Compressive

Sensing

Gabriel Peyré

www.numerical-tours.com

Shannon's World

- Compressive Sensing Acquisition
- Compressive Sensing Recovery
- Theoretical Guarantees
- •Fourier Domain Measurements

0.5

0

-0.5

0.4

0.2

-0.2

-0.4

4100

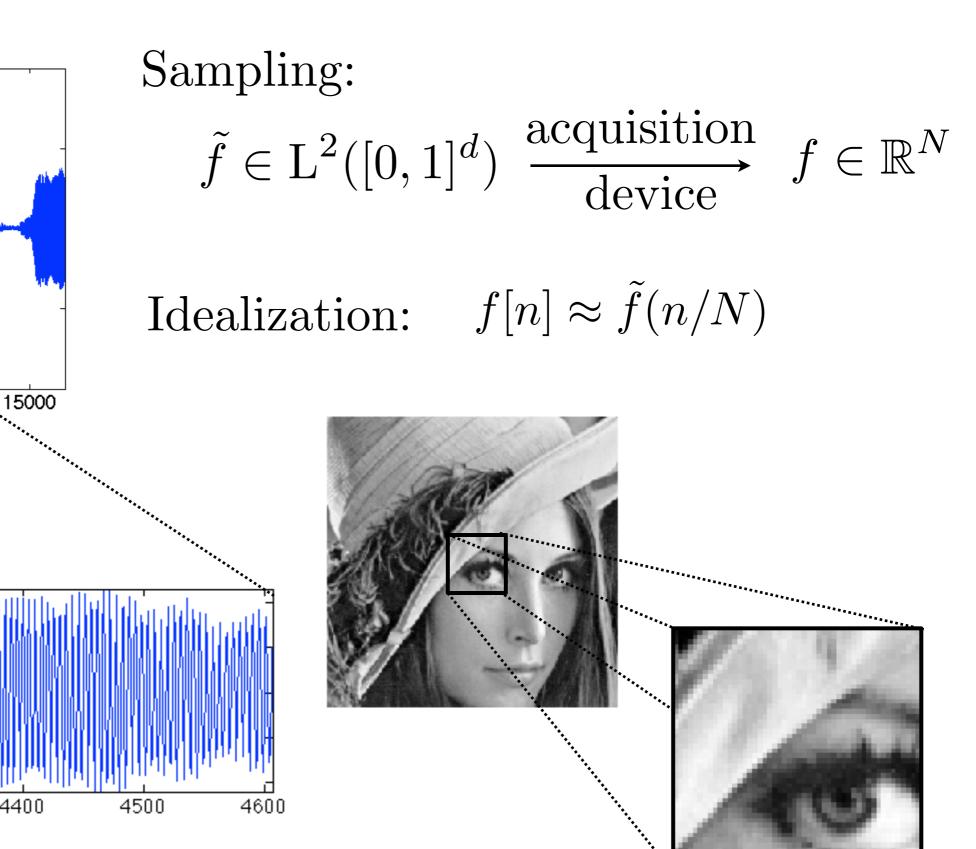
5000

4200

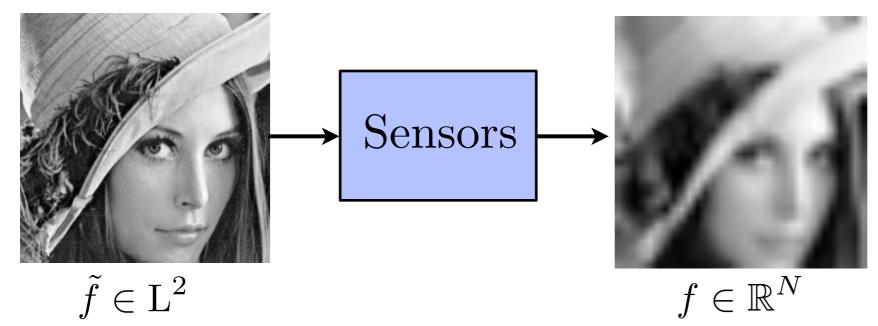
10000

4300

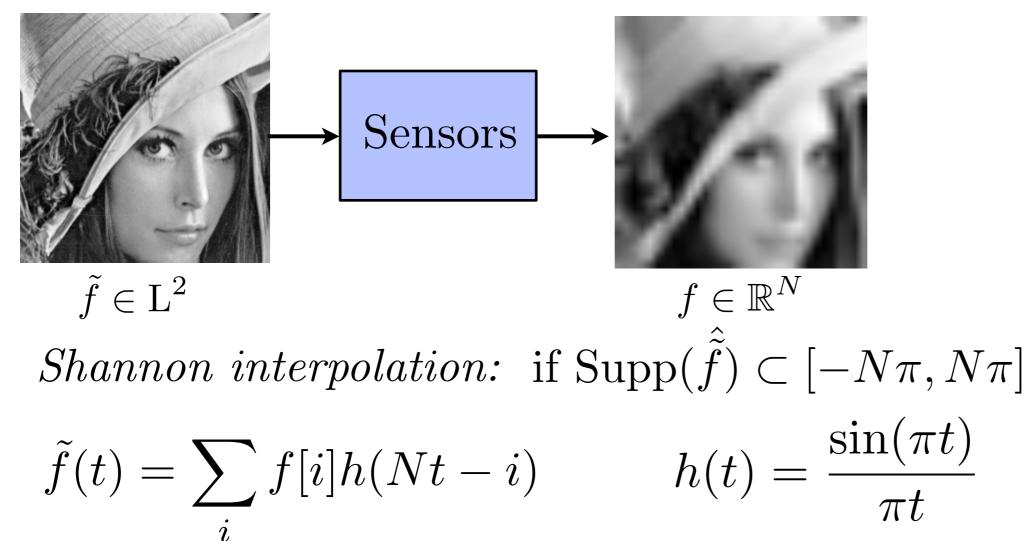
4400



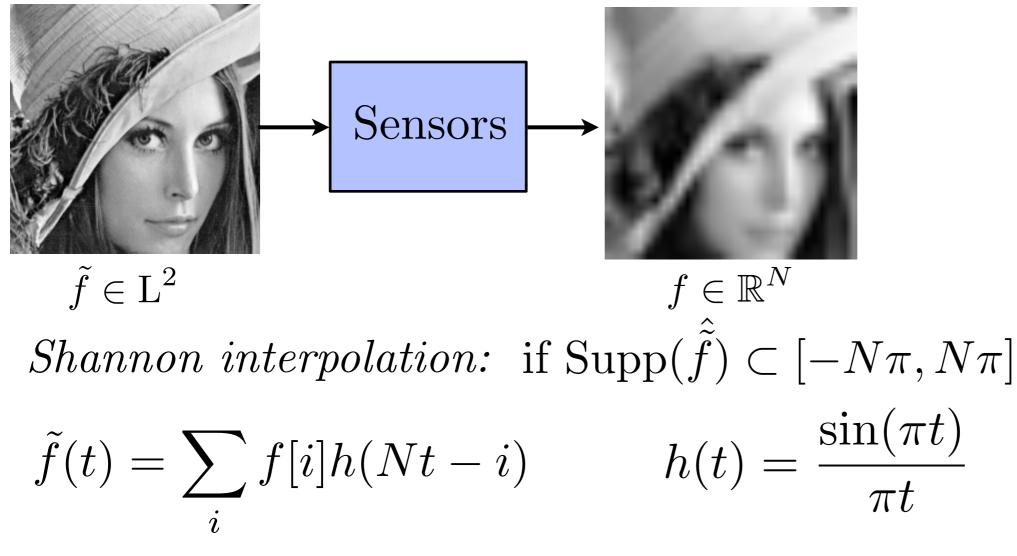
Data aquisition: $f[i] = \tilde{f}(i/N)$



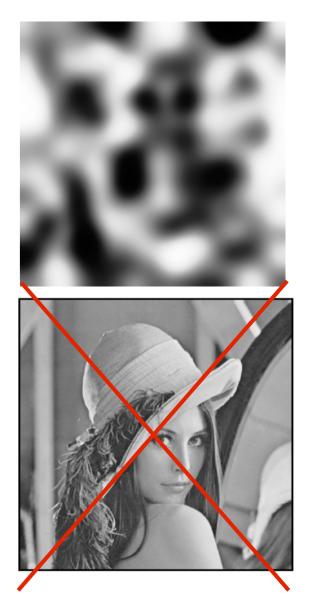
Data aquisition: $f[i] = \tilde{f}(i/N)$



