Automatic Differentiation

Gabriel Peyré

https://mathematical-tours.github.io

Automatic Differentiation

Setup: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations.
Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?

Automatic Differentiation

Setup: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations. Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?

Finite differences:

$$
\begin{aligned}
& \nabla f(x) \approx \frac{1}{\varepsilon}\left(f\left(x+\varepsilon \delta_{1}\right)-f(x), \ldots f\left(x+\varepsilon \delta_{n}\right)-f(x)\right) \\
& K(n+1) \text { operations, intractable for large } n .
\end{aligned}
$$

Automatic Differentiation

Setup: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ computable in K operations. Hypothesis: elementary operations $(a \times b, \log (a), \sqrt{a} \ldots)$ and their derivatives cost $O(1)$.

Question: What is the complexity of computing $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?

Finite differences:

$$
\begin{aligned}
& \nabla f(x) \approx \frac{1}{\varepsilon}\left(f\left(x+\varepsilon \delta_{1}\right)-f(x), \ldots f\left(x+\varepsilon \delta_{n}\right)-f(x)\right) \\
& K(n+1) \text { operations, intractable for large } n .
\end{aligned}
$$

Theorem: there is an algorithm to compute ∇f in $O(K)$ operations. [Seppo Linnainmaa, 1970]

This algorithm is reverse mode automatic differentiation

\rightarrow it is not numerical calculus (exact computations).
\rightarrow it is not formal calculus (algorithms matter).

Python Libraries

U PyTorch

Forward Mode and Dual Numbers

Dual number associated to $\left(x, x^{\prime}\right) \in \mathbb{R}^{2}: x+\varepsilon x^{\prime}$ with $\varepsilon^{2}=0$.

In particular: $\left(x+\varepsilon x^{\prime}\right)\left(y+\varepsilon y^{\prime}\right)=x y+\varepsilon\left(x y^{\prime}+y x^{\prime}\right)$.

$$
\frac{1}{x+\varepsilon x^{\prime}}=\frac{1}{x}-\varepsilon \frac{x^{\prime}}{x^{2}}
$$

Forward Mode and Dual Numbers

Dual number associated to $\left(x, x^{\prime}\right) \in \mathbb{R}^{2}: x+\varepsilon x^{\prime}$ with $\varepsilon^{2}=0$.
In particular: $\left(x+\varepsilon x^{\prime}\right)\left(y+\varepsilon y^{\prime}\right)=x y+\varepsilon\left(x y^{\prime}+y x^{\prime}\right)$.

$$
\frac{1}{x+\varepsilon x^{\prime}}=\frac{1}{x}-\varepsilon \frac{x^{\prime}}{x^{2}}
$$

Proposition: if P is a polynomial, $P(x+\varepsilon)=P(x)+\varepsilon P^{\prime}(x)$.

Forward Mode and Dual Numbers

Dual number associated to $\left(x, x^{\prime}\right) \in \mathbb{R}^{2}: x+\varepsilon x^{\prime}$ with $\varepsilon^{2}=0$.

In particular: $\left(x+\varepsilon x^{\prime}\right)\left(y+\varepsilon y^{\prime}\right)=x y+\varepsilon\left(x y^{\prime}+y x^{\prime}\right)$.

$$
\frac{1}{x+\varepsilon x^{\prime}}=\frac{1}{x}-\varepsilon \frac{x^{\prime}}{x^{2}}
$$

Proposition: if P is a polynomial, $P(x+\varepsilon)=P(x)+\varepsilon P^{\prime}(x)$.
Function overloading: $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x+\varepsilon x^{\prime}\right) \stackrel{\text { def. }}{=} f(x)+\varepsilon f^{\prime}(x) x^{\prime}$.

$$
\text { Example: } \cos \left(x+\varepsilon x^{\prime}\right)=\cos (x)-\varepsilon x^{\prime} \sin (x)
$$

Proposition: $(f \circ g)(x+\varepsilon)=f(g(x))+\varepsilon f^{\prime}(g(x)) g^{\prime}(x)$

Forward Mode and Dual Numbers

Dual number associated to $\left(x, x^{\prime}\right) \in \mathbb{R}^{2}: x+\varepsilon x^{\prime}$ with $\varepsilon^{2}=0$.

In particular: $\left(x+\varepsilon x^{\prime}\right)\left(y+\varepsilon y^{\prime}\right)=x y+\varepsilon\left(x y^{\prime}+y x^{\prime}\right)$.

$$
\frac{1}{x+\varepsilon x^{\prime}}=\frac{1}{x}-\varepsilon \frac{x^{\prime}}{x^{2}}
$$

Proposition: if P is a polynomial, $P(x+\varepsilon)=P(x)+\varepsilon P^{\prime}(x)$.
Function overloading: $f: \mathbb{R} \rightarrow \mathbb{R}, f\left(x+\varepsilon x^{\prime}\right) \stackrel{\text { def. }}{=} f(x)+\varepsilon f^{\prime}(x) x^{\prime}$.

$$
\text { Example: } \cos \left(x+\varepsilon x^{\prime}\right)=\cos (x)-\varepsilon x^{\prime} \sin (x)
$$

Proposition: $(f \circ g)(x+\varepsilon)=f(g(x))+\varepsilon f^{\prime}(g(x)) g^{\prime}(x)$
Higher dimension: $\quad f\left(x_{1}+\varepsilon, x_{1}, \ldots, x_{n}\right)=f(x)+\varepsilon \frac{\partial f}{\partial x_{1}}(x)$ \rightarrow complexity scales like $O(K n) \sim$ finite differences.

