
ÉCOLE NORMALE
S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Automatic
Differentiation

Gabriel Peyré

https://mathematical-tours.github.io

Automatic Differentiation

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Automatic Differentiation

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Finite di↵erences:
K(n+ 1) operations, intractable for large n.

Automatic Differentiation

Hypothesis: elementary operations (a⇥ b, log(a),
p
a . . .)

and their derivatives cost O(1).

Finite di↵erences:
K(n+ 1) operations, intractable for large n.

This algorithm is reverse mode automatic di↵erentiation

[Seppo Linnainmaa, 1970]

Seppo
Linnainmaa

in O(K) operations.
<latexit sha1_base64="bMHYHzpFR8gHEYUHG01YhoyB2Kc=">AAA9knictVvrbhu5FWa2l924t2xb9E+BYlonRVJkDdtdoEUXBtaxHdsbbexEspPdVWLoMpYnGWsUjeRcFL9M/7bv0OfoG7S/+go955AcciTOHNJNTdjmUPzOOTwkz4UcdUdpkk9WV/957aPvff8HP/z4k+tLP/rxT376sxuf/vw4z6bjXnzUy9Js/LTbyeM0GcZHk2SSxk9H47hz3k3jJ92XW/j5k4t4nCfZsDV5O4qfnXcGw+Q06XUm0HRy41dRMoxuHtx+cOdmlI3iMTXnKyc3lldXVuknWqysqcqyUD+H2ae/WRdt0ReZ6ImpOBexGIoJ1FPRETmU78SaWBUjaHsmZtA2hlpCn8fiUiwBdgq9YujRgdaX8HcAT9+p1iE8I82c0D3gksLvGJCRuAWYDPqNoY7cIvp8SpSxtYr2jGiibG/hf1fROofWiTiDVg6ne/ricCwTcSr+TGNIYEwjasHR9RSVKWkFJY+sUU2AwgjasN6Hz8dQ7xFS6zkiTE5jR9126PN/UU9sxeee6jsV/yYpb0GJRFONPisodMQF0Y9oNqfwmZQnBc4DoBCrMWLtNen6nEY/hP4zaH8I5ZJqWiddKDNqvaxFbkFxIbdY5C4UF3KXRTaguJANFnkIxYU8VEjEjknnbnwTigvfZDk/guJCPmKRj6G4kI9Z5DEUF/KYRX4LxYX8lkXeh+JC3meRD6C4kA9YZAuKC9likUdQXMgjFrkDxYXcUcjqnTqGkhGdhNmVm1Av80BLkULLJivfPbKOLuw9jz3dq8Dyu3ob/rux2x46jSuwOx7r7rQCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SLyqwX3nstJcVWH6vNaCfG8tb36/hyY39msU+hJoby/uoA2hxYw88PMaoAnvIYh+JVxVYH6s/rsDydr8JdsWN5f1UC/q7sT7WdFqB5e3pMUQwbizvrZ5Aqxv7hMU+FW8qsE9Z7Ddg3d3Ybzw87LsKrPaxS+RBBhSPxLBj66h1il2JtRFQ6zD808K3pBQbd6GdwwwKzIAw5yxit0DseiIaBaLhLVde2NGc4l2eS7NAND0R3cI3YW3C9u8X/bGWeiC2C8T2HKIuIsW51mO5oOhCt3DISeG5sOYzpqyw31iL1Xqot7wacVBCyLV9Riv/LmVLmEGhpuqonRU+XiIjeq5DvKbsTY9S8+Bxk8Iq2Kg3LKrrQHVZ1FsH6i2LmjpQUxZ14UBdsCiz821c22MFGP3jXMzoSa4AGSNXlwiigk3wOnuwRyNYP4cQBT6mlgP436Tcmyt1kmE2j34STzmelSzxGGozsQztJivcpvw6pR0Wg2Sy54HK8fEJzzZmas9JK3xZePKoODHxp5OQPIOCDkaLEe2nMDoPqOWSojtZC8PvFfte18LwO6TxS4riZS0MP1HST64ge0thW1fANmE3jZT2TT2Uhjx/kTR0fYm8LlpcnNVztWaQ3ptA+vtqZvavMC9bVJP6MfUwGrk1vrw0vhAaRs+5pecwKhg9yahX16LgkQxV3mvqoTJk5EWHSg7zFDoz2KevZkbXw2gcQsS1RTn3zKqHrt5RMRpTD6NxLOS55yVF8roeRmNAz1Ifph5GA09bOirPN/VQy44akLmzqYda9SGdAuMZkFzzssVERWOKk6aKWkLxQf1pjR3zL/oxPLN5XuQI9ZRMbFtNp1v4snqJdLwQg1WbBMqB8cXUisHKNGZinc2vpAyTkn9fpGN8PGq+AVqMYPfLOwDuzDwFCfWZBFrvFCiusVlXeWQat87icJWczqHaqnXCRouGrzw1KredUCuXl5nRGj22yV7ntPZGFBM2SLOcHhqVM1xFkdNQo6Qhnl6I7t6p/VrW/iqLG80hRsVK69GNkLxJq89TXVpvWjq+pW55JlDknY9Zv3jafKqsDeY8GdkilKWOp91PnyPZbehX7wpzxi0/i2hG0V5dkNVI6EYqZ7NQfVoso/EZPRvaR3QnhzwkjR7MY6SojIS8NcNTdDxPj8ii2vaW44360id0sp6T1dX2uB49sNADBzo8x9kCj/EQai3IGY7gqeWR5SwVuspI42PxWXE7mtEM1mf0aclCahrS3sQlC1mXZZ+VqLwGNK4GmaX705ino/HtBUp81u+Sx+SuZct/i25u9f12h9Z49WquPonpE9d14hrRrpG3uvJpnoOUYOb8ZJ3i1/pRIr8QjmhDOa7PLc5SL0O68Y8pgx1RZJzSbuN2R7m3fT41/4nmdCj03TneZmdkISOyfxH4p4zWZES/9rsD+gZdWoSUbKSP3UmK6MYV6yTsGjNxXCLkWw1mvcVky6bEX9O1d1dOa1FmDNIPXM6tba2TBsWCMXEdK+tu9na990GkeU/CXiWSolkrt4n/Hfqrf/U6WV5YEahhnIFc2TrXfGSUs6COOuTl622Q7mtLebOQ4bmS2vg/I9PNkmTblHGhPOit+8C5R8+SF66SMcmdL/SRfrTuNBcpj+b0iKM9pSxe2v2B8sAo913yksu059q0SgawCiZFFqH7cqfI83zreZWp+9HO/y/Uja7LWkOKkTAnuFJD3Pl+TNmaLWUKq1qu35e0m9xaH8/1quczpLV4bu3l99D6W/ir5dbPfnS6Jatwj9aApGCejEZkS7TQw4/XvRIvvTI1LfNs+Jk1qXvZLVfJr6V1Mzn2RTCVQ1o1b9Spha5fhcYLi8YLTx226K7RaFG3a0t0wuYWLXVb6csvhFsrgPKUpcxHZBqVeEhp51J+VPssVT7H16h3LK1VllYHdqt9G2DveR+ke6/P7+73hXePxH2KbXoUgcn8pU+7NKGYS7fWZ2qSAnL+XNlXe/e3qQW5d8mCImX5HifuGHnr1KNyWUj6e+XZMrLzxiLo95Zeqz7axrap/scF5DntiZz2pUZ8Tj1iJb8tRzRnkVasmCOik/8OxVQy7qjPme3eZk6iUjxh8k25qwwvmSkMSf/cydv+Qva6b+WvEeWEUxVdd4FW+AwjBYnRJwnuyDKnGUIvJ28SZETbJfu5aKfkLd7QkmiFpJ6JDQ8bI7Nes9bttaVHrMf2B+iJWjez7urB80u9OXL8rnKj1yGvdq5i1Nnc89VodZSXKz/X6WE6x9foY0p97MzCZHllTFt84c1FShTGRWJ8uISNIkT+MMlDZJa3U76UdW9NuXzSIG3MGeVL3HugiHBFd7ed0dwdZhzdBXpdwtrUZAtHCU/jMnU+YFtaPJW6vuCHZOv1Wm+UWp6oylNo6ra3MPZbWsiYrF8quDMb2duWvV3KUvhTGEmhJ+QbvVX5oU3zCyj4NxKu7FBz9Dk7bEJ8uym2xM4HeBvilarLE82IWtAW9Ody744aZ7lHvY5eWdRt+j4c/HkkoGtO+oQ8aajskjIvuU3dn/5rsgJjEbPSm57hY7C58CNZ5BQynoQsGz+aROjv4oSORXPwGUmZiz8fea/BjeJU6O80hY1BU+dHUOYQwkO/x+A356Z3OC+bU72+Frn48pBeQN+4aBze/FXnKqafj4UaWzPy4TmgdTitoa69xf86Ds3HcArn5cstp++avfCYddkvVieyGA+H7xnDzWc1V3P055kVozPRkpufjPuioJnKrNF8ePoYj5o1oHnNhDwH5aWTeHsVGXl9qeC9gEuGTPxH/OMa/22EVwWNKjlCKOl7impqugdPTX/j0jU6/ZmPTIZOlUxlaiaPaNIbsVtiX9yH360iAgx9O1R+l1L+R6z7+7N9aD0l66FP0eXJQZvaYjr9MLdofXpWZ4wnN5bX5r+FvFg5Xl9ZW11Ze7S+/OU99Q3lT8Svxe8gL1kTfxJfij0Y7xHI9F78VfxN/H3jlxt/2djc2JJdP7qmML8QpZ+Nxn8BNAXbbQ==</latexit><latexit sha1_base64="bMHYHzpFR8gHEYUHG01YhoyB2Kc=">AAA9knictVvrbhu5FWa2l924t2xb9E+BYlonRVJkDdtdoEUXBtaxHdsbbexEspPdVWLoMpYnGWsUjeRcFL9M/7bv0OfoG7S/+go955AcciTOHNJNTdjmUPzOOTwkz4UcdUdpkk9WV/957aPvff8HP/z4k+tLP/rxT376sxuf/vw4z6bjXnzUy9Js/LTbyeM0GcZHk2SSxk9H47hz3k3jJ92XW/j5k4t4nCfZsDV5O4qfnXcGw+Q06XUm0HRy41dRMoxuHtx+cOdmlI3iMTXnKyc3lldXVuknWqysqcqyUD+H2ae/WRdt0ReZ6ImpOBexGIoJ1FPRETmU78SaWBUjaHsmZtA2hlpCn8fiUiwBdgq9YujRgdaX8HcAT9+p1iE8I82c0D3gksLvGJCRuAWYDPqNoY7cIvp8SpSxtYr2jGiibG/hf1fROofWiTiDVg6ne/ricCwTcSr+TGNIYEwjasHR9RSVKWkFJY+sUU2AwgjasN6Hz8dQ7xFS6zkiTE5jR9126PN/UU9sxeee6jsV/yYpb0GJRFONPisodMQF0Y9oNqfwmZQnBc4DoBCrMWLtNen6nEY/hP4zaH8I5ZJqWiddKDNqvaxFbkFxIbdY5C4UF3KXRTaguJANFnkIxYU8VEjEjknnbnwTigvfZDk/guJCPmKRj6G4kI9Z5DEUF/KYRX4LxYX8lkXeh+JC3meRD6C4kA9YZAuKC9likUdQXMgjFrkDxYXcUcjqnTqGkhGdhNmVm1Av80BLkULLJivfPbKOLuw9jz3dq8Dyu3ob/rux2x46jSuwOx7r7rQCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SLyqwX3nstJcVWH6vNaCfG8tb36/hyY39msU+hJoby/uoA2hxYw88PMaoAnvIYh+JVxVYH6s/rsDydr8JdsWN5f1UC/q7sT7WdFqB5e3pMUQwbizvrZ5Aqxv7hMU+FW8qsE9Z7Ddg3d3Ybzw87LsKrPaxS+RBBhSPxLBj66h1il2JtRFQ6zD808K3pBQbd6GdwwwKzIAw5yxit0DseiIaBaLhLVde2NGc4l2eS7NAND0R3cI3YW3C9u8X/bGWeiC2C8T2HKIuIsW51mO5oOhCt3DISeG5sOYzpqyw31iL1Xqot7wacVBCyLV9Riv/LmVLmEGhpuqonRU+XiIjeq5DvKbsTY9S8+Bxk8Iq2Kg3LKrrQHVZ1FsH6i2LmjpQUxZ14UBdsCiz821c22MFGP3jXMzoSa4AGSNXlwiigk3wOnuwRyNYP4cQBT6mlgP436Tcmyt1kmE2j34STzmelSzxGGozsQztJivcpvw6pR0Wg2Sy54HK8fEJzzZmas9JK3xZePKoODHxp5OQPIOCDkaLEe2nMDoPqOWSojtZC8PvFfte18LwO6TxS4riZS0MP1HST64ge0thW1fANmE3jZT2TT2Uhjx/kTR0fYm8LlpcnNVztWaQ3ptA+vtqZvavMC9bVJP6MfUwGrk1vrw0vhAaRs+5pecwKhg9yahX16LgkQxV3mvqoTJk5EWHSg7zFDoz2KevZkbXw2gcQsS1RTn3zKqHrt5RMRpTD6NxLOS55yVF8roeRmNAz1Ifph5GA09bOirPN/VQy44akLmzqYda9SGdAuMZkFzzssVERWOKk6aKWkLxQf1pjR3zL/oxPLN5XuQI9ZRMbFtNp1v4snqJdLwQg1WbBMqB8cXUisHKNGZinc2vpAyTkn9fpGN8PGq+AVqMYPfLOwDuzDwFCfWZBFrvFCiusVlXeWQat87icJWczqHaqnXCRouGrzw1KredUCuXl5nRGj22yV7ntPZGFBM2SLOcHhqVM1xFkdNQo6Qhnl6I7t6p/VrW/iqLG80hRsVK69GNkLxJq89TXVpvWjq+pW55JlDknY9Zv3jafKqsDeY8GdkilKWOp91PnyPZbehX7wpzxi0/i2hG0V5dkNVI6EYqZ7NQfVoso/EZPRvaR3QnhzwkjR7MY6SojIS8NcNTdDxPj8ii2vaW44360id0sp6T1dX2uB49sNADBzo8x9kCj/EQai3IGY7gqeWR5SwVuspI42PxWXE7mtEM1mf0aclCahrS3sQlC1mXZZ+VqLwGNK4GmaX705ino/HtBUp81u+Sx+SuZct/i25u9f12h9Z49WquPonpE9d14hrRrpG3uvJpnoOUYOb8ZJ3i1/pRIr8QjmhDOa7PLc5SL0O68Y8pgx1RZJzSbuN2R7m3fT41/4nmdCj03TneZmdkISOyfxH4p4zWZES/9rsD+gZdWoSUbKSP3UmK6MYV6yTsGjNxXCLkWw1mvcVky6bEX9O1d1dOa1FmDNIPXM6tba2TBsWCMXEdK+tu9na990GkeU/CXiWSolkrt4n/Hfqrf/U6WV5YEahhnIFc2TrXfGSUs6COOuTl622Q7mtLebOQ4bmS2vg/I9PNkmTblHGhPOit+8C5R8+SF66SMcmdL/SRfrTuNBcpj+b0iKM9pSxe2v2B8sAo913yksu059q0SgawCiZFFqH7cqfI83zreZWp+9HO/y/Uja7LWkOKkTAnuFJD3Pl+TNmaLWUKq1qu35e0m9xaH8/1quczpLV4bu3l99D6W/ir5dbPfnS6Jatwj9aApGCejEZkS7TQw4/XvRIvvTI1LfNs+Jk1qXvZLVfJr6V1Mzn2RTCVQ1o1b9Spha5fhcYLi8YLTx226K7RaFG3a0t0wuYWLXVb6csvhFsrgPKUpcxHZBqVeEhp51J+VPssVT7H16h3LK1VllYHdqt9G2DveR+ke6/P7+73hXePxH2KbXoUgcn8pU+7NKGYS7fWZ2qSAnL+XNlXe/e3qQW5d8mCImX5HifuGHnr1KNyWUj6e+XZMrLzxiLo95Zeqz7axrap/scF5DntiZz2pUZ8Tj1iJb8tRzRnkVasmCOik/8OxVQy7qjPme3eZk6iUjxh8k25qwwvmSkMSf/cydv+Qva6b+WvEeWEUxVdd4FW+AwjBYnRJwnuyDKnGUIvJ28SZETbJfu5aKfkLd7QkmiFpJ6JDQ8bI7Nes9bttaVHrMf2B+iJWjez7urB80u9OXL8rnKj1yGvdq5i1Nnc89VodZSXKz/X6WE6x9foY0p97MzCZHllTFt84c1FShTGRWJ8uISNIkT+MMlDZJa3U76UdW9NuXzSIG3MGeVL3HugiHBFd7ed0dwdZhzdBXpdwtrUZAtHCU/jMnU+YFtaPJW6vuCHZOv1Wm+UWp6oylNo6ra3MPZbWsiYrF8quDMb2duWvV3KUvhTGEmhJ+QbvVX5oU3zCyj4NxKu7FBz9Dk7bEJ8uym2xM4HeBvilarLE82IWtAW9Ody744aZ7lHvY5eWdRt+j4c/HkkoGtO+oQ8aajskjIvuU3dn/5rsgJjEbPSm57hY7C58CNZ5BQynoQsGz+aROjv4oSORXPwGUmZiz8fea/BjeJU6O80hY1BU+dHUOYQwkO/x+A356Z3OC+bU72+Frn48pBeQN+4aBze/FXnKqafj4UaWzPy4TmgdTitoa69xf86Ds3HcArn5cstp++avfCYddkvVieyGA+H7xnDzWc1V3P055kVozPRkpufjPuioJnKrNF8ePoYj5o1oHnNhDwH5aWTeHsVGXl9qeC9gEuGTPxH/OMa/22EVwWNKjlCKOl7impqugdPTX/j0jU6/ZmPTIZOlUxlaiaPaNIbsVtiX9yH360iAgx9O1R+l1L+R6z7+7N9aD0l66FP0eXJQZvaYjr9MLdofXpWZ4wnN5bX5r+FvFg5Xl9ZW11Ze7S+/OU99Q3lT8Svxe8gL1kTfxJfij0Y7xHI9F78VfxN/H3jlxt/2djc2JJdP7qmML8QpZ+Nxn8BNAXbbQ==</latexit><latexit sha1_base64="bMHYHzpFR8gHEYUHG01YhoyB2Kc=">AAA9knictVvrbhu5FWa2l924t2xb9E+BYlonRVJkDdtdoEUXBtaxHdsbbexEspPdVWLoMpYnGWsUjeRcFL9M/7bv0OfoG7S/+go955AcciTOHNJNTdjmUPzOOTwkz4UcdUdpkk9WV/957aPvff8HP/z4k+tLP/rxT376sxuf/vw4z6bjXnzUy9Js/LTbyeM0GcZHk2SSxk9H47hz3k3jJ92XW/j5k4t4nCfZsDV5O4qfnXcGw+Q06XUm0HRy41dRMoxuHtx+cOdmlI3iMTXnKyc3lldXVuknWqysqcqyUD+H2ae/WRdt0ReZ6ImpOBexGIoJ1FPRETmU78SaWBUjaHsmZtA2hlpCn8fiUiwBdgq9YujRgdaX8HcAT9+p1iE8I82c0D3gksLvGJCRuAWYDPqNoY7cIvp8SpSxtYr2jGiibG/hf1fROofWiTiDVg6ne/ricCwTcSr+TGNIYEwjasHR9RSVKWkFJY+sUU2AwgjasN6Hz8dQ7xFS6zkiTE5jR9126PN/UU9sxeee6jsV/yYpb0GJRFONPisodMQF0Y9oNqfwmZQnBc4DoBCrMWLtNen6nEY/hP4zaH8I5ZJqWiddKDNqvaxFbkFxIbdY5C4UF3KXRTaguJANFnkIxYU8VEjEjknnbnwTigvfZDk/guJCPmKRj6G4kI9Z5DEUF/KYRX4LxYX8lkXeh+JC3meRD6C4kA9YZAuKC9likUdQXMgjFrkDxYXcUcjqnTqGkhGdhNmVm1Av80BLkULLJivfPbKOLuw9jz3dq8Dyu3ob/rux2x46jSuwOx7r7rQCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SLyqwX3nstJcVWH6vNaCfG8tb36/hyY39msU+hJoby/uoA2hxYw88PMaoAnvIYh+JVxVYH6s/rsDydr8JdsWN5f1UC/q7sT7WdFqB5e3pMUQwbizvrZ5Aqxv7hMU+FW8qsE9Z7Ddg3d3Ybzw87LsKrPaxS+RBBhSPxLBj66h1il2JtRFQ6zD808K3pBQbd6GdwwwKzIAw5yxit0DseiIaBaLhLVde2NGc4l2eS7NAND0R3cI3YW3C9u8X/bGWeiC2C8T2HKIuIsW51mO5oOhCt3DISeG5sOYzpqyw31iL1Xqot7wacVBCyLV9Riv/LmVLmEGhpuqonRU+XiIjeq5DvKbsTY9S8+Bxk8Iq2Kg3LKrrQHVZ1FsH6i2LmjpQUxZ14UBdsCiz821c22MFGP3jXMzoSa4AGSNXlwiigk3wOnuwRyNYP4cQBT6mlgP436Tcmyt1kmE2j34STzmelSzxGGozsQztJivcpvw6pR0Wg2Sy54HK8fEJzzZmas9JK3xZePKoODHxp5OQPIOCDkaLEe2nMDoPqOWSojtZC8PvFfte18LwO6TxS4riZS0MP1HST64ge0thW1fANmE3jZT2TT2Uhjx/kTR0fYm8LlpcnNVztWaQ3ptA+vtqZvavMC9bVJP6MfUwGrk1vrw0vhAaRs+5pecwKhg9yahX16LgkQxV3mvqoTJk5EWHSg7zFDoz2KevZkbXw2gcQsS1RTn3zKqHrt5RMRpTD6NxLOS55yVF8roeRmNAz1Ifph5GA09bOirPN/VQy44akLmzqYda9SGdAuMZkFzzssVERWOKk6aKWkLxQf1pjR3zL/oxPLN5XuQI9ZRMbFtNp1v4snqJdLwQg1WbBMqB8cXUisHKNGZinc2vpAyTkn9fpGN8PGq+AVqMYPfLOwDuzDwFCfWZBFrvFCiusVlXeWQat87icJWczqHaqnXCRouGrzw1KredUCuXl5nRGj22yV7ntPZGFBM2SLOcHhqVM1xFkdNQo6Qhnl6I7t6p/VrW/iqLG80hRsVK69GNkLxJq89TXVpvWjq+pW55JlDknY9Zv3jafKqsDeY8GdkilKWOp91PnyPZbehX7wpzxi0/i2hG0V5dkNVI6EYqZ7NQfVoso/EZPRvaR3QnhzwkjR7MY6SojIS8NcNTdDxPj8ii2vaW44360id0sp6T1dX2uB49sNADBzo8x9kCj/EQai3IGY7gqeWR5SwVuspI42PxWXE7mtEM1mf0aclCahrS3sQlC1mXZZ+VqLwGNK4GmaX705ino/HtBUp81u+Sx+SuZct/i25u9f12h9Z49WquPonpE9d14hrRrpG3uvJpnoOUYOb8ZJ3i1/pRIr8QjmhDOa7PLc5SL0O68Y8pgx1RZJzSbuN2R7m3fT41/4nmdCj03TneZmdkISOyfxH4p4zWZES/9rsD+gZdWoSUbKSP3UmK6MYV6yTsGjNxXCLkWw1mvcVky6bEX9O1d1dOa1FmDNIPXM6tba2TBsWCMXEdK+tu9na990GkeU/CXiWSolkrt4n/Hfqrf/U6WV5YEahhnIFc2TrXfGSUs6COOuTl622Q7mtLebOQ4bmS2vg/I9PNkmTblHGhPOit+8C5R8+SF66SMcmdL/SRfrTuNBcpj+b0iKM9pSxe2v2B8sAo913yksu059q0SgawCiZFFqH7cqfI83zreZWp+9HO/y/Uja7LWkOKkTAnuFJD3Pl+TNmaLWUKq1qu35e0m9xaH8/1quczpLV4bu3l99D6W/ir5dbPfnS6Jatwj9aApGCejEZkS7TQw4/XvRIvvTI1LfNs+Jk1qXvZLVfJr6V1Mzn2RTCVQ1o1b9Spha5fhcYLi8YLTx226K7RaFG3a0t0wuYWLXVb6csvhFsrgPKUpcxHZBqVeEhp51J+VPssVT7H16h3LK1VllYHdqt9G2DveR+ke6/P7+73hXePxH2KbXoUgcn8pU+7NKGYS7fWZ2qSAnL+XNlXe/e3qQW5d8mCImX5HifuGHnr1KNyWUj6e+XZMrLzxiLo95Zeqz7axrap/scF5DntiZz2pUZ8Tj1iJb8tRzRnkVasmCOik/8OxVQy7qjPme3eZk6iUjxh8k25qwwvmSkMSf/cydv+Qva6b+WvEeWEUxVdd4FW+AwjBYnRJwnuyDKnGUIvJ28SZETbJfu5aKfkLd7QkmiFpJ6JDQ8bI7Nes9bttaVHrMf2B+iJWjez7urB80u9OXL8rnKj1yGvdq5i1Nnc89VodZSXKz/X6WE6x9foY0p97MzCZHllTFt84c1FShTGRWJ8uISNIkT+MMlDZJa3U76UdW9NuXzSIG3MGeVL3HugiHBFd7ed0dwdZhzdBXpdwtrUZAtHCU/jMnU+YFtaPJW6vuCHZOv1Wm+UWp6oylNo6ra3MPZbWsiYrF8quDMb2duWvV3KUvhTGEmhJ+QbvVX5oU3zCyj4NxKu7FBz9Dk7bEJ8uym2xM4HeBvilarLE82IWtAW9Ody744aZ7lHvY5eWdRt+j4c/HkkoGtO+oQ8aajskjIvuU3dn/5rsgJjEbPSm57hY7C58CNZ5BQynoQsGz+aROjv4oSORXPwGUmZiz8fea/BjeJU6O80hY1BU+dHUOYQwkO/x+A356Z3OC+bU72+Frn48pBeQN+4aBze/FXnKqafj4UaWzPy4TmgdTitoa69xf86Ds3HcArn5cstp++avfCYddkvVieyGA+H7xnDzWc1V3P055kVozPRkpufjPuioJnKrNF8ePoYj5o1oHnNhDwH5aWTeHsVGXl9qeC9gEuGTPxH/OMa/22EVwWNKjlCKOl7impqugdPTX/j0jU6/ZmPTIZOlUxlaiaPaNIbsVtiX9yH360iAgx9O1R+l1L+R6z7+7N9aD0l66FP0eXJQZvaYjr9MLdofXpWZ4wnN5bX5r+FvFg5Xl9ZW11Ze7S+/OU99Q3lT8Svxe8gL1kTfxJfij0Y7xHI9F78VfxN/H3jlxt/2djc2JJdP7qmML8QpZ+Nxn8BNAXbbQ==</latexit><latexit sha1_base64="bMHYHzpFR8gHEYUHG01YhoyB2Kc=">AAA9knictVvrbhu5FWa2l924t2xb9E+BYlonRVJkDdtdoEUXBtaxHdsbbexEspPdVWLoMpYnGWsUjeRcFL9M/7bv0OfoG7S/+go955AcciTOHNJNTdjmUPzOOTwkz4UcdUdpkk9WV/957aPvff8HP/z4k+tLP/rxT376sxuf/vw4z6bjXnzUy9Js/LTbyeM0GcZHk2SSxk9H47hz3k3jJ92XW/j5k4t4nCfZsDV5O4qfnXcGw+Q06XUm0HRy41dRMoxuHtx+cOdmlI3iMTXnKyc3lldXVuknWqysqcqyUD+H2ae/WRdt0ReZ6ImpOBexGIoJ1FPRETmU78SaWBUjaHsmZtA2hlpCn8fiUiwBdgq9YujRgdaX8HcAT9+p1iE8I82c0D3gksLvGJCRuAWYDPqNoY7cIvp8SpSxtYr2jGiibG/hf1fROofWiTiDVg6ne/ricCwTcSr+TGNIYEwjasHR9RSVKWkFJY+sUU2AwgjasN6Hz8dQ7xFS6zkiTE5jR9126PN/UU9sxeee6jsV/yYpb0GJRFONPisodMQF0Y9oNqfwmZQnBc4DoBCrMWLtNen6nEY/hP