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1 Variational reformulation of − log
∑

For any vector u and for any probability vector p, one has thanks to Jensen
inequality, since − log is convex

− log(
∑
k

uk) = − log(
∑
k

pk
uk

pk
) ≤ −

∑
k

pk log(
uk

pk
).

But actually, if one used the best p = p⋆(u), one has an equality

− log(
∑
k

uk) = min
p≥0,

∑
k pk=1

−
∑
k

pk log(
uk

pk
) = KL(p|u).

Indeed, this optimal p⋆(u) is

p⋆(u) =
u∑
k uk

.

2 MLE of mixtures reformulation

MLE problem minimizes the negative log-likelihood of a mixture

min
θ,π

L(θ, π) :=
n∑

i=1

− log

(
K∑

k=1

πkf(xi|θk)

)
(1)

We introduce probability weights Pi,· for each i, and using the variational for-
mulation of − log

∑
to obtain

L(θ, π) = min
P

G(θ, π, P ) := −
∑
i,k

Pi,k log

(
πk

Pi,k
f(xi|θk)

)
= KL(P |P̃ ),

where P̃i,k := πkf(xi|θk).
The EM algorithm is an alternate minimization on the variables of the problem

min
P,θ,π

G(θ, π, P )

This guarantees that L(θ) is decaying through the iterations and if f is smooth
and the functional is coercive (which is problematic for Gaussians!) then con-
verging sub-sequences are guaranteed to converge to a stationary point.
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E step. The E steps correspond, given the previous iterate θ, to minimizing
with respect to P

min
P∈Rn×K

+

{G(θ, π, P ) = KL(P |P̃ ) :
∑
k

Pi,k = 1} where P̃i,k := πkf(xi|θk),

which solution reads

Pi,k =
P̃i,k∑
k P̃i,k

.

M step. Then the M step corresponds to minimizing

min
θ,π

G(θ, π, P )

For π, one solves

min
π

{
∑
k

n∑
i=1

Pi,k log(πk/Pi,k) :
∑
k

πk = 1}

which solution is

πk =

∑
i Pi,k∑
i,ℓ Pi,ℓ

For θ, this splits independently over each k as a usual (non-mixtures) MLE
where the points are weights by Pi,k

min
θk

−
∑
k

Pi,k log(f(xi|θk)).

Gaussian case. In the Gaussian case, where

f(x|Σ,m) :=
1√

2π det(Σ)
exp

(
−⟨Σ−1(x−m), x−m⟩

2

)
one has

mk =
∑
i

Pi,kxi ∈ Rd and Σk =
∑
i

Pi,k(xi −mk)
⊤(xi −mk) ∈ Rd×d.
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