Computational Graph

Computer program \Leftrightarrow directed acyclic graph \Leftrightarrow linear ordering of nodes $\left(x_{k}\right)_{k}$
function $x_{t}=f\left(x_{1}, \ldots, x_{s}\right)$
${ }^{\sim}$ for $k=s+1, \ldots, t$
$\mid x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right)$
return x_{t}

Computational Graph

Computer program \Leftrightarrow directed acyclic graph \Leftrightarrow linear ordering of nodes $\left(x_{k}\right)_{k}$
function $x_{t}=f\left(x_{1}, \ldots, x_{s}\right)$
for $k=s+1, \ldots, t$
和 $=f_{k}\left(x_{1}, \ldots, x_{k-1}\right)$
return x_{t}

Forward Chain Rule

$$
\begin{aligned}
\frac{\partial x_{k}}{\partial x_{1}} & =\sum_{\ell \in \operatorname{parent}(k)}^{66}\left[\frac{\partial x_{k}}{\partial x_{\ell}}\right] \times{\frac{\partial x_{\ell}}{\partial x_{1}}}^{99} \\
& =\sum_{\ell \in \operatorname{parent}(k)} \frac{\partial f_{k}}{\partial x_{\ell}}\left(x_{1}, \ldots, x_{k-1}\right) \times \frac{\partial x_{\ell}}{\partial x_{1}}
\end{aligned}
$$

Forward Chain Rule

$$
\begin{aligned}
\frac{\partial x_{k}}{\partial x_{1}} & =\sum_{\ell \in \operatorname{parent}(k)}^{66}\left[\frac{\partial x_{k}}{\partial x_{\ell}}\right] \times{\frac{\partial x_{\ell}}{\partial x_{1}}}^{99} \\
& =\sum_{\ell \in \operatorname{parent}(k)} \frac{\partial f_{k}}{\partial x_{\ell}}\left(x_{1}, \ldots, x_{k-1}\right) \times \frac{\partial x_{\ell}}{\partial x_{1}}
\end{aligned}
$$

function $x_{t}=f\left(x_{1}, \ldots, x_{s}\right)$ for $k=s+1, \ldots, t$

$$
x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right)
$$

return x_{t}

$$
\begin{aligned}
& \text { function } \frac{\partial x_{t}}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{s}\right) \\
& \quad \frac{\partial x_{1}}{\partial x_{1}}=\operatorname{Id}_{n_{1} \times n_{1}} \\
& \text { for } k=2, \ldots, s \quad \frac{\partial x_{k}}{\partial x_{1}}=0_{n_{k} \times n_{1}} \\
& \text { for } \\
& \text { for } k=s+1, \ldots, t \\
& \quad \left\lvert\, \frac{\partial x_{k}}{\partial x_{1}}=\sum_{\ell \in \text { parent }(k)} \frac{\partial f_{k}}{\partial x_{\ell}}\left(x_{1}, \ldots, x_{k-1}\right) \times \frac{\partial x_{\ell}}{\partial x_{1}}\right. \\
& \text { return } \frac{\partial x_{t}}{\partial x_{1}}
\end{aligned}
$$

Forward Chain Rule

$$
\begin{aligned}
& \frac{\partial x_{k}}{\partial x_{1}}=\sum_{\ell \in \operatorname{parent}(k)}^{66}\left[\frac{\partial x_{k}}{\partial x_{\ell}}\right] \times{\frac{\partial x_{\ell}}{\partial x_{1}}}^{99} \\
& =\sum_{\ell \in \operatorname{parent}(k)} \frac{\partial f_{k}}{\partial x_{\ell}}\left(x_{1}, \ldots, x_{k-1}\right) \times \frac{\partial x_{\ell}}{\partial x_{1}} \\
& \text { function } x_{t}=f\left(x_{1}, \ldots, x_{s}\right) \\
& \text { for } k=s+1, \ldots, t \\
& x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right) \\
& \text { return } x_{t} \\
& \text { function } \frac{\partial x_{t}}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{s}\right) \\
& \frac{\partial x_{1}}{\partial x_{1}}=\operatorname{Id}_{n_{1} \times n_{1}} \\
& \text { for } k=2, \ldots, s \quad \frac{\partial x_{k}}{\partial x_{1}}=0_{n_{k} \times n_{1}} \\
& \text { for } k=s+1, \ldots, t \\
& \frac{\partial x_{k}}{\partial x_{1}}=\sum_{\ell \in \text { parent }(k)} \frac{\partial f_{k}}{\partial x_{\ell}}\left(x_{1}, \ldots, x_{k-1}\right) \times \frac{\partial x_{\ell}}{\partial x_{1}} \\
& \text { return } \frac{\partial x_{t}}{\partial x_{1}}
\end{aligned}
$$

Assuming $\left\{\begin{array}{l}|\operatorname{parent}(k)|=O(1), \\ n_{k}=O(1)\end{array} \rightarrow\right.$ Complexity: $O\left(K \sum_{k=1}^{s} n_{k}\right) \sim$ finite differences.