4zaH8I5ZJqWiddKDNqvaxFbkFxIbdY5C4UF3KXRTaguJANFnkIxYU8VEjEjknnbnwTigvfZDk/guJCPmKRj6G4kI9Z5DEUF/KYRX4LxYX8lkXeh+JC3meRD6C4kA9YZAuKC9likUdQXMgjFrkDxYXcUcjqnTqGkhGdhNmVm1Av80BLkULLJivfPbKOLuw9jz3dq8Dyu3ob/rux2x46jSuwOx7r7rQCy6+8XbCRbixvi/bIm7iweyx2H1aAG7vPYr8SLyqwX3nstJcVWH6vNaCfG8tb36/hyY39msU+hJoby/uoA2hxYw88PMaoAnvIYh+JVxVYH6s/rsDydr8JdsWN5f1UC/q7sT7WdFqB5e3pMUQwbizvrZ5Aqxv7hMU+FW8qsE9Z7Ddg3d3Ybzw87LsKrPaxS+RBBhSPxLBj66h1il2JtRFQ6zD808K3pBQbd6GdwwwKzIAw5yxit0DseiIaBaLhLVde2NGc4l2eS7NAND0R3cI3YW3C9u8X/bGWeiC2C8T2HKIuIsW51mO5oOhCt3DISeG5sOYzpqyw31iL1Xqot7wacVBCyLV9Riv/LmVLmEGhpuqonRU+XiIjeq5DvKbsTY9S8+Bxk8Iq2Kg3LKrrQHVZ1FsH6i2LmjpQUxZ14UBdsCiz821c22MFGP3jXMzoSa4AGSNXlwiigk3wOnuwRyNYP4cQBT6mlgP436Tcmyt1kmE2j34STzmelSzxGGozsQztJivcpvw6pR0Wg2Sy54HK8fEJzzZmas9JK3xZePKoODHxp5OQPIOCDkaLEe2nMDoPqOWSojtZC8PvFfte18LwO6TxS4riZS0MP1HST64ge0thW1fANmE3jZT2TT2Uhjx/kTR0fYm8LlpcnNVztWaQ3ptA+vtqZvavMC9bVJP6MfUwGrk1vrw0vhAaRs+5pecwKhg9yahX16LgkQxV3mvqoTJk5EWHSg7zFDoz2KevZkbXw2gcQsS1RTn3zKqHrt5RMRpTD6NxLOS55yVF8roeRmNAz1Ifph5GA09bOirPN/VQy44akLmzqYda9SGdAuMZkFzzssVERWOKk6aKWkLxQf1pjR3zL/oxPLN5XuQI9ZRMbFtNp1v4snqJdLwQg1WbBMqB8cXUisHKNGZinc2vpAyTkn9fpGN8PGq+AVqMYPfLOwDuzDwFCfWZBFrvFCiusVlXeWQat87icJWczqHaqnXCRouGrzw1KredUCuXl5nRGj22yV7ntPZGFBM2SLOcHhqVM1xFkdNQo6Qhnl6I7t6p/VrW/iqLG80hRsVK69GNkLxJq89TXVpvWjq+pW55JlDknY9Zv3jafKqsDeY8GdkilKWOp91PnyPZbehX7wpzxi0/i2hG0V5dkNVI6EYqZ7NQfVoso/EZPRvaR3QnhzwkjR7MY6SojIS8NcNTdDxPj8ii2vaW44360id0sp6T1dX2uB49sNADBzo8x9kCj/EQai3IGY7gqeWR5SwVuspI42PxWXE7mtEM1mf0aclCahrS3sQlC1mXZZ+VqLwGNK4GmaX705ino/HtBUp81u+Sx+SuZct/i25u9f12h9Z49WquPonpE9d14hrRrpG3uvJpnoOUYOb8ZJ3i1/pRIr8QjmhDOa7PLc5SL0O68Y8pgx1RZJzSbuN2R7m3fT41/4nmdCj03TneZmdkISOyfxH4p4zWZES/9rsD+gZdWoSUbKSP3UmK6MYV6yTsGjNxXCLkWw1mvcVky6bEX9O1d1dOa1FmDNIPXM6tba2TBsWCMXEdK+tu9na990GkeU/CXiWSolkrt4n/Hfqrf/U6WV5YEahhnIFc2TrXfGSUs6COOuTl622Q7mtLebOQ4bmS2vg/I9PNkmTblHGhPOit+8C5R8+SF66SMcmdL/SRfrTuNBcpj+b0iKM9pSxe2v2B8sAo913yksu059q0SgawCiZFFqH7cqfI83zreZWp+9HO/y/Uja7LWkOKkTAnuFJD3Pl+TNmaLWUKq1qu35e0m9xaH8/1quczpLV4bu3l99D6W/ir5dbPfnS6Jatwj9aApGCejEZkS7TQw4/XvRIvvTI1LfNs+Jk1qXvZLVfJr6V1Mzn2RTCVQ1o1b9Spha5fhcYLi8YLTx226K7RaFG3a0t0wuYWLXVb6csvhFsrgPKUpcxHZBqVeEhp51J+VPssVT7H16h3LK1VllYHdqt9G2DveR+ke6/P7+73hXePxH2KbXoUgcn8pU+7NKGYS7fWZ2qSAnL+XNlXe/e3qQW5d8mCImX5HifuGHnr1KNyWUj6e+XZMrLzxiLo95Zeqz7axrap/scF5DntiZz2pUZ8Tj1iJb8tRzRnkVasmCOik/8OxVQy7qjPme3eZk6iUjxh8k25qwwvmSkMSf/cydv+Qva6b+WvEeWEUxVdd4FW+AwjBYnRJwnuyDKnGUIvJ28SZETbJfu5aKfkLd7QkmiFpJ6JDQ8bI7Nes9bttaVHrMf2B+iJWjez7urB80u9OXL8rnKj1yGvdq5i1Nnc89VodZSXKz/X6WE6x9foY0p97MzCZHllTFt84c1FShTGRWJ8uISNIkT+MMlDZJa3U76UdW9NuXzSIG3MGeVL3HugiHBFd7ed0dwdZhzdBXpdwtrUZAtHCU/jMnU+YFtaPJW6vuCHZOv1Wm+UWp6oylNo6ra3MPZbWsiYrF8quDMb2duWvV3KUvhTGEmhJ+QbvVX5oU3zCyj4NxKu7FBz9Dk7bEJ8uym2xM4HeBvilarLE82IWtAW9Ody744aZ7lHvY5eWdRt+j4c/HkkoGtO+oQ8aajskjIvuU3dn/5rsgJjEbPSm57hY7C58CNZ5BQynoQsGz+aROjv4oSORXPwGUmZiz8fea/BjeJU6O80hY1BU+dHUOYQwkO/x+A356Z3OC+bU72+Frn48pBeQN+4aBze/FXnKqafj4UaWzPy4TmgdTitoa69xf86Ds3HcArn5cstp++avfCYddkvVieyGA+H7xnDzWc1V3P055kVozPRkpufjPuioJnKrNF8ePoYj5o1oHnNhDwH5aWTeHsVGXl9qeC9gEuGTPxH/OMa/22EVwWNKjlCKOl7impqugdPTX/j0jU6/ZmPTIZOlUxlaiaPaNIbsVtiX9yH360iAgx9O1R+l1L+R6z7+7N9aD0l66FP0eXJQZvaYjr9MLdofXpWZ4wnN5bX5r+FvFg5Xl9ZW11Ze7S+/OU99Q3lT8Svxe8gL1kTfxJfij0Y7xHI9F78VfxN/H3jlxt/2djc2JJdP7qmML8QpZ+Nxn8BNAXbbQ==</latexit>

