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•Fourier Domain Measurements



Sampling:

f̃ � L2([0, 1]d) f � RN

Idealization:

acquisition
device

f [n] ⇡ f̃(n/N)

Discretization



Data aquisition:

Sensors

Pointwise Sampling and Smoothness

f̃ � L2 f � RN

f [i] = f̃(i/N)



Data aquisition:

Sensors

f̃(t) =
�

i

f [i]h(Nt� i)

Shannon interpolation: if Supp( ˆ̃f) � [�N�, N�]

h(t) =
sin(�t)

�t
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Data aquisition:

Sensors

f̃(t) =
�

i

f [i]h(Nt� i)

�� Natural images are not smooth.
�� But can be compressed e�ciently.

Shannon interpolation: if Supp( ˆ̃f) � [�N�, N�]

0,1,0,. . .

h(t) =
sin(�t)

�t

�� Sample and compress simultaneously?

Pointwise Sampling and Smoothness

f̃ � L2 f � RN

f [i] = f̃(i/N)

JPEG-2k



Sampling and Periodization
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Sampling and Periodization: Aliasing
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f̃

Single Pixel Camera (Rice)



f̃

P measures � N micro-mirrors

Single Pixel Camera (Rice)

y[i] = �f, �i�



f̃

P/N = 0.16 P/N = 0.02P/N = 1

P measures � N micro-mirrors

Single Pixel Camera (Rice)

y[i] = �f, �i�



Physical hardware resolution limit: target resolution f � RN .

f̃ � L2 f � RN y � RP
micro
mirrors

array
resolution

CS hardware
K

CS Hardware Model

CS is about designing hardware: input signals f̃ � L2(R2).
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Need to solve y = Kf .

� More unknown than equations.

dim(ker(K)) = N � P is huge.

Inversion and Sparsity

f

Operator K



Need to solve y = Kf .

� More unknown than equations.

dim(ker(K)) = N � P is huge.

Prior information: f is sparse in a basis {�m}m.

J�(f) = Card {m \ |�f, �m�| > �} is small.

Inversion and Sparsity

f

Operator K

�f, �m�f



Image with 2 pixels:

q = 0

Convex Relaxation: L1 Prior

J0(f) = # {m \ ⇥f, �m⇤ �= 0}
J0(f) = 0 �� null image.
J0(f) = 1 �� sparse image.
J0(f) = 2 �� non-sparse image.



Image with 2 pixels:

Jq(f) =
�

m

|�f, �m⇥|q
q = 0 q = 1 q = 2q = 3/2q = 1/2

Convex Relaxation: L1 Prior

J0(f) = # {m \ ⇥f, �m⇤ �= 0}

�q priors: (convex for q � 1)

J0(f) = 0 �� null image.
J0(f) = 1 �� sparse image.
J0(f) = 2 �� non-sparse image.



Image with 2 pixels:

Jq(f) =
�

m

|�f, �m⇥|q
q = 0 q = 1 q = 2q = 3/2q = 1/2

Convex Relaxation: L1 Prior

J1(f) =
�

m

|�f, �m⇥|Sparse �1 prior:

J0(f) = # {m \ ⇥f, �m⇤ �= 0}

�q priors: (convex for q � 1)

J0(f) = 0 �� null image.
J0(f) = 1 �� sparse image.
J0(f) = 2 �� non-sparse image.



f0 � RN sparse in ortho-basis �

Sparse CS Recovery

���

x0 � RN

f0 � RN



(Discretized) sampling acquisition:

f0 � RN sparse in ortho-basis �

y = Kf0 + w = K � �(x0) + w
= �

Sparse CS Recovery

���

x0 � RN

f0 � RN



(Discretized) sampling acquisition:

f0 � RN sparse in ortho-basis �

y = Kf0 + w = K � �(x0) + w
= �

K drawn from the Gaussian matrix ensemble

Ki,j � N (0, P�1/2) i.i.d.

� � drawn from the Gaussian matrix ensemble

Sparse CS Recovery

���

x0 � RN

f0 � RN



(Discretized) sampling acquisition:

f0 � RN sparse in ortho-basis �

y = Kf0 + w = K � �(x0) + w
= �

K drawn from the Gaussian matrix ensemble

Ki,j � N (0, P�1/2) i.i.d.