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0
$$

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0
$$

$$
\frac{\partial a}{\partial x}=\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial x}=\frac{1}{x} \frac{\partial x}{\partial x}
$$

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\begin{array}{ll}
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0 & \\
\frac{\partial a}{\partial x}=\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial x}=\frac{1}{x} \frac{\partial x}{\partial x} & \{x \mapsto a=\log (x)\} \\
\frac{\partial b}{\partial x}=\left[\frac{\partial b}{\partial a}\right] \frac{\partial a}{\partial x}+\left[\frac{\partial b}{\partial y}\right] \frac{\partial y}{\partial x}=y \frac{\partial a}{\partial x}+a \frac{\partial y}{\partial x} & \{(y, a) \mapsto b=y a\}
\end{array}
$$

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\begin{array}{ll}
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0 & \\
\frac{\partial a}{\partial x}=\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial x}=\frac{1}{x} \frac{\partial x}{\partial x} & \{x \mapsto a=\log (x)\} \\
\frac{\partial b}{\partial x}=\left[\frac{\partial b}{\partial a}\right] \frac{\partial a}{\partial x}+\left[\frac{\partial b}{\partial y}\right] \frac{\partial y}{\partial x}=y \frac{\partial a}{\partial x}+a \frac{\partial y}{\partial x} & \{(y, a) \mapsto b=y a\} \\
\frac{\partial c}{\partial x}=\left[\frac{\partial c}{\partial b}\right] \frac{\partial b}{\partial x}=\frac{1}{2 \sqrt{b}} \frac{\partial b}{\partial x} & \{b \mapsto c=\sqrt{b}\}
\end{array}
$$

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\begin{array}{ll}
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0 & \\
\frac{\partial a}{\partial x}=\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial x}=\frac{1}{x} \frac{\partial x}{\partial x} & \{x \mapsto a=\log (x)\} \\
\frac{\partial b}{\partial x}=\left[\frac{\partial b}{\partial a}\right] \frac{\partial a}{\partial x}+\left[\frac{\partial b}{\partial y}\right] \frac{\partial y}{\partial x}=y \frac{\partial a}{\partial x}+a \frac{\partial y}{\partial x} & \{(y, a) \mapsto b=y a\} \\
\frac{\partial c}{\partial x}=\left[\frac{\partial c}{\partial b}\right] \frac{\partial b}{\partial x}=\frac{1}{2 \sqrt{b}} \frac{\partial b}{\partial x} & \{b \mapsto c=\sqrt{b}\} \\
\frac{\partial f}{\partial x}=\left[\frac{\partial f}{\partial b}\right] \frac{\partial b}{\partial x}+\left[\frac{\partial f}{\partial c}\right] \frac{\partial c}{\partial x}=1 \frac{\partial b}{\partial x}+1 \frac{\partial c}{\partial x} & \{(b, c) \mapsto f=b+c\}
\end{array}
$$

Example

$$
f(x, y)=y \log (x)+\sqrt{y \log (x)}
$$

$\frac{\partial f}{\partial x}$

$$
\frac{\partial x}{\partial x}=1, \quad \frac{\partial y}{\partial x}=0
$$

$$
\frac{\partial a}{\partial x}=\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial x}=\frac{1}{x} \frac{\partial x}{\partial x}
$$

$$
\{x \mapsto a=\log (x)\}
$$

$$
\frac{\partial b}{\partial x}=\left[\frac{\partial b}{\partial a}\right] \frac{\partial a}{\partial x}+\left[\frac{\partial b}{\partial y}\right] \frac{\partial y}{\partial x}=y \frac{\partial a}{\partial x}+a \frac{\partial y}{\partial x}
$$

$$
\frac{\partial c}{\partial x}=\left[\frac{\partial c}{\partial b}\right] \frac{\partial b}{\partial x}=\frac{1}{2 \sqrt{b}} \frac{\partial b}{\partial x}
$$

$$
\{b \mapsto c=\sqrt{b}\}
$$

$$
\frac{\partial f}{\partial x}=\left[\frac{\partial f}{\partial b}\right] \frac{\partial b}{\partial x}+\left[\frac{\partial f}{\partial c}\right] \frac{\partial c}{\partial x}=1 \frac{\partial b}{\partial x}+1 \frac{\partial c}{\partial x}
$$

