
From Differential Calculus to Automatic Differentiation

Gabriel Peyré
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Part 1 – Gradients

1) For g : R → R, compute the derivative of x ∈ R 7→ g(ax + b) ∈ R using the definition of the
derivative and using the chain rule.

2) For g : Rp → R and A ∈ Rp,n, b ∈ Rp, compute the derivative of x ∈ Rn 7→ g(Ax + b) ∈ R using
the definition of the derivative and using the chain rule.

3) What is the gradient of x ∈ Rn 7→ ||x||p where ||x||pp
def.
=
∑

i |xi|p (and give the domain on which it is
differentiable)?

4) Compute the gradient of X ∈ Rn×n 7→ tr(X) =
∑

iXi,i, and X ∈ Rn×n 7→ det(A).

Part 2 – Jacobians

1) Using the definition of the Jacobian, compute the Jacobian of X ∈ Rn×p 7→ X>, X ∈ Rn×p 7→
XX>, X ∈ Rn×n 7→ X2, X 7→ X−1.

2) What is the Jacobian of X ∈ Rn×p 7→ AXB where A and B are also matrices (you will indicate
their size and the size of the output matrix).

3) If X ∈ S+n is symmetric positive semi-definitive (i.e. its eigenvalues are positives), show that there
exists a unique matrix

√
X ∈ S+n such that X =

√
X
√
X. Compute the Jacobian of X 7→

√
X.

Part 3 – Gradients for matrix functions

1) Compute the gradient of X ∈ Rn×n 7→ tr(X2), X ∈ Rn×n 7→ det(X2) using the definition of a
differential and the chain rule.

2) Same question for X ∈ Rn×p 7→ tr(XX>), X ∈ Rn×p 7→ det(XX>).

3) Same question for X ∈ Rn×p 7→ tr(
√
XX>). When X ∈ Rn×1 or X ∈ R1×p, what formula do you

recognize ?
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Part 4 – Smoothed total variation

1) What are the derivative and second derivative of f : x ∈ R 7→
√
x2 + ε2. Prove that f has a

Lipschitz derivative and give an upper bound on the Lipschitz constant.

2) Same question with x ∈ Rn 7→ ||x||ε
def.
=
∑n

i=1

√
x2i + ε2.

3) For x ∈ Rn, we consider the vector of finite differences (“discretized gradient”) Gx
def.
= (x2−x1, x3−

x2, . . . , xn− xn−1) ∈ Rn−1. Show that G is linear and compute its adjoint u ∈ Rn−1 7→ G>u ∈ Rn.

4) Compute the gradient of the 1-D smoothed total variation x ∈ Rn 7→ ||Gx||ε ∈ R.

5) What is the limit as ε→ 0 of || · ||ε and of its gradient? When is this limit differentiable?

Part 5 – Calculus graph and differentiation modes

1) Produce an efficient computational graph (DAG) for the function

f(x) =
log(x+

√
x2 + 1)√

x2 + 1
− log3(x+

√
x2 + 1).

2) Write the pseudo-code associated to the forward differentiation method applied to this graph (i.e.
using the classical chain rule).

3) Write the pseudo-cove associated to the backward differentiation method applied to this graph (i.e.
using the adjoint chain rule).

4) Which one is the fastest? Why?

Part 6 – Differential calculus for neural layers

We consider a function computed using a neural network with two-layers f(x,A, b) = bρ(Ax),
where x ∈ Rp, A ∈ Rq×p (q is the number of neurons) and b ∈ R1×q. Here ρ : R → R is a smooth
non-linearity and with a slight abuse of notation, for u ∈ Rq, we denote ρ(u) = (ρ(uk))qk=1 ∈ Rq.

1) What is the Jacobian of ρ : Rq 7→ Rq defined this way? What are the Jacobians of x 7→ Ax and
A 7→ Ax?

2) Using the chain rule, compute the derivative of f with respect to x and with respect to the network
weights (A, b). What is its complexity in function of (p, q) ?

3) Implement the same derivative but this time using backward differentiation. What is the resulting
complexity ? How does this compare to directly computing the gradient of f by computing its
Taylor expansion ?

4) Using ∇A,bf compute the gradient of the training error
∑n

i=1(f(xi, A, b)− yi)2.

5) We now consider a “residual network” F (x,A) = x + A>ρ(Ax) ∈ Rn (this type of architecture
shows up for instance when doing descent methods or discretizing ODEs and PDEs, and one might
want to optimize the kernel A). Given some loss function L : Rn → R, what is the gradient
of L(F (x,A)) with respect to x and A? Write the pseudo code to apply the adjoints Jacobian(
∂F
∂x

)>
u ∈ Rn and

(
∂F
∂A

)>
u ∈ Rn×p to some vector u ∈ Rn (typically u = ∇L(F (x,A))), using the

backward chain rule.
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