Python Libraries

Forward Mode and Dual Numbers

Forward Mode and Dual Numbers

Forward Mode and Dual Numbers

Forward Mode and Dual Numbers

Computational Graph

… …

fo
rw

ar
d

Computational Graph

… …

fo
rw

ar
d

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Forward Chain Rule

“ ”

…

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Forward Chain Rule

“ ”

…

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

fo
rw

ar
d (and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

fo
rw

ar
d

Forward Chain Rule

“ ”

…

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

fo
rw

ar
d (and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

fo
rw

ar
d

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2parent(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2parent(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Backward Chain Rule

…

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

“ ”

Backward Chain Rule

…

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

fo
rw

ar
d

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

“ ”

Backward Chain Rule

…

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

fo
rw

ar
d

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

“ ”

Gradient Backpropagation

…

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

“ ”

Gradient Backpropagation

…

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

Figure 3: Example of a simple computational graph.

obeying the rule that "2 = 0. Here (x, x0) 2 R2 and x0 is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ "x0)(y + "y0) = xy + "(xy0 + yx0) and
1

x+ "x0 =
1

x
� "

x0

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ") = f(x) + "f 0(x).

For a more general basic function f , one needs to overload it so that

f(x+ "x0)
def.
= f(x) + "f 0(x)x0.

Using this definition, one has that

(f � g)(x+ ") = f(g(x)) + "f 0(g(x))g0(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ", x2, . . . , xs) = f(x1, . . . , xs) + "
@f

@x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic di↵erentiation to compute
@f
@x1

(x1, . . . , xs) (and similarly for the other variables).

4 Reverse Mode of Automatic Di↵erentiation

Instead of evaluating the di↵erentials @xk
@x1

which is problematic for a large p, the reverse mode evaluates

the di↵erentials @xt
@xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

@xt

@xt
= Idnt⇥nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

8 k = t� 1, t� 2, . . . , 1,
@xt

@xk
=

X

m2son(k)

@xt

@xm
⇥


@xm

@xk

�
=

X

m2son(k)

@xt

@xm
⇥ @fm(x1, . . . , xm)

@xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, right.

4

“ ”

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Example

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

8 k = s+ 1, . . . , t,
@xk

@x1
=

X

`2father(k)


@xk

@x`

�
⇥ @x`

@x1
=

X

`2father(k)

@fk
@x`

(x1, . . . , xk�1)⇥
@x`

@x1
.

The notation “father(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 2, left.
Here the quantities being computed (i.e. stored in computer variables) are the derivatives @x`

@x1
, and ⇥ denotes

in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since here @xk
@x`

should be interpreted not as a numerical variable but needs to be interpreted as derivative of the function
fk, which can be evaluated on the fly (we assume that the derivative of the function involved are accessible
in closed form).

Assuming all the involved functions @fk
@xk

have the same complexity (which is likely to be the case if all
the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for @

@x1
, . . . , @

@xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
p
y log(x) (1)

whose computational graph is displayed on Figure 3. The iterations of the forward mode to compute the
derivative with respect to x read

@x

@x
= 1,

@y

@x
= 0

@a

@x
=


@a

@x

�
@x

@x
=

1

x

@x

@x
{x 7! a = log(x)}

@b

@x
=


@b

@a

�
@a

@x
+


@b

@y

�
@y

@x
= y

@a

@x
+ 0 {(y, a) 7! b = ya}

@c

@x
=


@c

@b

�
@b

@x
=

1

2
p
b

@b

@x
{b 7! c =

p
b}

@f

@x
=


@f

@b

�
@b

@x
+


@f

@c

�
@c

@x
= 1

@b

@x
+ 1

@c

@x
{(b, c) 7! f = b+ c}

One needs to run another forward pass to compute the derivative with respect to y

@x

@y
= 0,

@y

@y
= 1

@a

@y
=


@a

@x

�
@x

@y
= 0 {x 7! a = log(x)}

@b

@y
=


@b

@a

�
@a

@y
+


@b

@y

�
@y

@y
= 0 + a

@y

@y
{(y, a) 7! b = ya}

@c

@y
=


@c

@b

�
@b

@y
=

1

2
p
b

@b

@y
{b 7! c =

p
b}

@f

@y
=


@f

@b

�
@b

@y
+


@f

@c

�
@c

@y
= 1

@b

@y
+ 1

@c

@y
{(b, c) 7! f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + "x0 where " is a symbol

3

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Differentiating Composition of Functions

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Differentiating Composition of Functions

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

Back-propagation. In the special case where xt 2 R, then @xt
@xk

= [rxkf(x)]
> 2 R1⇥nk and one can write

the recursion on the gradient vector as follow

8 k = t� 1, t� 2, . . . , 1, rxkf(x) =
X

m2son(k)

✓
@fm(x1, . . . , xm)

@xk

◆>
(rxmf(x)) .

where
⇣

@fm(x1,...,xm)
@xk

⌘>
2 Rnk⇥nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (1), the iterations of the reverse mode read

@f

@f
= 1

@f

@c
=

@f

@f


@f

@c

�
=

@f

@f
1 {c 7! f = b+ c}

@f

@b
=

@f

@c


@c

@b

�
+

@f

@f


@f

@b

�
=

@f

@c

1

2
p
b
+

@f

@f
1 {b 7! c =

p
b, b 7! f = b+ c}

@f

@a
=

@f

@b


@b

@a

�
=

@f

@b
y {a 7! b = ya}

@f

@y
=

@f

@b


@b

@y

�
=

@f

@b
a {y 7! b = ya}

@f

@x
=

@f

@a


@a

@x

�
=

@f

@a

1

x
{x 7! a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft � ft�1 � . . . � f2 � f1 (2)

for functions fk : Rnk�1 ! Rnk .
The forward function evaluation algorithm initializes x0 = x 2 Rn0 and then computes

8 k = 1, . . . , t, xk = fk(xk�1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= @fk(xk�1) 2 Rnk⇥nk�1 the Jacobian, one has

@f(x) = At ⇥At�1 ⇥ . . . A2 ⇥A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

@f(x) = At ⇥ (At�1 ⇥ (. . .⇥ (A3 ⇥ (A2 ⇥A1)))) ,

@f(x) = ((((At ⇥At�1)⇥At�2)⇥ . . .)⇥A2)⇥A1.