$\{(b, c) \mapsto f=b+c\}$
$\frac{\partial f}{\partial y}$

$$
\begin{array}{rlr}
\frac{\partial x}{\partial y} & =0, \frac{\partial y}{\partial y}=1 & \\
\frac{\partial a}{\partial y} & =\left[\frac{\partial a}{\partial x}\right] \frac{\partial x}{\partial y}=0 & \{x \mapsto a=\log (x)\} \\
\frac{\partial b}{\partial y} & =\left[\frac{\partial b}{\partial a}\right] \frac{\partial a}{\partial y}+\left[\frac{\partial b}{\partial y}\right] \frac{\partial y}{\partial y} & \{(y, a) \mapsto b=y a\} \\
\frac{\partial c}{\partial y} & =\left[\frac{\partial c}{\partial b}\right] \frac{\partial b}{\partial y}=\frac{1}{2 \sqrt{b}} \frac{\partial b}{\partial y} & \{b \mapsto c=\sqrt{b}\} \\
\frac{\partial f}{\partial y} & =\left[\frac{\partial f}{\partial b}\right] \frac{\partial b}{\partial y}+\left[\frac{\partial f}{\partial c}\right] \frac{\partial c}{\partial y} & \{(b, c) \mapsto f=b+c\}
\end{array}
$$

Backward Chain Rule

$$
\begin{aligned}
\frac{\partial x_{t}}{\partial x_{k}} & =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times\left[\frac{\partial x_{m}}{\partial x_{k}}\right]^{99} \\
& =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
\end{aligned}
$$

Backward Chain Rule

$$
\begin{aligned}
\frac{\partial x_{t}}{\partial x_{k}} & =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times\left[\frac{\partial x_{m}}{\partial x_{k}}\right]^{\boldsymbol{9}} \\
& =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
\end{aligned}
$$

function $x_{t}=f\left(x_{1}, \ldots, x_{s}\right)$
for $k=s+1, \ldots, t$
$\mid x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right)$
return x_{t}
function $\frac{\partial f}{\partial\left(x_{1}, \ldots, x_{s}\right)}\left(x_{1}, \ldots, x_{s}\right)$ $\frac{\partial x_{t}}{\partial x_{t}}=\operatorname{Id}_{n_{t} \times n_{t}}$
for $k=t-1, t-2, \ldots, 1$

$$
\frac{\partial x_{t}}{\partial x_{k}}=\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
$$

return $\left(\frac{\partial x_{t}}{\partial x_{1}}, \ldots, \frac{\partial x_{t}}{\partial x_{s}}\right)$

Backward Chain Rule

$$
\begin{aligned}
\frac{\partial x_{t}}{\partial x_{k}} & =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times\left[\frac{\partial x_{m}}{\partial x_{k}}\right] \text { "9 } \\
& =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
\end{aligned}
$$

function $x_{t}=f\left(x_{1}, \ldots, x_{s}\right)$

$$
\begin{aligned}
& \text { च for } k=s+1, \ldots, t \\
& \text { | } x_{k}=f_{k}\left(x_{1}, \ldots, x_{k-1}\right) \\
& \text { © return } x_{t}
\end{aligned}
$$

function $\frac{\partial f}{\partial\left(x_{1}, \ldots, x_{s}\right)}\left(x_{1}, \ldots, x_{s}\right)$

$$
\frac{\partial x_{t}}{\partial x_{t}}=\operatorname{Id}_{n_{t} \times n_{t}}
$$

$$
\text { for } k=t-1, t-2, \ldots, 1
$$

$$
\frac{\partial x_{t}}{\partial x_{k}}=\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
$$

$$
\text { return }\left(\frac{\partial x_{t}}{\partial x_{1}}, \ldots, \frac{\partial x_{t}}{\partial x_{s}}\right)
$$

\rightarrow needs to store all intermediate $\left(x_{k}\right)_{k}$ in memory.

Gradient Backpropagation

$$
\begin{aligned}
\frac{\partial x_{t}}{\partial x_{k}} & =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times\left[\frac{\partial x_{m}}{\partial x_{k}}\right]^{\boldsymbol{9}} \\
& =\sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}
\end{aligned}
$$

$$
\text { If } n_{t}=1: \quad \nabla_{x_{k}} f=\left(\frac{\partial x_{t}}{\partial x_{k}}\right)^{\top} \in \mathbb{R}^{n_{k}}
$$

Back-propagation of gradients:

$$
\nabla_{x_{k}} f=\sum_{m \in \operatorname{son}(k)}\left(\frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}\right)^{\top} \nabla_{x_{m}} f
$$

Gradient Backpropagation

$$
\begin{aligned}
& \frac{\partial x_{t}}{\partial x_{k}}
\end{aligned}={ }^{66} \sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times\left[\frac{\partial x_{m}}{\partial x_{k}}\right]^{99} \sum_{m \in \operatorname{son}(k)} \frac{\partial x_{t}}{\partial x_{m}} \times \frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}} \quad x_{1} \quad \text { If } n_{t}=1: \quad \nabla_{x_{k}} f=\left(\frac{\partial x_{t}}{\partial x_{k}}\right)^{\top} \in \mathbb{R}^{n_{k}} .
$$