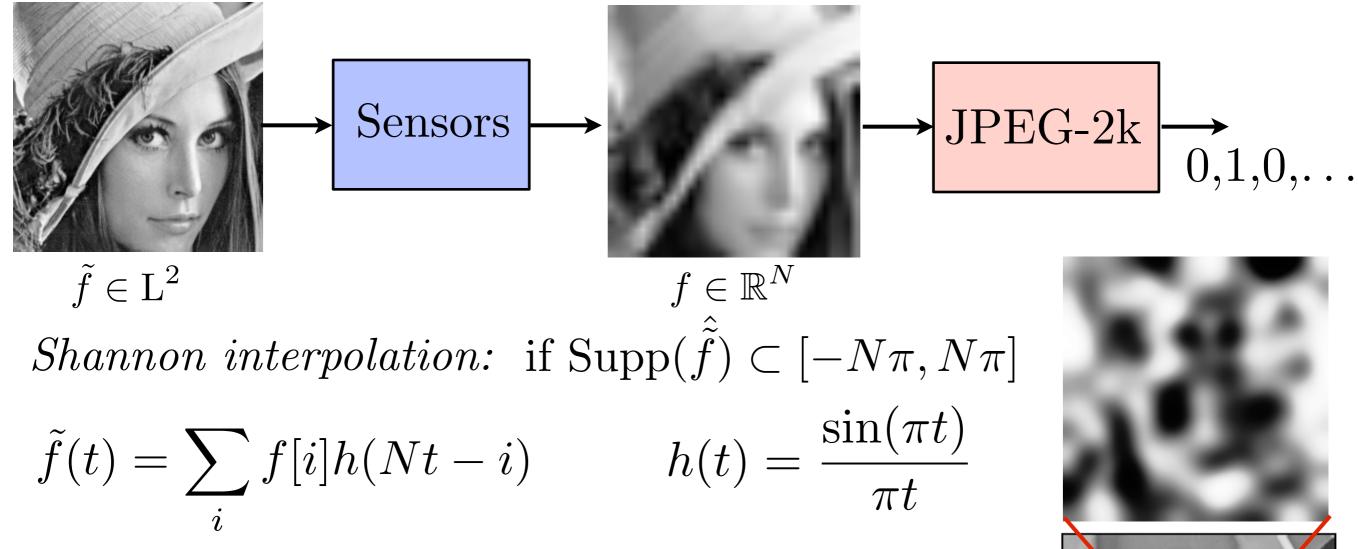
Data aquisition: $f[i] = \tilde{f}(i/N)$



 \longrightarrow Natural images are not smooth.

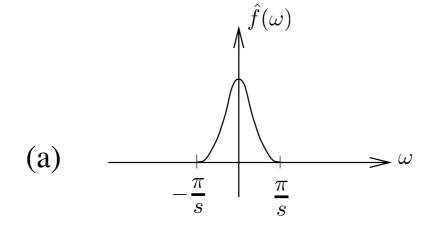


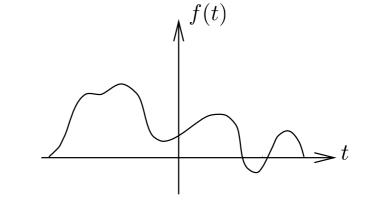
Data aquisition: $f[i] = \tilde{f}(i/N)$

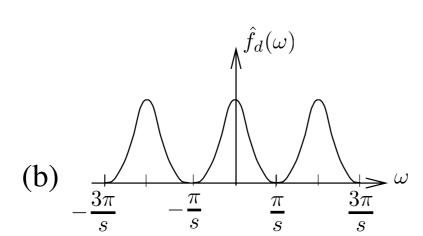


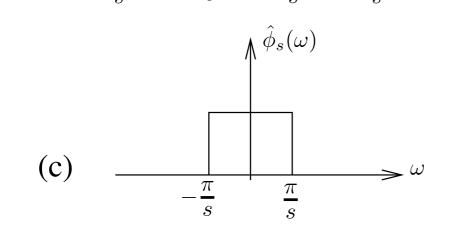
- \longrightarrow Natural images are not smooth.
- \longrightarrow But can be compressed efficiently.
- \longrightarrow Sample *and* compress simultaneously?

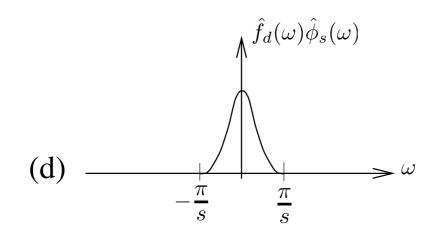
Sampling and Periodization

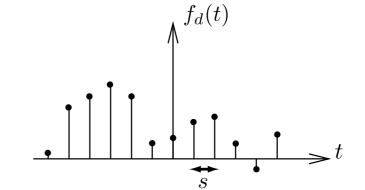


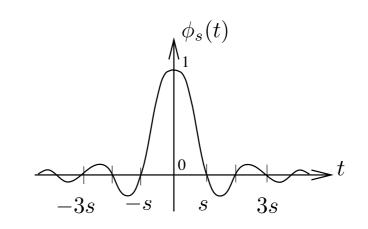


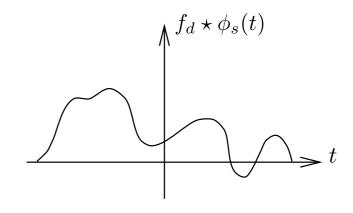




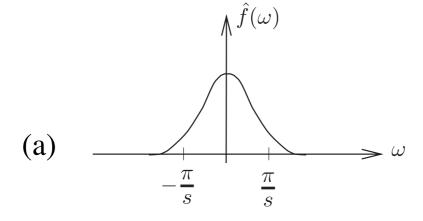


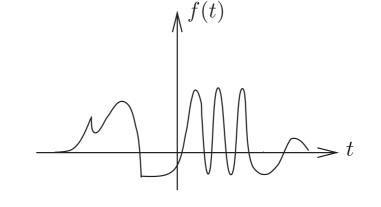


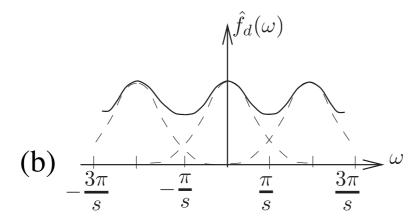


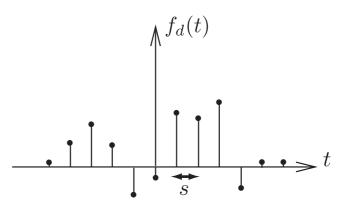


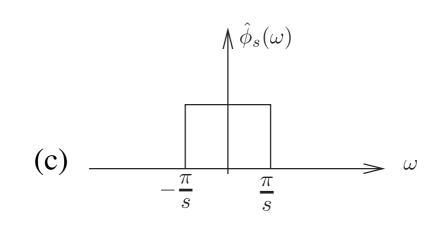
Sampling and Periodization: Aliasing

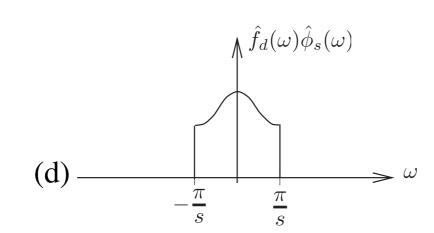


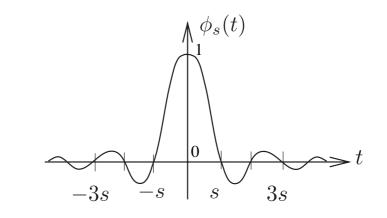


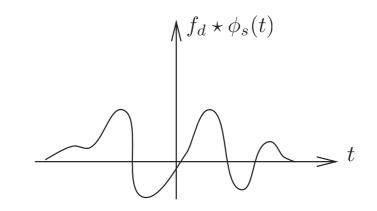






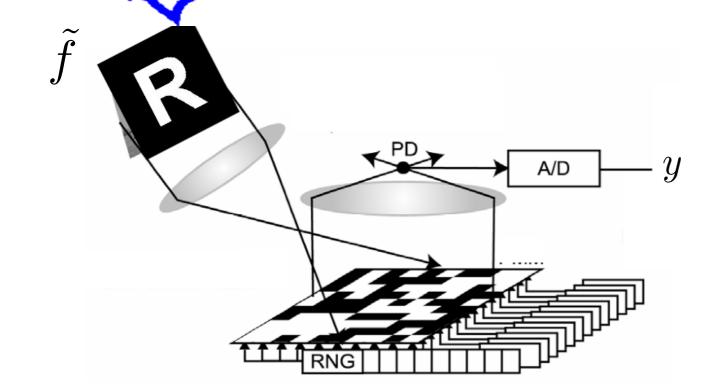


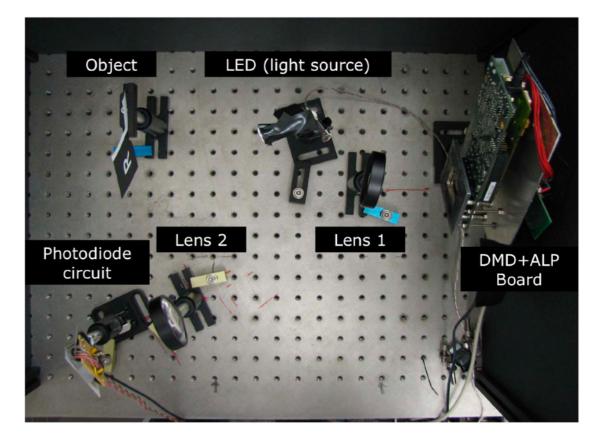




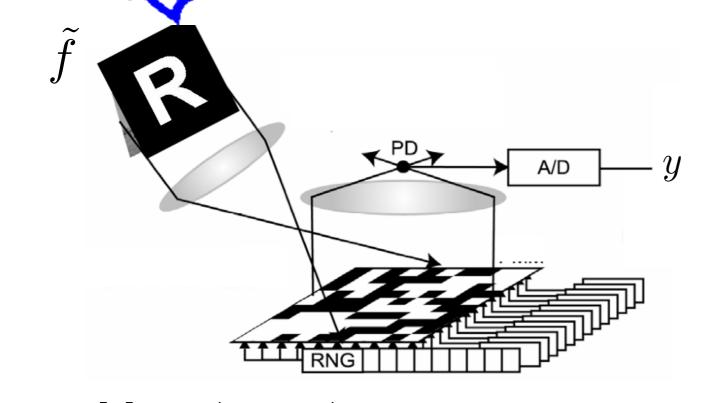
- Shannon's World
- Compressive Sensing Acquisition
- Compressive Sensing Recovery
- Theoretical Guarantees
- Fourier Domain Measurements

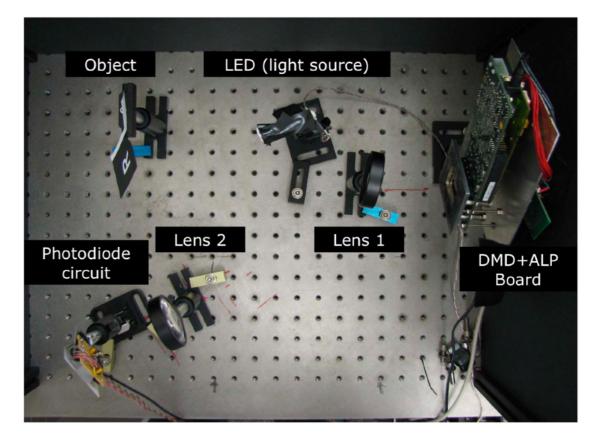
Single Pixel Camera (Rice)

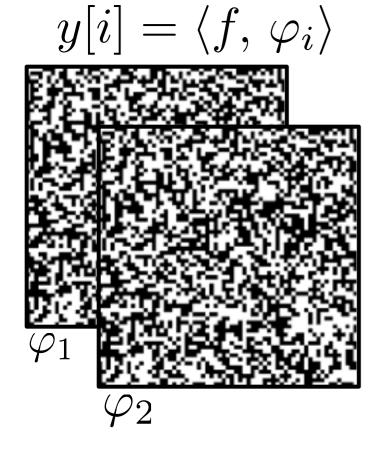




Single Pixel Camera (Rice)

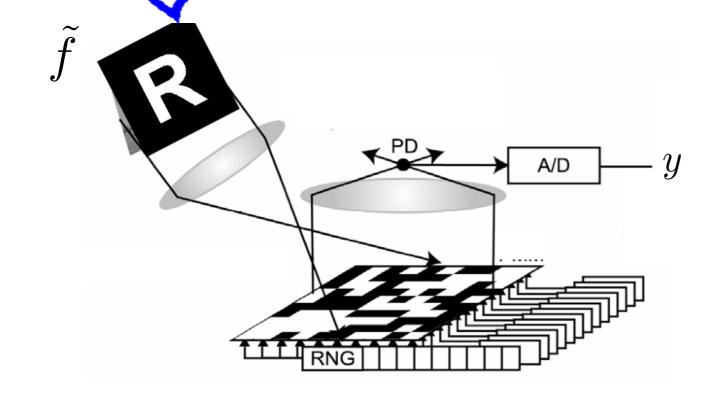


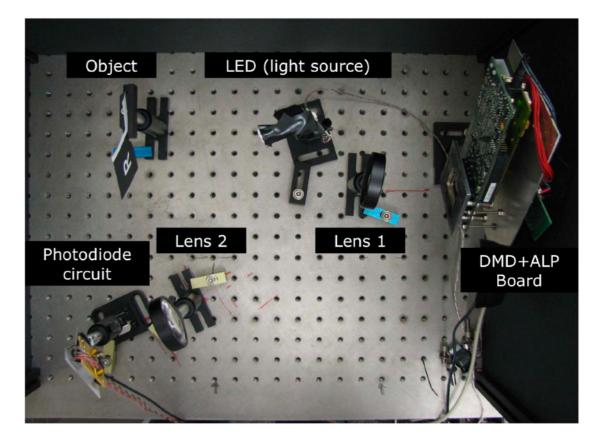


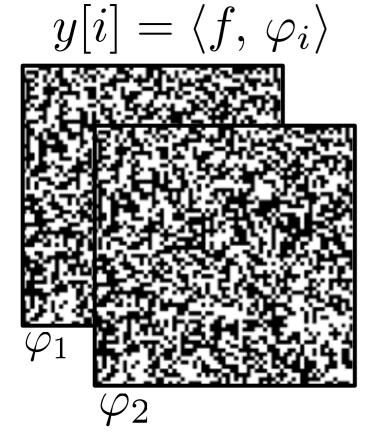


P measures $\ll N$ micro-mirrors

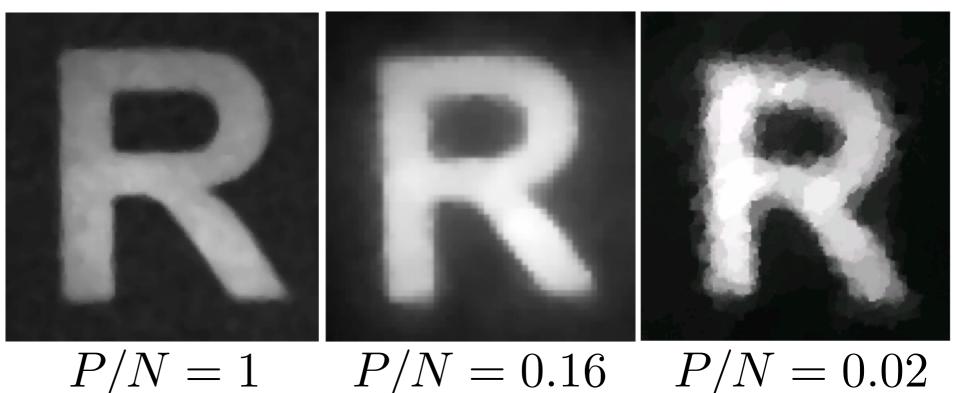
Single Pixel Camera (Rice)







P measures $\ll N$ micro-mirrors

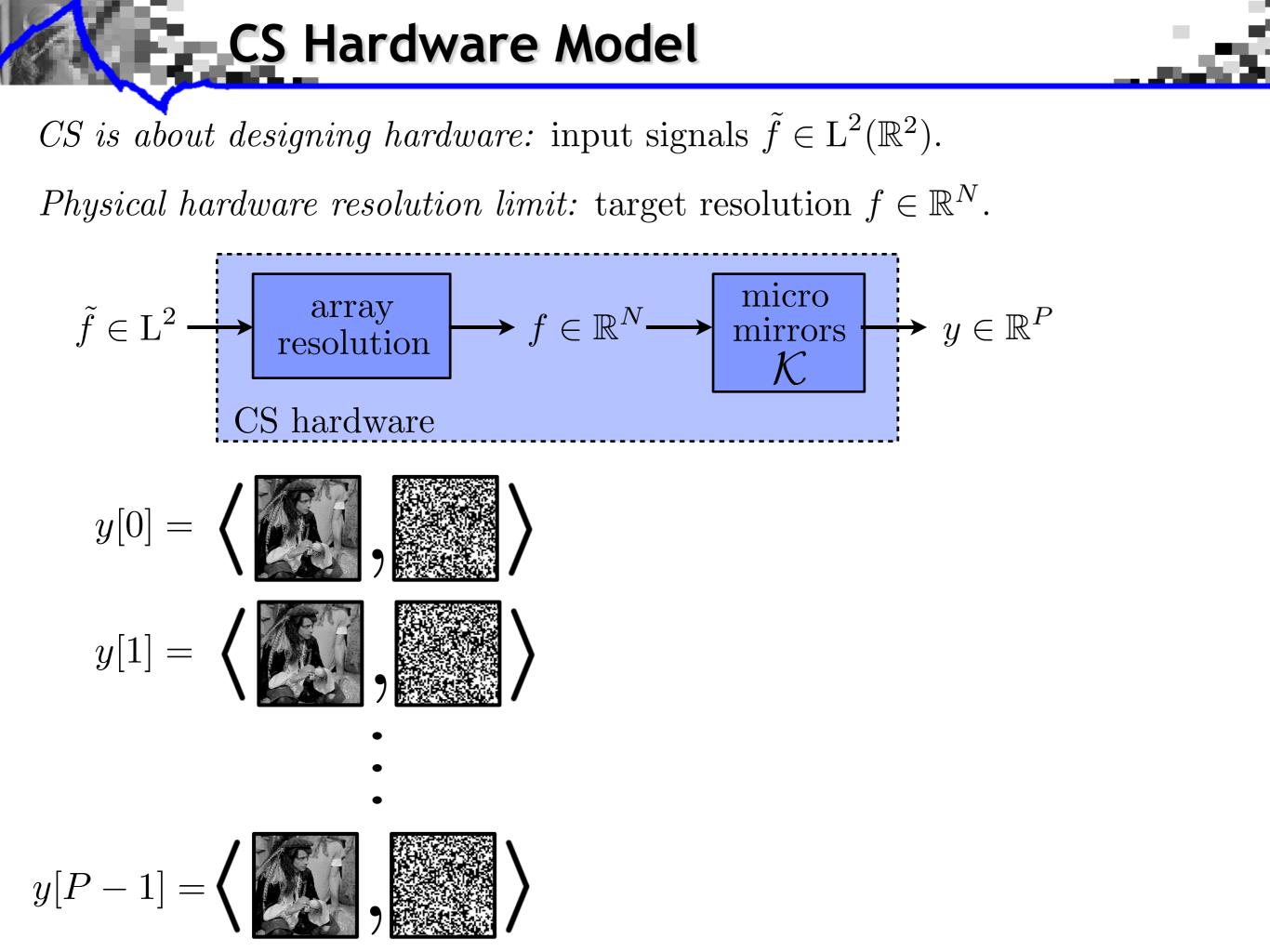


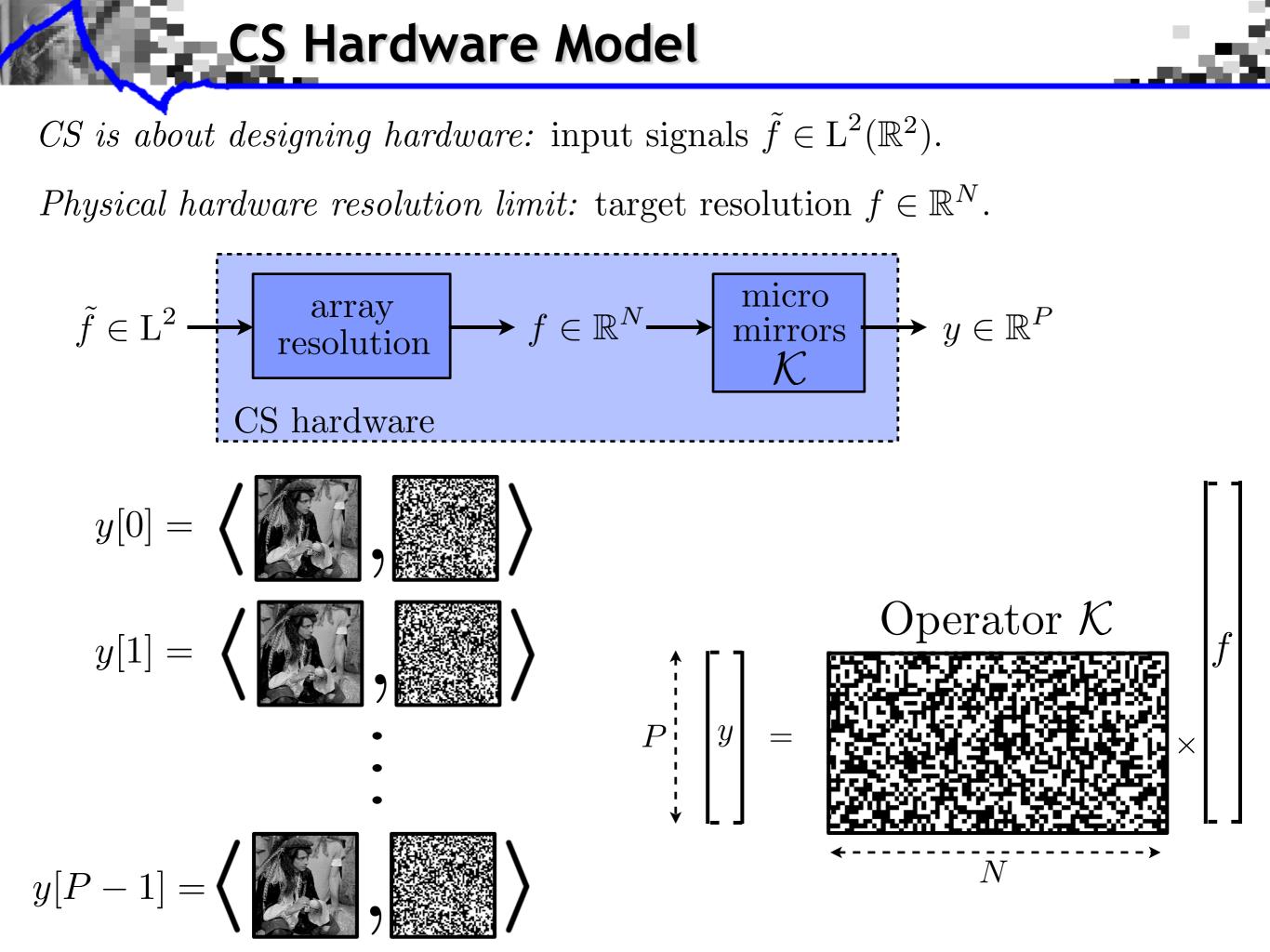
CS is about designing hardware: input signals $\tilde{f} \in L^2(\mathbb{R}^2)$.

Physical hardware resolution limit: target resolution $f \in \mathbb{R}^N$.

$$\tilde{f} \in \mathcal{L}^2 \xrightarrow{\text{array}} f \in \mathbb{R}^N \xrightarrow{\text{micro}} y \in \mathbb{R}^P$$

CS hardware





- Shannon's World
- Compressive Sensing Acquisition
- Compressive Sensing Recovery
- Theoretical Guarantees
- Fourier Domain Measurements

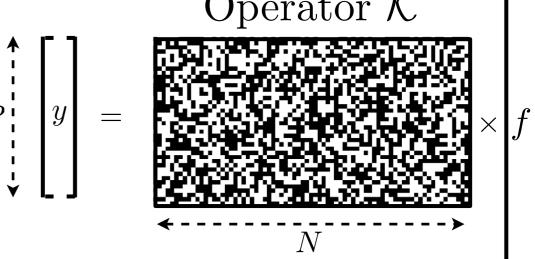
Inversion and SparsityNeed to solve $y = \mathcal{K}f$. \rightarrow More unknown than equations.Pyy

N

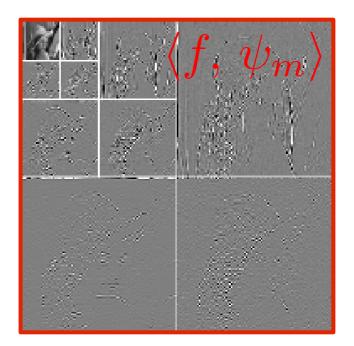
 $\dim(\ker(\mathcal{K})) = N - P \text{ is huge.}$

Inversion and Sparsity Need to solve $y = \mathcal{K}f$.

 \rightarrow More unknown than equations. $P \begin{bmatrix} y \\ y \end{bmatrix}$ dim $(\ker(\mathcal{K})) = N - P$ is huge.

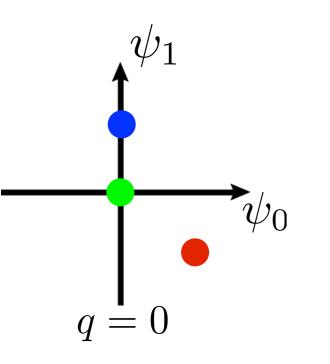


Prior information: f is sparse in a basis $\{\psi_m\}_m$. $J_{\varepsilon}(f) = \operatorname{Card} \{m \setminus |\langle f, \psi_m \rangle| > \varepsilon\}$ is small.



Convex Relaxation: L1 Prior

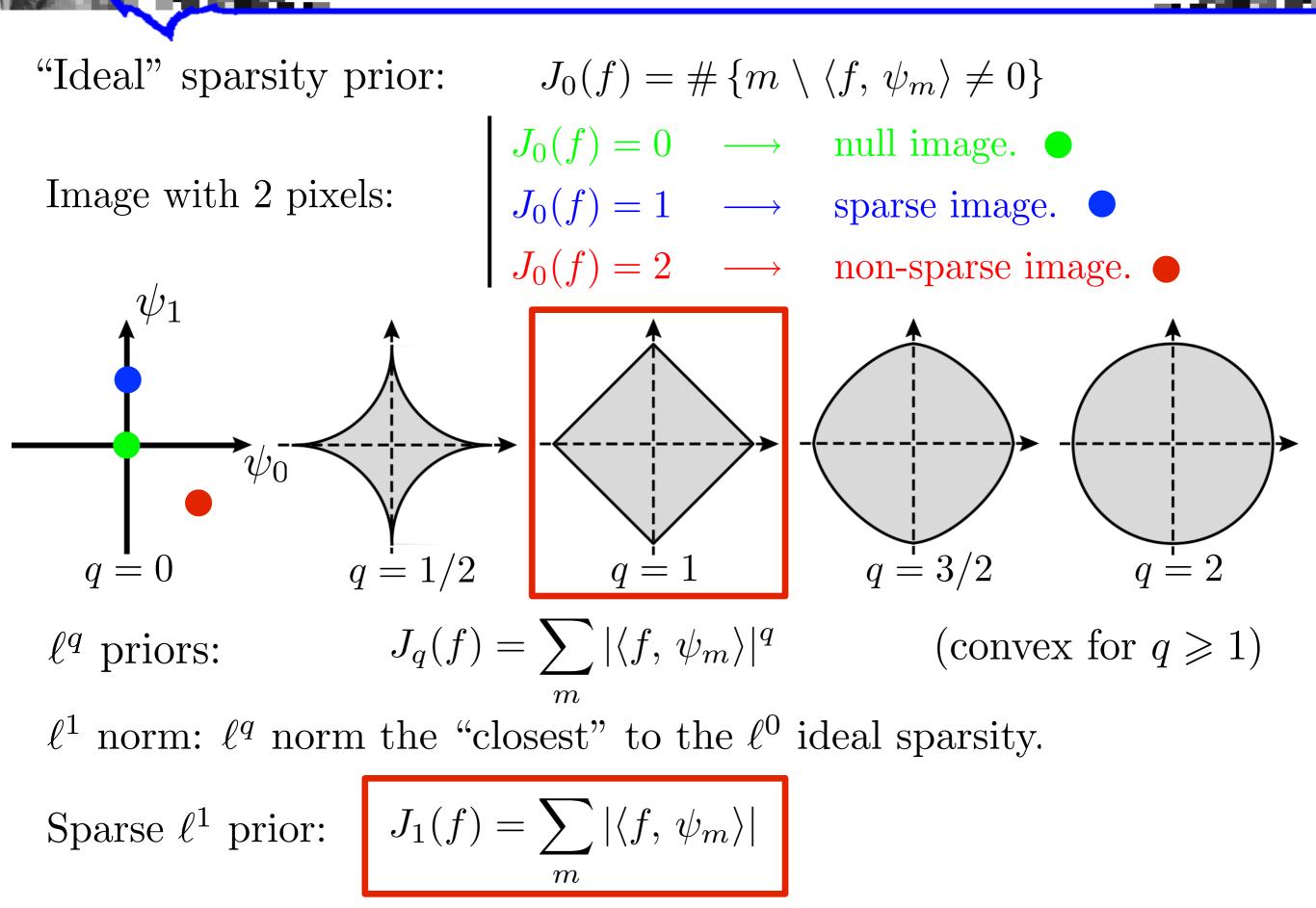
"Ideal" sparsity prior: $J_0(f) = \# \{m \setminus \langle f, \psi_m \rangle \neq 0\}$ Image with 2 pixels: $J_0(f) = 0 \longrightarrow$ null image. $J_0(f) = 1 \longrightarrow$ sparse image. $J_0(f) = 2 \longrightarrow$ non-sparse image.

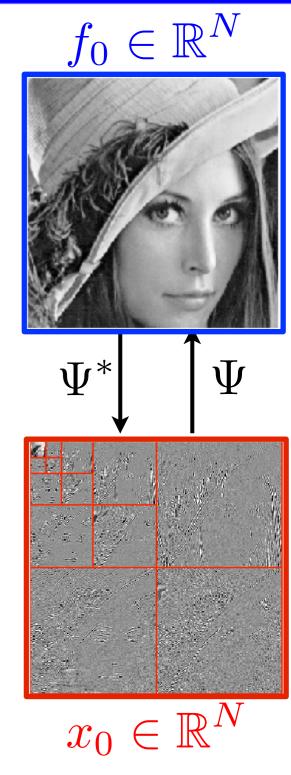


Convex Relaxation: L1 Prior



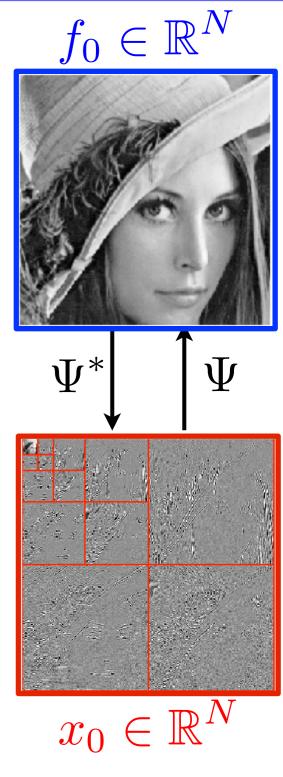
Convex Relaxation: L1 Prior





(Discretized) sampling acquisition:

$$y = \mathcal{K}f_0 + w = \mathcal{K} \circ \Psi(x_0) + w$$
$$= \Phi$$



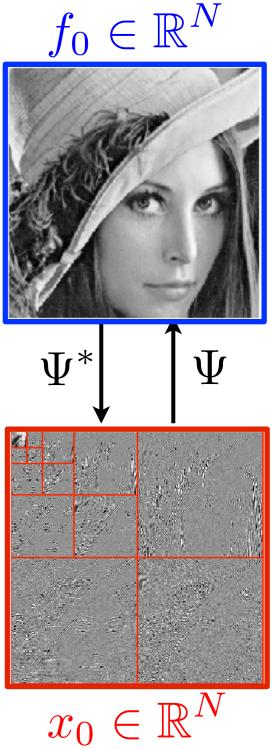
(Discretized) sampling acquisition:

$$y = \mathcal{K}f_0 + w = \mathcal{K} \circ \Psi(x_0) + w$$
$$= \Phi$$

 ${\mathcal K}$ drawn from the Gaussian matrix ensemble

$$\mathcal{K}_{i,j} \sim \mathcal{N}(0, P^{-1/2})$$
 i.i.d.

 $\Rightarrow \Phi$ drawn from the Gaussian matrix ensemble



(Discretized) sampling acquisition:

$$y = \mathcal{K}f_0 + w = \mathcal{K} \circ \Psi(x_0) + w$$
$$= \Phi$$

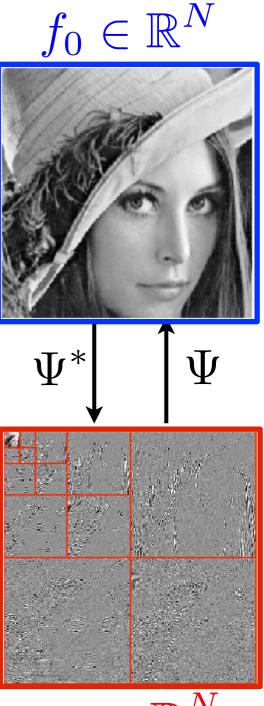
 ${\mathcal K}$ drawn from the Gaussian matrix ensemble

$$\mathcal{K}_{i,j} \sim \mathcal{N}(0, P^{-1/2})$$
 i.i.d.

