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1 Variational reformulation of —log )

For any vector u and for any probability vector p, one has thanks to Jensen
inequality, since — log is convex
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But actually, if one used the best p = p*(u), one has an equality
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Indeed, this optimal p*(u) is
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2 MLE of mixtures reformulation

MLE problem minimizes the negative log-likelihood of a mixture
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We introduce probability weights P; . for each 4, and using the variational for-
mulation of —log )" to obtain

L£(6,7) =minG(8,m,P) == — > Py log <7ka(xi|9k)> = KL(P|P),
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where ]5“@ =7 f(24]0k)-
The EM algorithm is an alternate minimization on the variables of the problem

min G(6,m, P)
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This guarantees that £(6) is decaying through the iterations and if f is smooth
and the functional is coercive (which is problematic for Gaussians!) then con-
verging sub-sequences are guaranteed to converge to a stationary point.



E step. The E steps correspond, given the previous iterate 6, to minimizing
with respect to P

min {G(0, 7, P) =KL(P|P):> Py =1} where Py :=mf(xil0y),
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which solution reads
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M step. Then the M step corresponds to minimizing

min G (6, w, P)
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For 7, one solves

H;in{zzpi,k log(my/Pi k) : Zﬁk =1}
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which solution is
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For 6, this splits independently over each k as a usual (non-mixtures) MLE
where the points are weights by P; j
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Gaussian case. In the Gaussian case, where
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one has

my = ZPZ"]QLL'Z' € Rd and X = ZR,k(xz — mk)T(:vZ — mk) S RdXd.
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