
Recap on Probably Approximately Correct learning theory

Gabriel Peyré
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Abstract
This document is a short presentation of some important results of Probably Approximately Correct

(PAC) learning theory. Its goal is to asses the generalization performance of learning methods. The
main reference (and in particular the proofs of the mentioned results) is the fantastic book “Foundations
of Machine Learning” by Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar https://cs.

nyu.edu/~mohri/mlbook/ and the cristal clear course notes “Learning Theory from First Principles”
https://www.di.ens.fr/~fbach/learning_theory_class/index.html of Francis Bach.

The underlying assumption is that the data D def.
= (xi, yi)

n
i=1 ⊂ X × Y are independent realizations of a

random vector (X,Y ). The goal is to learn from D alone a function f : X → Y which is as close a possible
of minimizing the risk

L(f)
def.
= E(`(Y, f(X))) =

∫
X×Y

`(y, f(x))dPX,Y (x, y)

where ` : Y × Y → R is some loss function. In order to achieve this goal, the method selects a class of
functions F and minimizes the empirical risk

f̂
def.
= argmin

f∈F
L̂(f)

def.
=

1

n

n∑
i=1

`(yi, f(xi)).

This is thus a random function (since it depends on D).

Example 1 (Regression and classification). In regression, Y = R and the most common choice of loss is
`(y, z) = (y− z)2. For binary classification, Y = {−1,+1} and the ideal choice is the 0-1 loss `(y, z) = 1y 6=z.

Minimizing L̂ for the 0-1 loss is often NP hardÂ for most choice of F . So one uses other loss functions of the
form `(y, z) = Γ(−yz) where Γ is a convex function upper-bounding 1R+ , which makes min

f
L̂(f) a convex

optimization problem.

The goal of PAC learning is to derive, with probability at least 1− δ (intended to be close to 1), a bound

on the generalization error L(f̂)− inf(L) > 0 (also called excess risk), and this bound depends on n and δ.
In order for this generalization error to go to zero, one needs to put some hypothesis on the distribution of
(X,Y ).

1 Non parametric setup and calibration

If F is the whole set of measurable functions, the minimizer f? of L is often called “Bayes estimator”
and is the best possible estimator.
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Risk decomposition Denoting

α(z|x)
def.
= EY (`(Y, z)|X = x) =

∫
Y
`(y, f(x))dPY |X(y|x)

the average error associate to the choice of some predicted value z ∈ Y at location x ∈ X , one has the
decomposition of the risk

L(f) =

∫
X

[∫
Y
`(y, f(x))dPY |X(y|x)

]
dPX(x) =

∫
X
α(f(x)|x)dPX(x)

so that computing f? can be done independently at each location x by solving

f?(x) = argmin
z

α(z|x).

Example 2 (Regression). For regression applications, where Y = R, `(y, z) = (y − z)2, one has f?(x) =
E(Y |X = x) =

∫
Y ydPY |X(y|x), which is the conditional expectation.

Example 3 (Classification). For classification applications, where Y = {−1, 1}, it is convenient to introduce

η(x)
def.
= PY |X(y = 1|x) ∈ [0, 1]. If the two classes are separable, then η(x) ∈ {0, 1} on the support of X

(it is not defined elsewhere). For the 0-1 loss `(y, z) = 1y=z = 1R+(−yz), one has f? = sign(2η − 1) and
L(f?) = EX(min(η(X), 1− η(X))). In practice, computing this η is not possible from the data D alone, and
minimizing the 0-1 loss is NP hard for most F . Considering a loss of the form `(y, z) = Γ(−yz), one has
that the Bayes estimator then reads in the fully non-parametric setup

f?(x) = argmin
z

(
α(z|x) = η(x)Γ(−z) + (1− η(x))Γ(z)

)
,

so that it is non-linear function of η(x).

Calibration in the classification setup A natural question is to ensure that in this (non realistic . . . )
setup, the final binary classifier sign(f?) is equal to sign(2η − 1), which is the Bayes classifier of the (non-
convex) 0-1 loss. In this case, the loss is said to be calibrated. Note that this does not mean that f? is itself
equal to 2η − 1 of course. One has the following result.

Proposition 1. A loss ` associated to a convex Γ is calibrated if and only if Γ is differentiable at 0 and
Γ′(0) > 0.

In particular, the hinge and logistic loss are thus calibrated. Denoting LΓ the loss associated to `(y, z) =
Γ(−yz), and denoting Γ0 = 1R+ the 0-1 loss, stronger quantitative controls are of the form

0 6 LΓ0
(f)− inf LΓ0

6 Ψ(LΓ(f)− inf LΓ) (1)

for some increasing function Ψ : R+ → R+. Such a control ensures in particular that if f? minimize LΓ,
it also minimizes LΓ0

and hence sign(f?) = sign(2η − 1) and the loss is calibrated. One can show that the
hinge loss enjoys such a quantitative control with Ψ(r) = r and that the logistic loss has a worse control
since it requires Ψ(s) =

√
s.

2 PAC bounds

Bias-variance decomposition. For a class F of functions, the excess risk of the empirical estimator

f̂
def.
= argmin

f∈F
L̂(f)
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is decomposed as the sum of the estimation (random) error and the approximation (deterministic) error

L(f̂)− inf L =
[
L(f̂)− inf

F
L
]

+A(F) where A(F)
def.
=
[

inf
F
L− inf L

]
. (2)

This splitting is a form of variance/bias separation.
As the size of F increases, the estimation error increases but the approximation error decreases, and the

goal is to optimize this trade-off. This size should thus depend on n to avoid over-fitting (selecting a too
large class F).

Approximation error. Bounding the approximation error fundamentally requires some hypothesis on
f?. This is somehow the take home message of “no free lunch” results, which shows that learning is not
possible without regularity assumption on the distribution of (X,Y ). We only give here a simple example.

Example 4 (Linearly parameterized functionals). A popular class of functions are linearly parameterized
maps of the form

f(x) = fw(x) = 〈ϕ(x), w〉H
where ϕ : X → H somehow “lifts” the data features to a Hilbert space H. In the particular case where
X = Rp is already a (finite dimensional) Hilbert space, one can use ϕ(x) = x and recovers usual linear
methods. One can also consider for instance polynomial features, ϕ(x) = (1, x1, . . . , xp, x

2
1, x1x2, . . .), giving

rise to polynomial regression and polynomial classification boundaries. One can then use a restricted class
of functions of the form F = {fw ; ||w||H 6 R} for some radius R, and if one assumes for simplicity that
f? = fw? is of this form, and that the loss `(y, ·) is Q-Lipschitz, then the approximation error is bounded by
an orthogonal projection on this ball

A(F) 6 QE(||ϕ(x)||H) max(||w?||H −R, 0).

Remark 1 (Connexions with RKHS). Note that this lifting actually corresponds to using functions f in a
reproducing Hilbert space, denoting

||f ||k
def.
= inf

w∈H
{||w||H ; f = fw}

and the associated kernel is k(x, x′)
def.
= 〈ϕ(x), ϕ(x′)〉H. But this is not important for our discussion here.

Estimation error. The estimation error can be bounded for arbitrary distributions by leveraging concen-
tration inequalities (to controls the impact of the noise) and using some bound on the size of F .

The first simple but fundamental inequality bounds the estimator error by some uniform distance between
L and L̂. Denoting g ∈ F an optimal estimator such that L(g) = infF L (assuming for simplicity it exists)
one has

L(f̂)− inf
F
L =

[
L(f̂)− L̂(f̂)

]
+
[
L̂(f̂)− L̂(g)

]
+
[
L̂(g)− L(ĝ)

]
6 2 sup

f∈F
|L̂(f)− L(f)| (3)

since L̂(f̂) − L̂(g) 6 0. So the goal is “simply” to control ∆(D)
def.
= supF |L̂ − L|, which is a random value

(depending on the data D).
The following proposition, which is a corollary of McDiarmid inequality, bounds with high probability

the deviation of ∆(D) from its mean.

Proposition 2 (McDiarmid control to the mean). If `(Y, f(X)) is almost surely bounded by `∞ for any
f ∈ F , then with probability 1− δ,

∆(D)− ED(∆(D)) 6 `∞

√
2 log(1/δ)

n
. (4)
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Now we need to control ED(∆(D)) which requires to somehow bound the size of F . This can be achieved
by the so-called Vapnik-Chervonenkis (VC) dimension, but this leads to overly pessimistic (dimension-
dependent) bounds for linear models. A more refined analysis makes use of the so-called Rademacher
complexity of a set of functions G from X × Y to R

Rn(G)
def.
= Eε,D

[
sup
g∈G

1

n

n∑
i=1

εig(xi, yi)
]

where εi are independent Bernoulli random variable (i.e. P(εi = ±1) = 1/2). Note that Rn(G) actually
depends on the distribution of (X,Y ) . . .

Here, one needs to apply this notion of complexity to the functions G = `[F ] defined as

`[F ]
def.
= {(x, y) ∈ X × Y 7→ `(y, f(x)) ; f ∈ F} ,

and that one has the following control, which can be proved using a simple but powerful symmetrization
trick.

Proposition 3. One has
E(∆(D)) 6 2Rn(`[F ]).

If ` is Q-Lipschitz with respect to its second variable, one furthermore has Rn(`[F ]) 6 QRn(F) (here the
class of functions only depends on x).

Putting (2), (3), Propositions 2 and 3 together, one obtains the following final result.

Theorem 1. Assuming ` is Q-Lipschitz and bounded by `∞ on the support of (Y, f(X)), one has with
probability 1− δ

0 6 L(f̂)− inf L 6 2`∞

√
2 log(1/δ)

n
+ 4QRn(F) +A(F). (5)

Example 5 (Linear models). In the case where F = {〈ϕ(·), w〉H ; ||w|| 6 R} where || · || is some norm on H,
one has

Rn(F) 6
R

n
||
∑
i

εiϕ(xi)||∗

where || · ||∗ is the so-called dual norm

||u||∗
def.
= sup
||w||61

〈u, w〉H.

In the special case where || · || = || · ||H is Hilbertian, then one can further simplify this expression since
||u||∗ = ||u||H and

Rn(F) 6
R
√
E(||ϕ(x)||2H)√

n
.

This result is powerful since the bound does not depend on the feature dimension (and can be even applied
in the RKHS setting where H is infinite dimensional). In this case, one sees that the convergence speed
in (5) is of the order 1/

√
n (plus the approximation error). One should keep in mind that one needs also

to select the “regularization” parameter R to obtain the best possible trade-off. In practice, this is done by
cross validation on the data themselves.

Example 6 (Application to SVM classification). One cannot use the result (5) in the case of the 0-1 loss
`(y, z) = 1z 6=y since it is not Lipschitz (and also because minimizing L̂ would be intractable). One can
however applies it to a softer piece-wise affine upper-bounding loss `ρ(z, y) = Γρ(−zy) for

Γρ(s)
def.
= min (1,max (0, 1 + s/ρ)) .
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This function is 1/ρ Lipschitz, and it is sandwiched between the 0-1 loss and a (scaled) hinge loss

Γ0 6 Γρ 6 ΓSVM(·/ρ) where ΓSVM(s)
def.
= max(1 + s, 0).

This allows one, after a change of variable w 7→ w/ρ, to bound with probability 1 − δ the 0-1 risk using a
SVM risk by applying (5)

LΓ0
(f̂)− inf

f∈Fρ
LΓSVM

(f) 6 2

√
2 log(1/δ)

n
+ 4

√
E(||ϕ(x)||2H)/ρ√

n

where Fρ
def.
= {fw = 〈ϕ(·), w〉H ; ||w|| 6 1/ρ}. In practice, one rather solves a penalized version of the above

risk (in its empirical version)
min
w

L̂ΓSVM
(fw) + λ||w||2H (6)

which corresponds to the so-called kernel-SVM method.

Remark 2 (Resolution using the kernel trick). The kernel trick allows one to solve problem such as (6) having
the form

min
w∈H

1

n

n∑
i=1

`(yi, 〈w, ϕ(xi)〉) + λ||w||2H (7)

by recasting this possibly infinite dimensional problem into a problem of finite dimension n by observing that
the solution necessarily has the form w? =

∑n
i=1 c

?
iϕ(xi) for some c? ∈ Rn (this can be seen from the first

order optimality conditions of the problem). Plugging this expression in (7) only necessitates the evaluation

of the empirical kernel matrix K = (k(xi, xj)
def.
= 〈ϕ(xi), ϕ(xj)〉)ni,j=1 ∈ Rn×n since it reads

min
c∈Rn

1

n

n∑
i=1

`(yi, (Kc)i) + λ〈Kc, c〉

From the optimal c? solving this strictly convex program, the estimator is evaluated as fw?(x) = 〈w?, ϕ(x)〉 =∑
i c
?
i k(xi, x).
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