5

A1⇥ ⇥ ⇥ ⇥. . .

n0

n1n2

. . . A1⇥ ⇥ ⇥ ⇥. . .

n0

n1

. . .

Feedforward Architecture

. . .

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

fo
rw

ar
d

Feedforward Architecture

. . .

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

. . .

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

fo
rw

ar
d

Feedforward Architecture

. . .

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

. . .

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

fo
rw

ar
d

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Feedforward Architecture

. . .

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

. . .

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

fo
rw

ar
d

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Recurrent Architecture

. . .

fo
rw

ar
d

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

Recurrent Architecture

. . .

fo
rw

ar
d

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

Recurrent Architecture

. . .

fo
rw

ar
d

Figure 6: Multi-layer perceptron parameterization.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

8xk�1 2 Rnk�1 , fk(xk�1, ✓k�1) = ⇢(✓k�1xk�1) (6)

where ✓k�1 2 Rnk⇥nk�1 are the neuron’s weights and ⇢ a fixed pointwise linearity, see Figure 6. One has,
for a vector zk 2 Rnk (typically equal to rxkf)

⇢
[@xfk(xk�1, ✓k�1)]>(zk) = ✓>k�1wkzk,
[@✓fk(xk�1, ✓k�1)]>(zk) = wkx>

k�1
where wk

def.
= diag(⇢0(✓k�1xk�1)).

Link with adjoint state method. One can interpret (3) as a time discretization of a continuous ODE.
One imposes that the dimension nk = n is fixed, and denotes x(t) 2 Rn a continuous time evolution, so that
xk ! x(k⌧) when k ! +1 and k⌧ ! t. Imposing then the structure

fk(xk�1, ✓k�1) = xk�1 + ⌧u(xk�1, ✓k�1, k⌧) (7)

where u(x, ✓, t) 2 Rn is a parameterized vector field, as ⌧ ! 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), ✓(t), t) (8)

with x(t = 0) = x0.
Denoting z(t) = rx(t)f(✓) the “adjoint” vector field, the discrete equations (10) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = �[@xu(x(t), ✓(t), t)]
>z(t) and r✓(t)f(✓) = [@✓u(x(t), ✓(t), t)]

>z(t).

Note that the correct normalization is 1
⌧r✓k�1f ! r✓(t)f(✓)

7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter ✓ = ✓k and fk = h recursively
in (6), so that

8 k = 1, . . . , t, xk = h(xk�1, ✓). (9)

We consider a real valued function of the form

f(✓) = L(xt, ✓)

7

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Adjoint State Method

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Adjoint State Method

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Adjoint State Method

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Figure 4: Complexity of forward (left) and backward (right) modes for composition of functions.

Figure 5: Computational graph for a feedforward architecture.

We note that the computation of the product A ⇥ B of A 2 Rn⇥p with B 2 Rp⇥q necessitates npq
operations. As shown on Figure 4, the complexity of the forward and backward modes are

n0

t�1X

k=1

nknk+1 and nt

t�2X

k=0

nknk+1

So if nt ⌧ n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

8 k = 1, . . . , t, xk = fk(xk�1, ✓k�1) (3)

where ✓k�1 is a vector of parameters and x0 2 Rn0 is given. The function to minimize has the form

f(✓)
def.
= L(xt) (4)

where L : Rnt ! R is some loss function (for instance a least square or logistic prediction risk) and ✓ =
(✓k)

t�1
k=0. Figure 5, top, displays the associated computational graph.
One can use the reverse mode automatic di↵erentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, ✓k). One initializes

rxtf = rL(xt)

and then recurse from k = t� 1 to 0

zk�1 = [@xfk(xk�1, ✓k�1)]
>zk and r✓k�1f = [@✓fk(xk�1, ✓k�1)]

>(rxkf) (5)

where we denoted zk
def.
= rxkf(✓) the gradient with respect to xk.

6

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Adjoint State Method

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Figure 7: Computational graph for a recurrent architecture.

Figure 8: Recurrent residual perceptron parameterization.

so that here the final loss depends on ✓ (which is thus more general than (4)). Figure 7, bottom, displays
the associated computational graph.

The back-propagation then operates as

rxk�1f = [@xh(xk�1, ✓)]
>rxkf and r✓f = r✓L(xt, ✓) +

X

k

[@✓h(xk�1, ✓)]
>rxkf. (10)

Similarly, writing h(x, ✓) = x+ ⌧u(x, ✓), letting (k, k⌧) ! (+1, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), ✓)

and the following linear backward adjoint equation, for f(✓) = L(x(T), ✓)

ż(t) = �[@xu(x(t), ✓)]
>z(t) and r✓f(✓) = r✓L(x(T), ✓) +

Z T

0
[@✓f(x(t), ✓)]

>z(t)dt. (11)

with z(0) = rxL(xt, ✓).

Residual recurrent networks. A recurrent network is defined using

h(x, ✓) = x+W>
2 ⇢(W1x)

as displayed on Figure 8, where ✓ = (W1,W2) 2 (Rn⇥q)2 are the weights and ⇢ is a pointwise non-linearity.
The number q of hidden neurons can be increased to approximate more complex functions. In the special
case where W2 = �⌧W1, and ⇢ = 0, then this is a special case of an argmin layer (13) to minimize the
function E(x, ✓) = (W1x) using gradient descent, where (u) =

P
i (ui) is a separable function. The

Jacobians @✓h and @xh are computed similarly to (11).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute rf(✓) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to

8

Conservative Systems: Invertible Architectures

Conservative Systems: Invertible Architectures

Conservative Systems: Invertible Architectures

Conservative Systems: Invertible Architectures

Conservative Systems: Invertible Architectures

Conservative Systems: Invertible Architectures

Dissipative Systems: Argmin Layers

Dissipative Systems: Argmin Layers

reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (8) has a symplectic structure of the form u((r, s), ✓, t) =
(F (s, ✓, t), G(r, ✓, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + ⌧F (sk, ✓k, ⌧k) and sk+1 = sk + ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 � ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)). and rk = rk+1 � ⌧F (sk, ✓k, ⌧k).

Fixed point maps In some applications (some of which are detailed bellow), the iterations xk converges
to some x?(✓) which is thus a fixed point

x?(✓) = h(x?(✓), ✓).

Instead of applying the back-propagation to compute the gradient of f(✓) = L(xt, ✓), one can thus apply the
implicit function theorem to compute the gradient of f?(✓) = L(x?(✓), ✓). Indeed, one has

rf?(✓) = [@x?(✓)]>(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓). (12)

Using the implicit function theorem one can compute the Jacobian as

@x?(✓) = �
✓
@h

@x
(x?(✓), ✓)

◆�1 @h

@✓
(x?(✓), ✓).