� � drawn from the Gaussian matrix ensemble

Sparse recovery:
min

||�x�y||�||w||
||x||1 min

x

1
2

||�x� y||2 + �||x||1
||w||�� �

Sparse CS Recovery

���

x0 � RN

f0 � RN



� = translation invariant
wavelet frame

Original f0

CS Simulation Example
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⇥ ||x||0 � k, (1� �k)||x||2 � ||�x||2 � (1 + �k)||x||2
Restricted Isometry Constants:

�1 recovery:

CS with RIP

x⇥ � argmin
||�x�y||��

||x||1 where
�

y = �x0 + w
||w|| � �



⇥ ||x||0 � k, (1� �k)||x||2 � ||�x||2 � (1 + �k)||x||2
Restricted Isometry Constants:

�1 recovery:

CS with RIP

[Candes 2009]

x⇥ � argmin
||�x�y||��

||x||1 where
�

y = �x0 + w
||w|| � �

Theorem: If �2k �
�

2� 1, then

where xk is the best k-term approximation of x0.

||x0 � x�|| � C0⇥
k

||x0 � xk||1 + C1�



Link with coherence:

�k � (k � 1)µ(�)

�2 = µ(�)

RIP for Gaussian Matrices

µ(�) = max
i �=j

|��i, �j⇥|



Link with coherence:

�k � (k � 1)µ(�)

For Gaussian matrices:

�2 = µ(�)

RIP for Gaussian Matrices

µ(�) = max
i �=j

|��i, �j⇥|

µ(�) �
�

log(PN)/P



Link with coherence:

�k � (k � 1)µ(�)

For Gaussian matrices:

Stronger result:

�2 = µ(�)

RIP for Gaussian Matrices

k � C

log(N/P )
PTheorem: If

then �2k �
�

2� 1 with high probability.

µ(�) = max
i �=j

|��i, �j⇥|

µ(�) �
�

log(PN)/P
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Tomography and Fourier Measures



Kf = (f̂ [!])!2⌦

Tomography and Fourier Measures

�

Fourier slice theorem: p̂�(⇥) = f̂(⇥ cos(�), ⇥ sin(�))

1D 2D Fourier

�k

f̂ = FFT2(f)

Partial Fourier measurements:

Equivalent to:

{p�k(t)}t�R
0�k<K



Regularized Inversion

f⇥ = argmin
f

1
2

�

���

|y[⇤] � f̂ [⇤]|2 + �
�

m

|⇥f, ⇥m⇤|.
�1 regularization:

Noisy measurements: ⇥� � �, y[�] = f̂0[�] + w[�].

Noise: w[⇥] � N (0,�), white noise.



MRI Imaging
From [Lutsig et al.]



Fourier sub-sampling pattern:
randomization

MRI Reconstruction

High resolution Linear SparsityLow resolution

From [Lutsig et al.]



Fourier sampling
(Earth’s rotation)

Linear
reconstruction

Radar Interferometry
CARMA (USA)



Gaussian matrices: intractable for large N .

Random partial orthogonal matrix: {��}� orthogonal basis.

Fast measurements: (e.g. Fourier basis)

Kf = (h'!, fi)!2⌦ where |⌦| = P uniformly random.

Structured Measurements



Gaussian matrices: intractable for large N .

Random partial orthogonal matrix: {��}� orthogonal basis.

Fast measurements: (e.g. Fourier basis)

Mutual incoherence: µ =
⌅

Nmax
�,m

|⇥⇥�, �m⇤| � [1,
⌅

N ]

Kf = (h'!, fi)!2⌦ where |⌦| = P uniformly random.

Structured Measurements



�� not universal: requires incoherence.

Gaussian matrices: intractable for large N .

Random partial orthogonal matrix: {��}� orthogonal basis.

Fast measurements: (e.g. Fourier basis)

Mutual incoherence: µ =
⌅

Nmax
�,m

|⇥⇥�, �m⇤| � [1,
⌅

N ]

Kf = (h'!, fi)!2⌦ where |⌦| = P uniformly random.

Structured Measurements

Theorem: with high probability on �,

If M � CP

µ2 log(N)4
, then �2M �

�
2� 1

[Rudelson, Vershynin, 2006]

� = K 



dictionary

Conclusion
Sparsity: approximate signals with few atoms.



�� Randomized sensors + sparse recovery.
�� Number of measurements � signal complexity.

Compressed sensing ideas:

�� CS is about designing new hardware.

dictionary

Conclusion
Sparsity: approximate signals with few atoms.



�� Randomized sensors + sparse recovery.
�� Number of measurements � signal complexity.

Compressed sensing ideas:

The devil is in the constants:

�� Worse case analysis is problematic.

�� Designing good signal models.

�� CS is about designing new hardware.

dictionary

Conclusion
Sparsity: approximate signals with few atoms.


