{q} \mapsto \mathbb{R}^{q}$ defined this way? What are the Jacobians of $x \mapsto A x$ and $A \mapsto A x$?
2) Using the chain rule, compute the derivative of f with respect to x and with respect to the network weights (A, b). What is its complexity in function of (p, q) ?
3) Implement the same derivative but this time using backward differentiation. What is the resulting complexity ? How does this compare to directly computing the gradient of f by computing its Taylor expansion ?
4) Using $\nabla_{A, b} f$ compute the gradient of the training error $\sum_{i=1}^{n}\left(f\left(x_{i}, A, b\right)-y_{i}\right)^{2}$.
5) We now consider a "residual network" $F(x, A)=x+A^{\top} \rho(A x) \in \mathbb{R}^{n}$ (this type of architecture shows up for instance when doing descent methods or discretizing ODEs and PDEs, and one might want to optimize the kernel A). Given some loss function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$, what is the gradient of $L(F(x, A))$ with respect to x and A ? Write the pseudo code to apply the adjoints Jacobian $\left(\frac{\partial F}{\partial x}\right)^{\top} u \in \mathbb{R}^{n}$ and $\left(\frac{\partial F}{\partial A}\right)^{\top} u \in \mathbb{R}^{n \times p}$ to some vector $u \in \mathbb{R}^{n}$ (typically $u=\nabla L(F(x, A)$)), using the backward chain rule.