Back-propagation of gradients:

$$
\nabla_{x_{k}} f=\sum_{m \in \operatorname{son}(k)}\left(\frac{\partial f_{m}\left(x_{1}, \ldots, x_{m}\right)}{\partial x_{k}}\right)^{\top} \nabla_{x_{m}} f
$$

Assuming $\left\{\begin{array}{l}|\operatorname{parent}(k)|=O(1), \longrightarrow \text { Complexity: } O(K) \ll \text { finite differences. } \\ n_{k}=O(1)\end{array}\right.$

Example

Example

Example

$$
\begin{aligned}
& f(x, y)=y \log (x)+\sqrt{y \log (x)} \\
& \frac{\partial f}{\partial f}=1 \\
& \frac{\partial f}{\partial c}=\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial c}\right]=\frac{\partial f}{\partial f} 1 \\
& \{c \mapsto f=b+c\} \\
& \frac{\partial f}{\partial b}=\frac{\partial f}{\partial c}\left[\frac{\partial c}{\partial b}\right]+\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial b}\right]=\frac{\partial f}{\partial c} \frac{1}{2 \sqrt{b}}+\frac{\partial f}{\partial f} 1 \quad\{b \mapsto c=\sqrt{b}, b \mapsto f=b+c\}
\end{aligned}
$$

Example

$$
\begin{array}{ll}
f(x, y)=y \log (x)+\sqrt{y \log (x)} \\
\frac{\partial f}{\partial f}=1 & \\
\frac{\partial f}{\partial c}=\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial c}\right]=\frac{\partial f}{\partial f} 1 & \{c \mapsto f=b+c\} \\
\frac{\partial f}{\partial b}=\frac{\partial f}{\partial c}\left[\frac{\partial c}{\partial b}\right]+\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial b}\right]=\frac{\partial f}{\partial c} \frac{1}{2 \sqrt{b}}+\frac{\partial f}{\partial f} 1 & \{b \mapsto c=\sqrt{b}, b \mapsto f=b+c\} \\
\frac{\partial f}{\partial a}=\frac{\partial f}{\partial b}\left[\frac{\partial b}{\partial a}\right]=\frac{\partial f}{\partial b} y & \{a \mapsto b=y a\}
\end{array}
$$

Example

$$
\begin{array}{ll}
f(x, y)=y \log (x)+\sqrt{y \log (x)} \\
\frac{\partial f}{\partial f}=1 & \\
\frac{\partial f}{\partial c}=\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial c}\right]=\frac{\partial f}{\partial f} 1 & \{c \mapsto f=b+c\} \\
\frac{\partial f}{\partial b}=\frac{\partial f}{\partial c}\left[\frac{\partial c}{\partial b}\right]+\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial b}\right]=\frac{\partial f}{\partial c} \frac{1}{2 \sqrt{b}}+\frac{\partial f}{\partial f} 1 & \{b \mapsto c=\sqrt{b}, b \mapsto f=b+c\} \\
\frac{\partial f}{\partial a}=\frac{\partial f}{\partial b}\left[\frac{\partial b}{\partial a}\right]=\frac{\partial f}{\partial b} y & \{a \mapsto b=y a\} \\
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial b}\left[\frac{\partial b}{\partial y}\right]=\frac{\partial f}{\partial b} a & \{y \mapsto b=y a\}
\end{array}
$$

Example

$$
\begin{array}{ll}
f(x, y)=y \log (x)+\sqrt{y \log (x)} \\
\frac{\partial f}{\partial f}=1 & \\
\frac{\partial f}{\partial c}=\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial c}\right]=\frac{\partial f}{\partial f} 1 & \{c \mapsto f=b+c\} \\
\frac{\partial f}{\partial b}=\frac{\partial f}{\partial c}\left[\frac{\partial c}{\partial b}\right]+\frac{\partial f}{\partial f}\left[\frac{\partial f}{\partial b}\right]=\frac{\partial f}{\partial c} \frac{1}{2 \sqrt{b}}+\frac{\partial f}{\partial f} 1 & \{b \mapsto c=\sqrt{b}, b \mapsto f=b+c\} \\
\frac{\partial f}{\partial a}=\frac{\partial f}{\partial b}\left[\frac{\partial b}{\partial a}\right]=\frac{\partial f}{\partial b} y & \{a \mapsto b=y a\} \\
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial b}\left[\frac{\partial b}{\partial y}\right]=\frac{\partial f}{\partial b} a & \{y \mapsto b=y a\} \\
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial a}\left[\frac{\partial a}{\partial x}\right]=\frac{\partial f}{\partial a} \frac{1}{x} & \{x \mapsto a=\log (x)\}
\end{array}
$$

Differentiating Composition of Functions

$$
\begin{gathered}
f=f_{t} \circ f_{t-1} \circ \ldots \circ f_{2} \circ f_{1} \quad x_{k}=f_{k}\left(x_{k-1}\right) \\
\text { temporary variables } \\
\text { input } \\
\partial f(x)=A_{t} \times A_{t-1} \times \ldots A_{2} \times A_{1} \quad A_{k} \stackrel{\text { def. }}{=} \partial f_{k}\left(x_{k-1}\right) \in \mathbb{R}^{n_{k} \times n_{k-1}} \text { output }
\end{gathered}
$$

Differentiating Composition of Functions

$$
f=f_{t} \circ f_{t-1} \circ \ldots \circ f_{2} \circ f_{1} \quad x_{k}=f_{k}\left(x_{k-1}\right)
$$

input temporary variables output

$$
\partial f(x)=A_{t} \times A_{t-1} \times \ldots A_{2} \times A_{1} \quad A_{k} \stackrel{\text { def. }}{=} \partial f_{k}\left(x_{k-1}\right) \in \mathbb{R}^{n_{k} \times n_{k-1}}
$$

Forward
Backward

$O\left(n^{3}\right)$
$O\left(n^{2}\right)$

$$
\text { (if } n_{t}=1, n_{k}=n \text {) }
$$

Feedforward Architecture

Feedforward Architecture

for $k=1, \ldots, t-1, t$

$$
x_{k}=f_{k}\left(x_{k-1}, \theta_{k-1}\right)
$$

$$
f(\theta) \stackrel{\text { def. }}{=} L\left(x_{t}\right)
$$

Example: perceptrons $f_{k}\left(x_{k-1}, \theta_{k-1}\right)=\rho\left(\theta_{k-1} x_{k-1}\right)$

Feedforward Architecture

$$
\begin{aligned}
& \text { for } k=1, \ldots, t-1, t \\
& \text { fin } \\
& x_{0}^{0} x_{k}=f_{k}\left(x_{k-1}, \theta_{k-1}\right) \\
& f(\theta) \stackrel{\text { def. }}{=} L\left(x_{t}\right)
\end{aligned}
$$

$$
\text { for } k=t, t-1, \ldots, 1
$$

$$
\begin{aligned}
& \nabla_{x_{k-1}} f=\left[\partial_{x} f_{k}\left(x_{k-1}, \theta_{k-1}\right)\right]^{\top} \nabla_{x_{k}} f \\
& \nabla_{\theta_{k-1}} f=\left[\partial_{\theta} f_{k}\left(x_{k-1}, \theta_{k-1}\right)\right]^{\top}\left(\nabla_{x_{k}} f\right)
\end{aligned}
$$

Example: perceptrons $f_{k}\left(x_{k-1}, \theta_{k-1}\right)=\rho\left(\theta_{k-1} x_{k-1}\right)$

Feedforward Architecture

$$
\nabla_{x_{t}} f=\nabla L\left(x_{t}\right)
$$

$$
\begin{aligned}
& \nabla_{x_{k-1}} f=\left[\partial_{x} f_{k}\left(x_{k-1}, \theta_{k-1}\right)\right]^{\top} \nabla_{x_{k}} f \\
& \nabla_{\theta_{k-1}} f=\left[\partial_{\theta} f_{k}\left(x_{k-1}, \theta_{k-1}\right)\right]^{\top}\left(\nabla_{x_{k}} f\right)
\end{aligned}
$$

Example: perceptrons $f_{k}\left(x_{k-1}, \theta_{k-1}\right)=\rho\left(\theta_{k-1} x_{k-1}\right)$
$\left[\partial_{\theta} f_{k}(x, \theta)\right]^{\top} z=w x^{\top}$
$\left[\partial_{x} f_{k}(x, \theta)\right]^{\top} z=\theta^{\top}(w \odot z)$

$$
z \stackrel{\text { def. }}{=} \rho^{\prime}(\theta x)
$$

$$
\begin{aligned}
& \text { for } k=1, \ldots, t-1, t \\
& x_{k}=f_{k}\left(x_{k-1}, \theta_{k-1}\right) \\
& f(\theta) \stackrel{\text { def. }}{=} L\left(x_{t}\right)
\end{aligned}
$$

Recurrent Architecture

Recurrent Architecture

Example: residual networks

$$
h(x, \theta)=x+\theta_{2} \rho\left(\theta_{1} x\right)
$$

Recurrent Architecture

$$
\begin{aligned}
& \text { for } k=1, \ldots, t-1, t \\
& x_{k}=h\left(x_{k-1}, \theta\right) \\
& f(\theta)=L\left(x_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{x_{t}} f=\nabla L\left(x_{t}\right) \\
& \text { for } k=t, t-1, \ldots, 1 \\
& \mid \nabla_{x_{k-1}} f=\left[\partial_{x} h\left(x_{k-1}, \theta\right)\right]^{\top} \nabla_{x_{k}} f \\
& \nabla_{\theta} f=\sum_{k}\left[\partial_{\theta}\left(x_{k-1}, \theta\right)\right]^{\top} \nabla_{x_{k}} f
\end{aligned}
$$