In practice, one replace in these formulas x?(✓) by xt, which produces an approximation of rf(✓). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter ✓ to a point x(✓) by solving a parametric
optimization problem

x(✓) = argmin
x

E(x, ✓).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk � ⌧rE(xk, ✓). (13)

This has the form (7) when using the vector field u(x, ✓) = rE(xk, ✓).
Using formula (12) in this case where h = rE , one obtains

rf?(✓) = �
✓

@2E
@x@✓

(x?(✓), ✓)

◆> ✓
@2E
@x2

(x?(✓), ✓)

◆�1

(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓)

In the special case where the function f(✓) is the minimized function itself, i.e. f(✓) = E(x?(✓), ✓), i.e.
L = E , then one can apply the implicit function theorem formula (12), which is much simpler since in this
case rxL(x?(✓), ✓) = 0 so that

rf?(✓) = r✓L(x
?(✓), ✓). (14)

This result is often called Danskin theorem or the envelope theorem.

9

Dissipative Systems: Argmin Layers

reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (8) has a symplectic structure of the form u((r, s), ✓, t) =
(F (s, ✓, t), G(r, ✓, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + ⌧F (sk, ✓k, ⌧k) and sk+1 = sk + ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 � ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)). and rk = rk+1 � ⌧F (sk, ✓k, ⌧k).

Fixed point maps In some applications (some of which are detailed bellow), the iterations xk converges
to some x?(✓) which is thus a fixed point

x?(✓) = h(x?(✓), ✓).

Instead of applying the back-propagation to compute the gradient of f(✓) = L(xt, ✓), one can thus apply the
implicit function theorem to compute the gradient of f?(✓) = L(x?(✓), ✓). Indeed, one has

rf?(✓) = [@x?(✓)]>(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓). (12)

Using the implicit function theorem one can compute the Jacobian as

@x?(✓) = �
✓
@h

@x
(x?(✓), ✓)

◆�1 @h

@✓
(x?(✓), ✓).

In practice, one replace in these formulas x?(✓) by xt, which produces an approximation of rf(✓). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter ✓ to a point x(✓) by solving a parametric
optimization problem

x(✓) = argmin
x

E(x, ✓).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk � ⌧rE(xk, ✓). (13)

This has the form (7) when using the vector field u(x, ✓) = rE(xk, ✓).
Using formula (12) in this case where h = rE , one obtains

rf?(✓) = �
✓

@2E
@x@✓

(x?(✓), ✓)

◆> ✓
@2E
@x2

(x?(✓), ✓)

◆�1

(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓)

In the special case where the function f(✓) is the minimized function itself, i.e. f(✓) = E(x?(✓), ✓), i.e.
L = E , then one can apply the implicit function theorem formula (12), which is much simpler since in this
case rxL(x?(✓), ✓) = 0 so that

rf?(✓) = r✓L(x
?(✓), ✓). (14)

This result is often called Danskin theorem or the envelope theorem.

9

Dissipative Systems: Argmin Layers

reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (8) has a symplectic structure of the form u((r, s), ✓, t) =
(F (s, ✓, t), G(r, ✓, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + ⌧F (sk, ✓k, ⌧k) and sk+1 = sk + ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 � ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)). and rk = rk+1 � ⌧F (sk, ✓k, ⌧k).

Fixed point maps In some applications (some of which are detailed bellow), the iterations xk converges
to some x?(✓) which is thus a fixed point

x?(✓) = h(x?(✓), ✓).

Instead of applying the back-propagation to compute the gradient of f(✓) = L(xt, ✓), one can thus apply the
implicit function theorem to compute the gradient of f?(✓) = L(x?(✓), ✓). Indeed, one has

rf?(✓) = [@x?(✓)]>(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓). (12)

Using the implicit function theorem one can compute the Jacobian as

@x?(✓) = �
✓
@h

@x
(x?(✓), ✓)

◆�1 @h

@✓
(x?(✓), ✓).

In practice, one replace in these formulas x?(✓) by xt, which produces an approximation of rf(✓). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter ✓ to a point x(✓) by solving a parametric
optimization problem

x(✓) = argmin
x

E(x, ✓).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk � ⌧rE(xk, ✓). (13)

This has the form (7) when using the vector field u(x, ✓) = rE(xk, ✓).
Using formula (12) in this case where h = rE , one obtains

rf?(✓) = �
✓

@2E
@x@✓

(x?(✓), ✓)

◆> ✓
@2E
@x2

(x?(✓), ✓)

◆�1

(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓)

In the special case where the function f(✓) is the minimized function itself, i.e. f(✓) = E(x?(✓), ✓), i.e.
L = E , then one can apply the implicit function theorem formula (12), which is much simpler since in this
case rxL(x?(✓), ✓) = 0 so that

rf?(✓) = r✓L(x
?(✓), ✓). (14)

This result is often called Danskin theorem or the envelope theorem.

9

Dissipative Systems: Argmin Layers

reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (8) has a symplectic structure of the form u((r, s), ✓, t) =
(F (s, ✓, t), G(r, ✓, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + ⌧F (sk, ✓k, ⌧k) and sk+1 = sk + ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 � ⌧G(rk+1, ✓k+1/2, ⌧(k + 1/2)). and rk = rk+1 � ⌧F (sk, ✓k, ⌧k).

Fixed point maps In some applications (some of which are detailed bellow), the iterations xk converges
to some x?(✓) which is thus a fixed point

x?(✓) = h(x?(✓), ✓).

Instead of applying the back-propagation to compute the gradient of f(✓) = L(xt, ✓), one can thus apply the
implicit function theorem to compute the gradient of f?(✓) = L(x?(✓), ✓). Indeed, one has

rf?(✓) = [@x?(✓)]>(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓). (12)

Using the implicit function theorem one can compute the Jacobian as

@x?(✓) = �
✓
@h

@x
(x?(✓), ✓)

◆�1 @h

@✓
(x?(✓), ✓).

In practice, one replace in these formulas x?(✓) by xt, which produces an approximation of rf(✓). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter ✓ to a point x(✓) by solving a parametric
optimization problem

x(✓) = argmin
x

E(x, ✓).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk � ⌧rE(xk, ✓). (13)

This has the form (7) when using the vector field u(x, ✓) = rE(xk, ✓).
Using formula (12) in this case where h = rE , one obtains

rf?(✓) = �
✓

@2E
@x@✓

(x?(✓), ✓)

◆> ✓
@2E
@x2

(x?(✓), ✓)

◆�1

(rxL(x
?(✓), ✓)) +r✓L(x

?(✓), ✓)

In the special case where the function f(✓) is the minimized function itself, i.e. f(✓) = E(x?(✓), ✓), i.e.
L = E , then one can apply the implicit function theorem formula (12), which is much simpler since in this
case rxL(x?(✓), ✓) = 0 so that

rf?(✓) = r✓L(x
?(✓), ✓). (14)

This result is often called Danskin theorem or the envelope theorem.

9

Example: Sinkhorn

Example: Sinkhorn

Example: Sinkhorn

Take Home Messages

• is not just formal or numerical calculus ;

• is not just the chain rule ;

• is not just the adjoint state method ;

• is not just backpropagation ;

Take Home Messages

• is not just formal or numerical calculus ;

• is not just the chain rule ;

• is not just the adjoint state method ;

• is not just backpropagation ;

- Checkpointing,
- Implicit function theorem,
- Reversing the flow.

• is time efficient ;

• is memory inefficient … but this can be mitigated:

