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Abstract

This document provides a concise overview of denoising diffusion models. Most of it is adapted from
the excellent slides of Valentin de Bortoli1. The discussion begins with a review of classical Langevin
sampling, a method that, while not ideally suited for generative modeling, establishes a clear connection
between sampling methods, stochastic differential equations (SDEs), and linear partial differential equa-
tions (PDEs). We then explore the fundamental concept underlying diffusion models, which is the ability
to invert linear SDEs through SDEs of the same class, but with a problem-dependent drift. This inversion
involves the so-called “score”, defined as the gradient of the log of the evolving density. The final section
introduces score matching, a technique to estimate this score from samples of the trajectories. Denoising
score matching reframes the problem, recasting it as the computation of an optimal denoiser.

1 Langevin sampling

Langevin diffusion is a method to accelerate sampling from a distribution with density ρ0(x) ≜ e−f(x),
leveraging the smoothness of f . In its discrete (and approximate) form, it corresponds to a noisy gradient
descent, where the noise is Gaussian

Zk+1 = Zk − τ∇f(Zk) +
√
2τWk,

where Wk ∼ N (0, Idd) are i.i.d.
Setting t = τk, as τ → 0, this leads to considering the following Langevin stochastic differential equation

(SDE)

dZt = −∇f(Zt)dt+
√
2dWt, (1)

where t 7→ Wt is a Wiener process. One can show that, regardless of the distribution of Z0, the law of Zt

converges in law towards a density e−f(x) with respect to Lebesgue measure.

Convergence issues. Note that if one replaces f by f/ε, this converges to e−f(x)/ε, so that as ε → 0
one recovers (noiseless) gradient descent, which converges to stationary points of f . The caveat is that the
convergence of Langevin will become slower and slower as ε becomes smaller.

The power of Langevin lies in its independence with respect to initialization. Its weaknesses are its slow
convergence for non-convex f and the necessity to have direct access to ∇ log(ρ0) = ∇f . For applications

1https://vdeborto.github.io/project/generative_modeling/
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to generative models, this is not acceptable because one can only assume to have access to ρ0 from samples.
These two drawbacks can somehow be alleviated by the diffusion model framework, which loosely speaking,
corresponds to replacing the drift ∇ log(ρ0) by ∇ log(ρt) where ρt is a suitable smoothing of ρ0.

PDE interpretation. For a vector field v (for instance, v = −∇f in (1)), the law ρt of a process Zt

satisfying
dZt = v(Zt)dt+

√
2dWt,

can be shown to satisfy (in the weak sense) the following heat diffusion equation with drift (also called the
Fokker-Planck equation)

∂tρt = −div(ρtv) + ∆ρt. (2)

2 Diffusion model

To obtain an exact synthesis process leveraging a time-dependent smoothing, one can invert a forward
diffusion process. The disadvantage of this approach is that it only works for a specific initial condition (as
opposed to Langevin, which works for any initialization), which is the limit density of the forward diffusion
(here a Gaussian).

Forward flow. To converge towards a Gaussian, one can consider a Langevin flow with a linear drift,

−x = −∇f where f(x) = ∥x∥2

2 , which defines an Ornstein-Uhlenbeck process. The continuous forward flow
(noising process) is thus

dXt = −Xtdt+
√
2dWt.

It converges in law exponentially fast toward N (0, Id), and more precisely, one has equality in law

Xt ∼ e−tX0 +
√
1− e−2tZ, (3)

where Z ∼ N (0, Id). This means that ρt is a Gaussian smoothing (with an increasing bandwidth) of a
rescaled version of ρ0

ρt = ρ0(·/et) ⋆N (0, 1− e−2t), f ⋆ g(x) =

∫
f(y)g(x− y)dy.

Backward flow. The actual sampling (the generative process) is now done by reverting in time this
process, i.e., for a large enough T ≫ 0, one seeks to approximate Yt ≜ XT−t. Denoting ρt the law of Xt and
ξt = ρT−t the law of Yt, the first idea is to reverse in time the Fokker-Planck PDE (2), since ∂tξt = −∂tρT−t,

∂tρt = −div(−ρtx) + ∆ρt ⇒ ∂tξt = −div(ξtx)−∆ξt.

This corresponds to a backward heat equation, which is unstable and cannot be computed (and also, it
cannot be represented using an SDE).