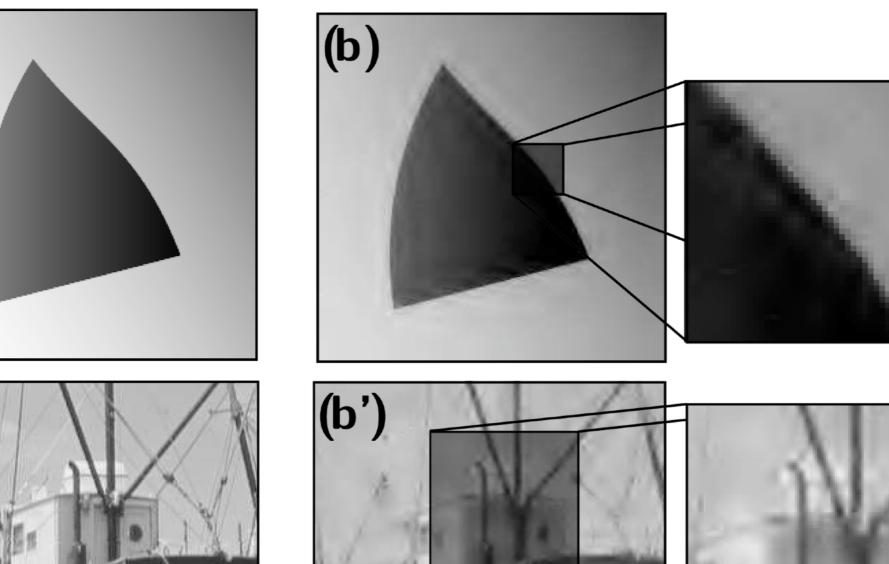
 $\Rightarrow \Phi$ drawn from the Gaussian matrix ensemble

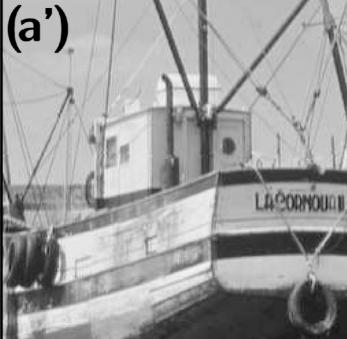
Sparse recovery:

$$\min_{\|\Phi x - y\| \leq \|w\|} \|x\|_{1} \quad \xleftarrow{\|w\| \longleftrightarrow \lambda}{\underset{x}{\longrightarrow}} \quad \min_{x} \frac{1}{2} \|\Phi x - y\|^{2} + \lambda \|x\|_{1}$$



CS Simulation Example





(a**)**

Original f_0

Recovery f^* , P = N/6 $\Psi = \text{translation invariant}$ wavelet frame

- Shannon's World
- Compressive Sensing Acquisition
- Compressive Sensing Recovery
- Theoretical Guarantees
- •Fourier Domain Measurements

$\ell^{1} \text{ recovery:} \\ x^{\star} \in \underset{\|\Phi x - y\| \leq \varepsilon}{\operatorname{argmin}} \|x\|_{1} \text{ where } \begin{cases} y = \Phi x_{0} + w \\ \|w\| \leq \varepsilon \end{cases}$

Restricted Isometry Constants:

$$\forall \|x\|_0 \leq k, \quad (1 - \delta_k) \|x\|^2 \leq \|\Phi x\|^2 \leq (1 + \delta_k) \|x\|^2$$

$\ell^{1} \text{ recovery:} \\ x^{\star} \in \underset{\|\Phi x - y\| \leq \varepsilon}{\operatorname{argmin}} \|x\|_{1} \text{ where } \begin{cases} y = \Phi x_{0} + w \\ \|w\| \leq \varepsilon \end{cases}$

Restricted Isometry Constants:

$$\forall \|x\|_0 \leq k, \quad (1 - \delta_k) \|x\|^2 \leq \|\Phi x\|^2 \leq (1 + \delta_k) \|x\|^2$$

Theorem: If $\delta_{2k} \leq \sqrt{2} - 1$, then [Candes 2009] $\|x_0 - x^*\| \leq \frac{C_0}{\sqrt{k}} \|x_0 - x_k\|_1 + C_1 \varepsilon$ where x_k is the best k-term approximation of x_0 . **RIP for Gaussian Matrices**

Link with coherence: $\mu(\Phi) = \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|$ $\delta_2 = \mu(\Phi)$ $\delta_k \leq (k-1)\mu(\Phi)$ **RIP for Gaussian Matrices**

Link with coherence:
$$\mu(\Phi) = \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|$$

 $\delta_2 = \mu(\Phi)$
 $\delta_k \leq (k-1)\mu(\Phi)$

For Gaussian matrices:

$$\mu(\Phi) \sim \sqrt{\log(PN)/P}$$

RIP for Gaussian Matrices

Link with coherence:
$$\mu(\Phi) = \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|$$

 $\delta_2 = \mu(\Phi)$
 $\delta_k \leq (k-1)\mu(\Phi)$

For Gaussian matrices:

$$\mu(\Phi) \sim \sqrt{\log(PN)/P}$$

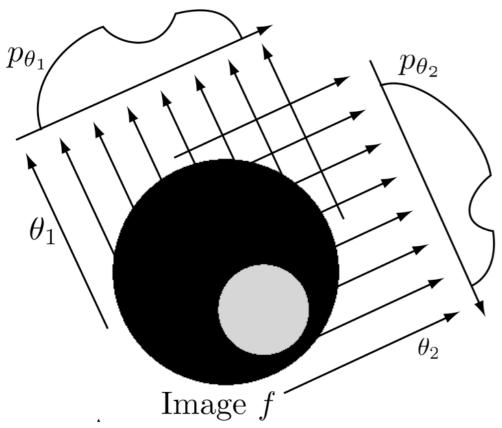
Stronger result:

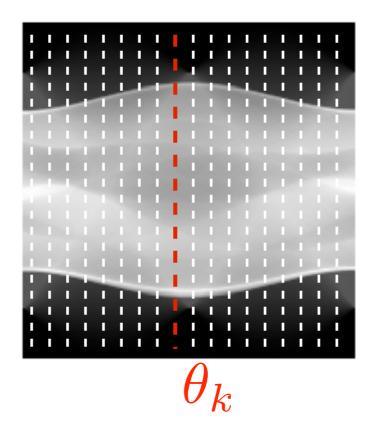
Theorem: If
$$k \leq \frac{C}{\log(N/P)}P$$
 [Candès et al, 2004]
then $\delta_{2k} \leq \sqrt{2} - 1$ with high probability.

- Shannon's World
- Compressive Sensing Acquisition
- Compressive Sensing Recovery
- Theoretical Guarantees
- Fourier Domain Measurements

Tomography and Fourier Measures

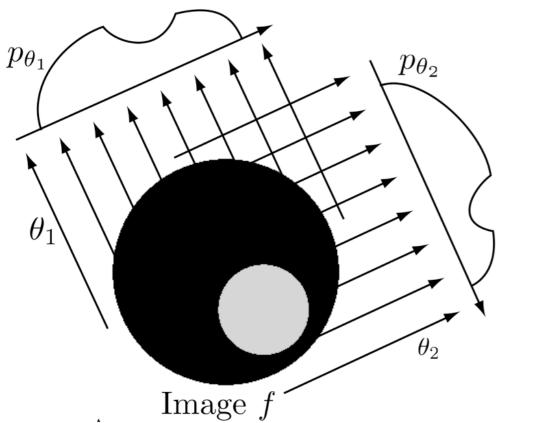
Tomography projection:

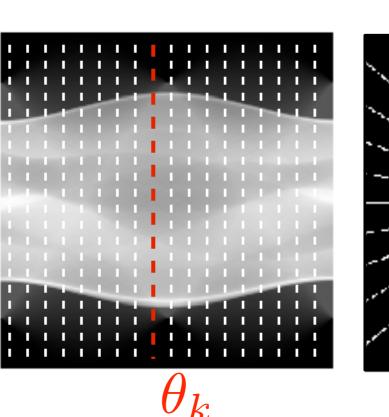


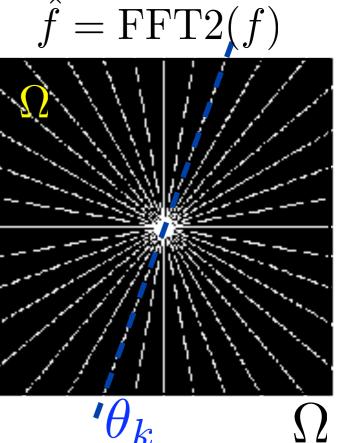


Tomography and Fourier Measures

Tomography projection:







Fourier slice theorem:

$$\hat{p}_{\theta}(\rho) = \hat{f}(\rho \cos(\theta), \rho \sin(\theta))$$

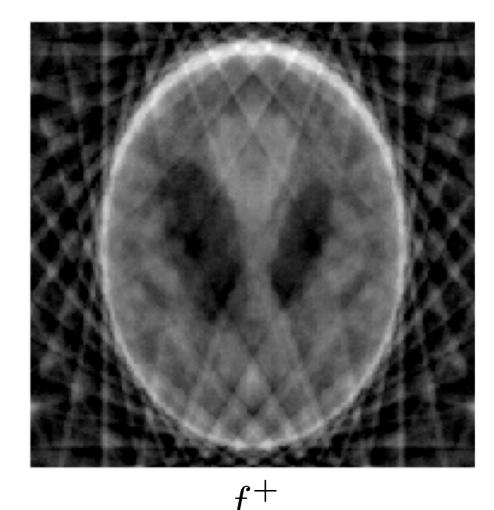
1D 2D Fourier

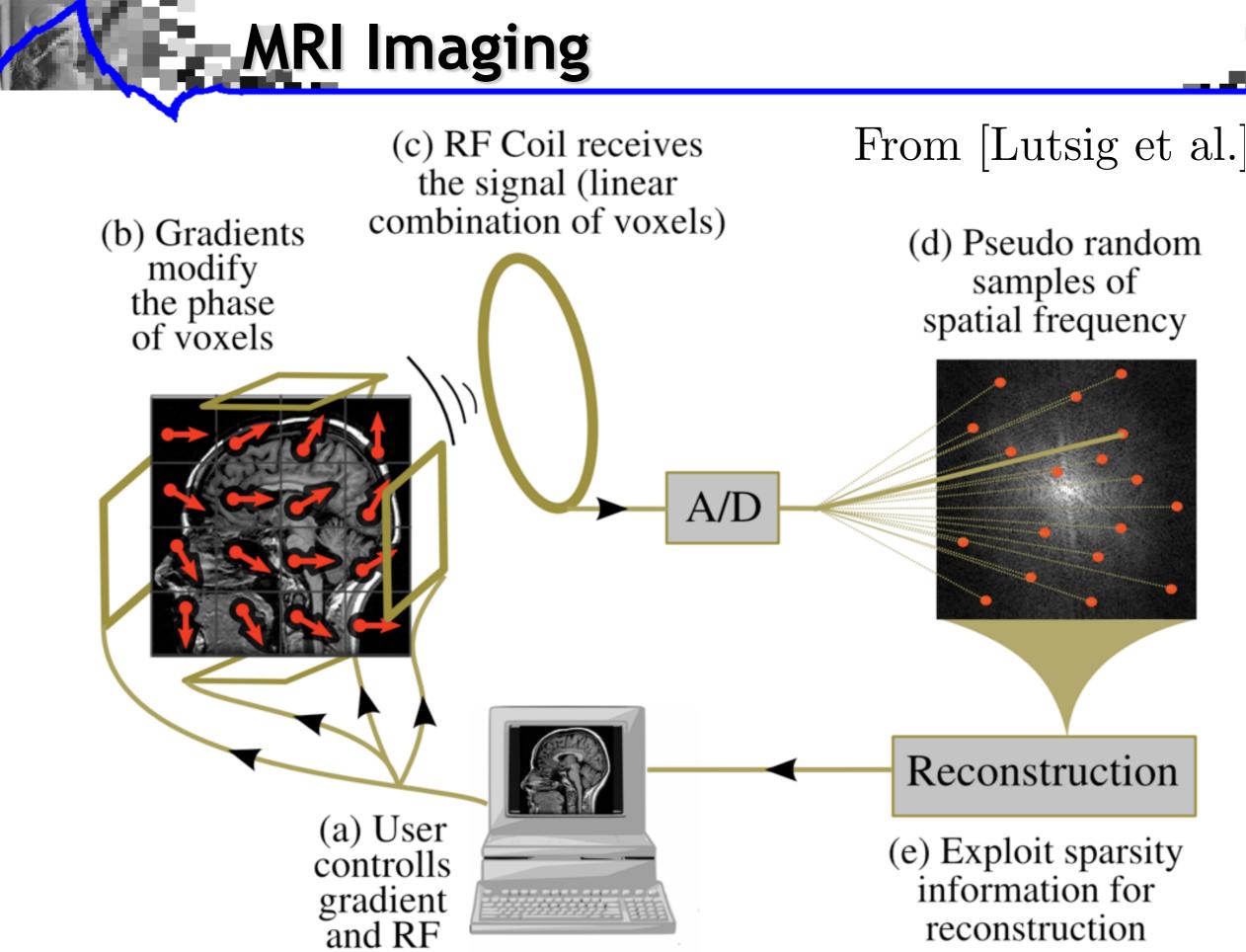
Partial Fourier measurements: $\{p_{\theta_k}(t)\}_{0 \leq k < K}^{t \in \mathbb{R}}$ Equivalent to: $\mathcal{K}f = (\hat{f}[\omega])_{\omega \in \Omega}$

Regularized Inversion

Noisy measurements: $\forall \omega \in \Omega, y[\omega] = \hat{f}_0[\omega] + w[\omega].$ Noise: $w[\omega] \sim \mathcal{N}(0, \sigma)$, white noise.

$$\ell^{1} \text{ regularization:} \qquad f^{\star} = \underset{f}{\operatorname{argmin}} \frac{1}{2} \sum_{\omega \in \Omega} |y[\omega] - \hat{f}[\omega]|^{2} + \lambda \sum_{m} |\langle f, \psi_{m} \rangle|.$$





waveforms

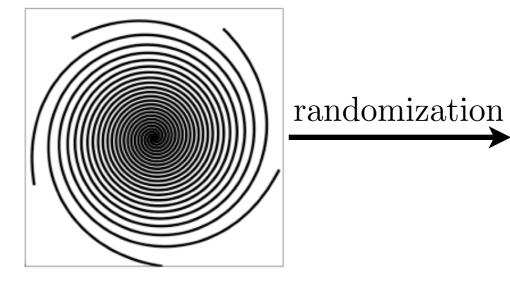
reconstruction

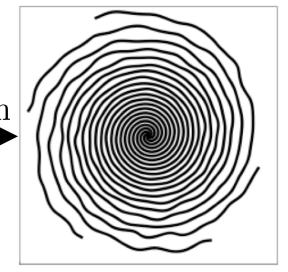
MRI Reconstruction

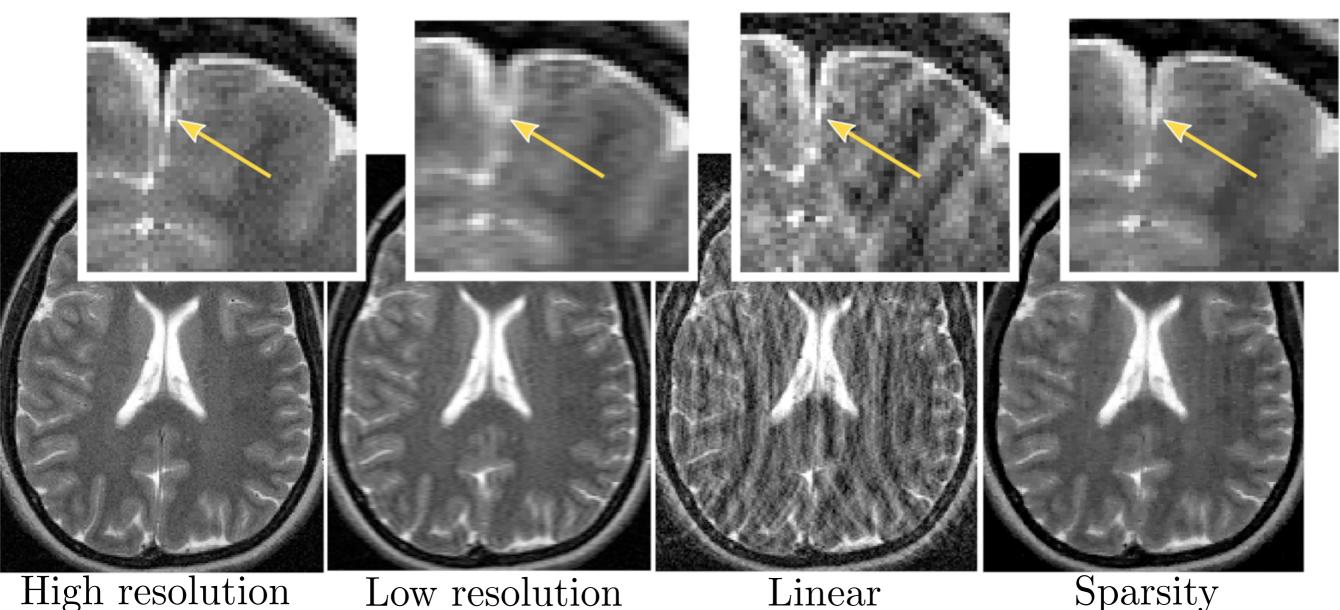
<u>. 198</u>

From [Lutsig et al.]