Example: residual networks

$$
h(x, \theta)=x+\theta_{2} \rho\left(\theta_{1} x\right)
$$

Adjoint State Method

Optimal control:

$$
\begin{aligned}
\dot{x}(t) & =u(x(t), \theta) \\
f(\theta) & =L(x(T))
\end{aligned}
$$

Adjoint State Method

Optimal control:

Discretization:

$$
\begin{aligned}
& \dot{x}(t)=u(x(t), \theta) \\
& f(\theta)=L(x(T))
\end{aligned} \quad \xrightarrow{t=\tau k} \quad \begin{aligned}
x_{k+1} & =x_{k}+\tau u\left(x_{k}, \theta\right) \\
f(\theta) & =L\left(x_{K}\right)
\end{aligned}
$$

Adjoint State Method

Optimal control:

Discretization:

$$
\begin{aligned}
\dot{x}(t) & =u(x(t), \theta) \\
f(\theta) & =L(x(T))
\end{aligned}
$$

$$
\begin{gathered}
t=\tau k \\
\longrightarrow \begin{array}{c}
x_{k+1}=x_{k}+\tau u\left(x_{k}, \theta\right) \\
f(\theta)=L\left(x_{K}\right)
\end{array} \\
z_{k} \stackrel{\text { def. }}{=} \nabla_{x_{k}} f(\theta) \\
z_{k-1}=z_{k}+\tau\left[\partial u\left(x_{k}, \theta\right)\right]^{\top} z_{k}
\end{gathered}
$$

$$
\nabla_{\theta} f(\theta)=\sum_{k}\left[\partial_{\theta} h\left(x_{k-1}, \theta\right)\right]^{\top} z_{k}
$$

Adjoint State Method

Optimal control:

Discretization:

$$
\begin{array}{cc}
\begin{array}{c}
\dot{x}(t)=u(x(t), \theta) \\
f(\theta)=L(x(T))
\end{array} & \xrightarrow{t=\tau k} \begin{array}{c}
x_{k+1}=x_{k}+\tau u\left(x_{k}, \theta\right) \\
f(\theta)=L\left(x_{K}\right)
\end{array} \\
z(t) \stackrel{\text { def. }}{=} \nabla_{x(t)} f(\theta) \\
\dot{z}(t)=-\left[\partial_{x} u(x(t), \theta)\right]^{\top} z(t) & z_{k} \stackrel{\text { def. }}{=} \nabla_{x_{k}} f(\theta) \\
z_{k-1}=z_{k}+\tau\left[\partial u\left(x_{k}, \theta\right)\right]^{\top} z_{k} \\
\nabla_{\theta} f(\theta)=\int_{0}^{T}\left[\partial_{\theta} f(x(t), \theta)\right]^{\top} z(t) \mathrm{d} t \\
\nabla_{\theta} f(\theta)=\sum_{k}\left[\partial_{\theta} h\left(x_{k-1}, \theta\right)\right]^{\top} z_{k} \\
x_{0}
\end{array}
$$

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K.

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K. Generic method: checkpointing.

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K.
Generic method: checkpointing.
Alternative: build "invertible" architectures.

$$
\binom{\dot{x}}{\dot{y}}=\binom{u(y)}{v(x)}
$$

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K.
Generic method: checkpointing.
Alternative: build "invertible" architectures.

$$
\binom{\dot{x}}{\dot{y}}=\binom{u(y)}{v(x)}
$$

\downarrow inverse
$\binom{\dot{x}}{\dot{y}}=-\binom{u(y)}{v(x)}$

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K. Generic method: checkpointing. Alternative: build "invertible" architectures.

$$
\begin{gathered}
\binom{\dot{x}}{\dot{y}}=\binom{u(y)}{v(x)} \xrightarrow[\text { Verlet }]{\text { leapfrog }}\left\{\begin{array}{l}
x_{k+1}=x_{k}+\tau u\left(y_{k}\right) \\
y_{k+1}=y_{k}+\tau v\left(x_{k+1}\right)
\end{array}\right. \\
\quad \text { inverse }
\end{gathered}
$$

$\binom{\dot{x}}{\dot{y}}=-\binom{u(y)}{v(x)}$

Conservative Systems: Invertible Architectures

Curse of auto-diff: memory grows with \#iterations K. Generic method: checkpointing. Alternative: build "invertible" architectures.

$$
\binom{\dot{x}}{\dot{y}}=\binom{u(y)}{v(x)} \xrightarrow[\text { Verlet }]{\text { leapfrog }}\left\{\begin{array}{l}
x_{k+1}=x_{k}+\tau u\left(y_{k}\right) \\
y_{k+1}=y_{k}+\tau v\left(x_{k+1}\right)
\end{array}\right.
$$

\downarrow_{\downarrow} inverse
\downarrow inverse
$\binom{\dot{x}}{\dot{y}}=-\binom{u(y)}{v(x)}$

$$
\left\{\begin{array}{l}
y_{k}=y_{k+1}-\tau v\left(x_{k+1}\right) \\
x_{k}=x_{k+1}-\tau u\left(y_{k}\right)
\end{array}\right.
$$

Dissipative Systems: Argmin Layers

$$
x(\theta) \stackrel{\text { def. }}{=} \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \mathcal{E}(x, \theta) \quad f(\theta) \stackrel{\text { def. }}{=} L(x(\theta))
$$

Dissipative Systems: Argmin Layers

$x \in \mathbb{R}^{n}$

$$
x_{k+1}=x_{k}-\tau \nabla \mathcal{E}\left(x_{k}, \theta\right) \Leftrightarrow \text { ResNet }
$$

\rightarrow Memory exploses with \#iterations.

