Derivation of the EM Algorithm

Gabriel Peyré

March 14, 2024

1 Variational reformulation of $-\log \sum$

For any vector u and for any probability vector p, one has thanks to Jensen inequality, since $-\log$ is convex

$$
-\log \left(\sum_{k} u_{k}\right)=-\log \left(\sum_{k} p_{k} \frac{u_{k}}{p_{k}}\right) \leq-\sum_{k} p_{k} \log \left(\frac{u_{k}}{p_{k}}\right) .
$$

But actually, if one used the best $p=p^{\star}(u)$, one has an equality

$$
-\log \left(\sum_{k} u_{k}\right)=\min _{p \geq 0, \sum_{k} p_{k}=1}-\sum_{k} p_{k} \log \left(\frac{u_{k}}{p_{k}}\right)=\mathrm{KL}(p \mid u) .
$$

Indeed, this optimal $p^{\star}(u)$ is

$$
p^{\star}(u)=\frac{u}{\sum_{k} u_{k}} .
$$

2 MLE of mixtures reformulation

MLE problem minimizes the negative log-likelihood of a mixture

$$
\begin{equation*}
\min _{\theta, \pi} \mathcal{L}(\theta, \pi):=\sum_{i=1}^{n}-\log \left(\sum_{k=1}^{K} \pi_{k} f\left(x_{i} \mid \theta_{k}\right)\right) \tag{1}
\end{equation*}
$$

 mulation of $-\log \sum$ to obtain

$$
\begin{gathered}
\mathcal{L}(\theta, \pi)=\min _{P} \mathcal{G}(\theta, \pi, P):=-\sum_{i, k} P_{i, k} \log \left(\frac{\pi_{k}}{P_{i, k}} f\left(x_{i} \mid \theta_{k}\right)\right)=\mathrm{KL}(P \mid \tilde{P}), \\
\text { where } \quad \tilde{P}_{i, k}:=\pi_{k} f\left(x_{i} \mid \theta_{k}\right)
\end{gathered}
$$

The EM algorithm is an alternate minimization on the variables of the problem

$$
\min _{P, \theta, \pi} \mathcal{G}(\theta, \pi, P)
$$

This guarantees that $\mathcal{L}(\theta)$ is decaying through the iterations and if f is smooth and the functional is coercive (which is problematic for Gaussians!) then converging sub-sequences are guaranteed to converge to a stationary point.

E step. The E steps correspond, given the previous iterate θ, to minimizing with respect to P

$$
\min _{P \in \mathbb{R}_{+}^{n \times K}}\left\{\mathcal{G}(\theta, \pi, P)=\mathrm{KL}(P \mid \tilde{P}): \sum_{k} P_{i, k}=1\right\} \quad \text { where } \quad \tilde{P}_{i, k}:=\pi_{k} f\left(x_{i} \mid \theta_{k}\right),
$$

which solution reads

$$
P_{i, k}=\frac{\tilde{P}_{i, k}}{\sum_{k} \tilde{P}_{i, k}}
$$

M step. Then the M step corresponds to minimizing

$$
\min _{\theta, \pi} \mathcal{G}(\theta, \pi, P)
$$

For π, one solves

$$
\min _{\pi}\left\{\sum_{k} \sum_{i=1}^{n} P_{i, k} \log \left(\pi_{k} / P_{i, k}\right): \sum_{k} \pi_{k}=1\right\}
$$

which solution is

$$
\pi_{k}=\frac{\sum_{i} P_{i, k}}{\sum_{i, \ell} P_{i, \ell}}
$$

For θ, this splits independently over each k as a usual (non-mixtures) MLE where the points are weights by $P_{i, k}$

$$
\min _{\theta_{k}}-\sum_{k} P_{i, k} \log \left(f\left(x_{i} \mid \theta_{k}\right)\right) .
$$

Gaussian case. In the Gaussian case, where

$$
f(x \mid \Sigma, m):=\frac{1}{\sqrt{2 \pi \operatorname{det}(\Sigma)}} \exp \left(-\frac{\left\langle\Sigma^{-1}(x-m), x-m\right\rangle}{2}\right)
$$

one has

$$
m_{k}=\sum_{i} P_{i, k} x_{i} \in \mathbb{R}^{d} \quad \text { and } \quad \Sigma_{k}=\sum_{i} P_{i, k}\left(x_{i}-m_{k}\right)^{\top}\left(x_{i}-m_{k}\right) \in \mathbb{R}^{d \times d}
$$