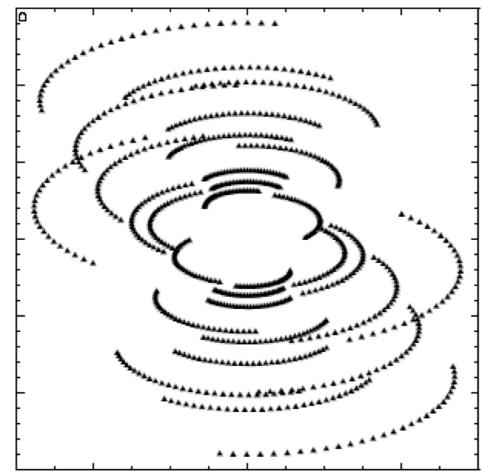
Fourier sub-sampling pattern:



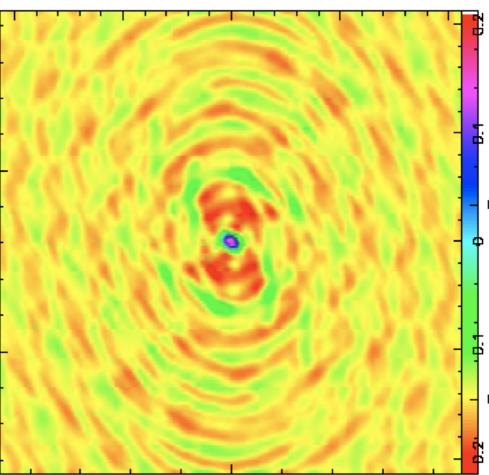




Radar Interferometry



Fourier sampling (Earth's rotation)



Linear reconstruction **Structured Measurements**

Gaussian matrices: intractable for large N.

Random partial orthogonal matrix: $\{\varphi_{\omega}\}_{\omega}$ orthogonal basis.

 $\mathcal{K}f = (\langle \varphi_{\omega}, f \rangle)_{\omega \in \Omega}$ where $|\Omega| = P$ uniformly random.

Fast measurements: (e.g. Fourier basis)

Structured Measurements

Gaussian matrices: intractable for large N.

Random partial orthogonal matrix: $\{\varphi_{\omega}\}_{\omega}$ orthogonal basis.

 $\mathcal{K}f = (\langle \varphi_{\omega}, f \rangle)_{\omega \in \Omega}$ where $|\Omega| = P$ uniformly random.

Fast measurements: (e.g. Fourier basis)

Structured Measurements

Gaussian matrices: intractable for large N.

Random partial orthogonal matrix: $\{\varphi_{\omega}\}_{\omega}$ orthogonal basis.

 $\mathcal{K}f = (\langle \varphi_{\omega}, f \rangle)_{\omega \in \Omega}$ where $|\Omega| = P$ uniformly random.

Fast measurements: (e.g. Fourier basis)

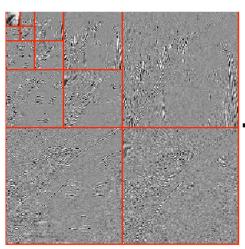
$$\begin{split} \text{Mutual incoherence:} \quad \mu = \sqrt{N} \max_{\omega,m} |\langle \varphi_{\omega}, \psi_{m} \rangle| \in [1, \sqrt{N}] \\ \text{Fourier/Diracs:} \quad \mu = 1. \qquad \text{Wavelets/noiselets:} \quad \mu \approx 1. \end{split}$$

Theorem: with high probability on Ω , $\Phi = \mathcal{K}\Psi$ If $M \leq \frac{CP}{\mu^2 \log(N)^4}$, then $\delta_{2M} \leq \sqrt{2} - 1$ [Rudelson, Vershynin, 2006]

 \longrightarrow not universal: requires incoherence.

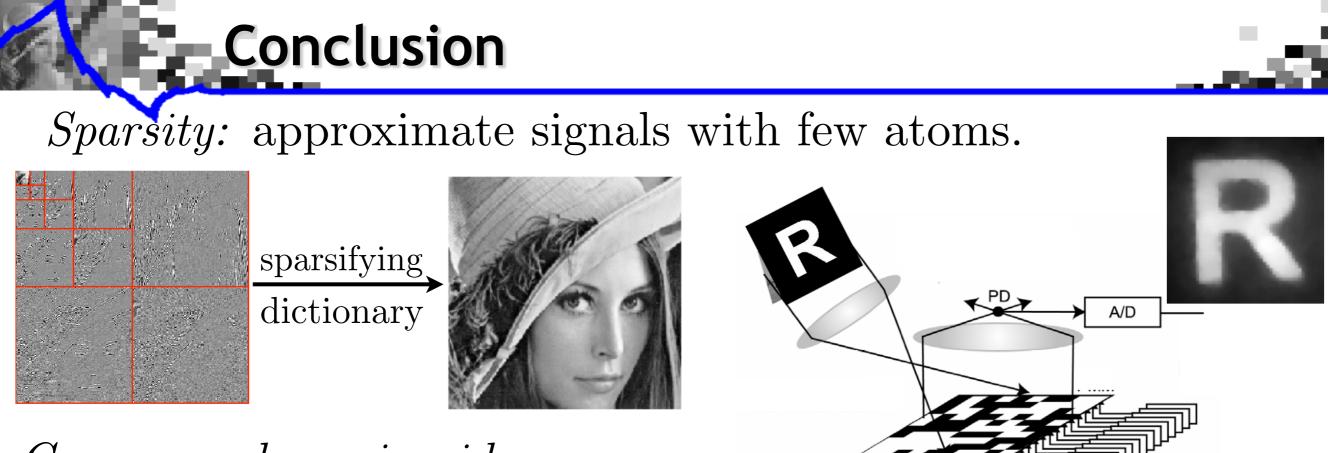
Conclusion

Sparsity: approximate signals with few atoms.



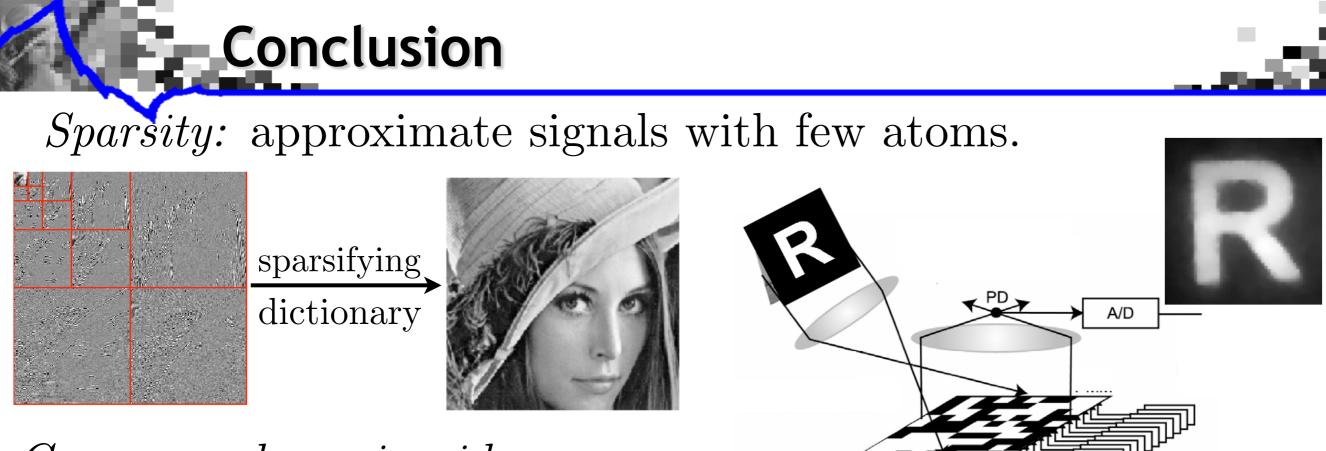
sparsifying

dictionary



Compressed sensing ideas:

- \longrightarrow Randomized sensors + sparse recovery.
- \longrightarrow Number of measurements \approx signal complexity.
- \longrightarrow CS is about designing new hardware.



Compressed sensing ideas:

- \longrightarrow Randomized sensors + sparse recovery.
- \longrightarrow Number of measurements \approx signal complexity.
- \longrightarrow CS is about designing new hardware.

The devil is in the constants:

- \longrightarrow Worse case analysis is problematic.
- \longrightarrow Designing good signal models.