Dissipative Systems: Argmin Layers

$$
\begin{gathered}
x(\theta) \stackrel{\text { def. }}{=} \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \mathcal{E}(x, \theta) \quad f(\theta) \stackrel{\text { def. }}{=} L(x(\theta)) \\
x_{k+1}=x_{k}-\tau \nabla \mathcal{E}\left(x_{k}, \theta\right) \quad \Leftrightarrow \text { ResNet } \\
\rightarrow \text { Memory exploses with \#iterations. }
\end{gathered}
$$

$$
\dot{x}_{t}=-\nabla \mathcal{E}\left(x_{t}, \theta\right)
$$

\rightarrow Flow is non-conservative, $t \mapsto x_{t}$ ill-posed.

Dissipative Systems: Argmin Layers

$$
\dot{x}_{t}=-\nabla \mathcal{E}\left(x_{t}, \theta\right)
$$

\rightarrow Flow is non-conservative, $t \mapsto x_{t}$ ill-posed.

Fixed point equation: $\quad \nabla_{x} \mathcal{E}(x(\theta), \theta)=0$

Dissipative Systems: Argmin Layers

$$
\dot{x}_{t}=-\nabla \mathcal{E}\left(x_{t}, \theta\right)
$$

\rightarrow Flow is non-conservative, $t \mapsto x_{t}$ ill-posed.

Fixed point equation: $\quad \nabla_{x} \mathcal{E}(x(\theta), \theta)=0$
Implicit function theorem:

$$
\nabla f(\theta)=-\left(\frac{\partial^{2} \mathcal{E}}{\partial x \partial \theta}(x(\theta), \theta)\right)^{\top}\left(\frac{\partial^{2} \mathcal{E}}{\partial^{2} x}(x(\theta), \theta)\right)^{-1} \nabla L(x(\theta))
$$

Example: Sinkhorn

Entropic optimal transport: between $\left(\theta_{1}, \theta_{2}\right), K \stackrel{\text { def. }}{=} e^{-\frac{c}{\varepsilon}}$
$x(\theta) \stackrel{\text { def. }}{=} \underset{x}{\operatorname{argmin}} \mathcal{E}(x, \theta)=-\left\langle\theta_{1}, \log \left(x_{1}\right)\right\rangle-\left\langle\theta_{2}, \log \left(x_{2}\right)\right\rangle+\left\langle K x_{1}, x_{2}\right\rangle$

Example: Sinkhorn

Entropic optimal transport: between $\left(\theta_{1}, \theta_{2}\right), K \stackrel{\text { def. }}{=} e^{-\frac{c}{\varepsilon}}$
$x(\theta) \stackrel{\text { def. }}{=} \underset{x}{\operatorname{argmin}} \mathcal{E}(x, \theta)=-\left\langle\theta_{1}, \log \left(x_{1}\right)\right\rangle-\left\langle\theta_{2}, \log \left(x_{2}\right)\right\rangle+\left\langle K x_{1}, x_{2}\right\rangle$

Sinkhorn:

Example: Sinkhorn

Entropic optimal transport: between $\left(\theta_{1}, \theta_{2}\right), K \xlongequal{\text { def. }}=e^{-\frac{c}{\varepsilon}}$
$x(\theta) \stackrel{\text { def. }}{=} \operatorname{argmin} \mathcal{E}(x, \theta)=-\left\langle\theta_{1}, \log \left(x_{1}\right)\right\rangle-\left\langle\theta_{2}, \log \left(x_{2}\right)\right\rangle+\left\langle K x_{1}, x_{2}\right\rangle$

Sinkhorn:

$$
x_{1, k+1}=\frac{\theta_{1}}{K x_{2, k}} \quad x_{2, k+1}=\frac{\theta_{2}}{K^{\top} x_{1, k+1}}
$$

Computing $[\partial x(\theta)]^{\top}:<$ back-propagation through Sinkhorn.

Take Home Messages

- is not just formal or numerical calculus ;
- is not just the chain rule ;

TensorFlow

- is not just the adjoint state method ;
- is not just backpropagation ;

Take Home Messages

- is not just formal or numerical calculus ;
- is not just the chain rule ;

TensorFlow

- is not just the adjoint state method ;
- is not just backpropagation ;
- is time efficient ;
- is memory inefficient ... but this can be mitigated:
- Checkpointing,
- Implicit function theorem,
- Reversing the flow.