An alternative approach is to re-write −∆ξt as a Laplacian plus a drift which is equal to the score
∇ log(ξt), since one has, for any α ⩾ 0

−∆ξt = α∆ξt − (1 + α)div(ξt∇ log(ξt)) = α∆ξt − (1 + α)div(ξt∇ log(ξt)).

One thus has that ξt is also a solution of a Fokker-Planck equation

∂tξt = −div(ξtx+ (1 + α)ξt∇ log(ξt)) + α∆ξt.

This shows that ξt is the law of a process Yt, satisfying the following Langevin SDE, initialized with Y0 = XT

dYt = [Yt + (1 + α)∇ log(ρT−t)(Yt)]dt+
√
2αdWt.
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This can be discretized using an Euler-Maruyama scheme, starting from Y0 = XT/τ

Yk+1 = Yk + τYt + τ(1 + α)∇ log(ρT−t) +
√
2ταWk. (4)

The case α = 1 is the standard diffusion model. The case α = 0 corresponds to a deterministic advection
equation (the noise being only injected in Y0)

dYt

dt
= Yt +∇ log(ρT−t)(Yt) (5)

The idea of using Langevin with a score function to perform generative modeling was introduced in [2].
The rigorous backward SDE presented here is due to [3].

Initialization. One issue in this approach is that the exact initialization Y0 = XT is not possible since in
practice ρ0 is only approximately known. This is circumvented by replacing ρT by ρ∞ = N (0, Id).

3 Denoising Score Matching

In order to be able to implement (4), one needs to compute the score ∇ log(ρt), where ρt is the density
of the distribution of Xt, defined as in (3). The idea is to approximate this score using a function computed
from samples of Xt.

In the following, we denote X0 as X and Xt as Z. We denote P(Z,X)(z, x) as the density of the law of
(Z,X) (with respect to some fixed reference measure, such as Lebesgue) and PZ(z) the density of Z (so that
for diffusion model, PZ = ρt). For the sake of readability, we often drop the subscripts and denote it as
P(z, x). The same goes for PZ(z) = P(z) and the conditionals PZ|X(z|x) = P(z|x) and PX|Z(x|z) = P(x|z).

The goal is thus to compute an estimator for ∇z log(PZ). The following derivation is valid for any pair
of random vectors (X,Z) such that one can sample from the pair (X,Z) and has a closed-form expression
for the conditional density PZ|X(·|x) of Z given X = x. According to (3), in the special case of a diffusion
model, conditioned on X0 = x, Z is a Gaussian random variable with mean e−tx and variance (1− e−2t)Id,
so that

logPZ|X(z|x) = −||z − e−tx||2

2(1− e−2t)
+ cst ⇒ ∇z logPZ|X(z|x) = −z − e−tx

1− e−2t
. (6)

Score matching for a generic degradation. One has P(z|x) = P(z,x)
P(x) , so that

∇zP(z|x)
P(z|x)

= ∇z logP(z|x) = ∇z log
P(z, x)
P(x)

=
∇zP(z, x)
P(z, x)

.

One also has P(z) =
∫
P(z, x) dx, so that using the previous equation

∇ logPZ(z) =
∇P(z)
P(z)

=
1

P(z)

∫
∇zP(z, x) dx =

1

P(z)

∫
P(z, x)∇z logP(z|x) dx =

∫
x

∇z logP(z|x) dP(x|z).

The last expression writes ∇ logP(z) as an average of ∇z logP(z|x) according to the probability distribution
P(x|z). This can equivalently be re-written as the minimization of a mean square

∇ logP(z) = argmin
φ(z)∈Rd

∫
x

||∇z logP(z|x)− φ(z)||2 dP(x|z).

Note that the function ∇z logP(z|x) is assumed to be computable in closed form. In practice, this non-
parametric estimation of φ is replaced by a parametric estimation φ = φθ, as one has to perform it by
sampling P(·|z) alone. This can be done by integrating over z with random sampling from P(z), resulting
in an integration over P(z, x) = P(z|x)P(x) (from which one can sample by first sampling x and then z
according to P(z|x)), so that one solves

∇ logPZ(·) ≈ φθ where min
θ

∫
x

∫
z

||∇z logP(z|x)− φθ(z)||2 dP(z|x)dP(x). (7)
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Score matching for diffusion. For the case of diffusion model (3), the function φ depends also on time,
so that one minimizes

∇ log ρt(z) ≈ φθ(z, t) where min
θ

∫
t

∫
x

∫
z

||e
−tx− z

1− e−2t
− φθ(z, t)||2 dP(z|x)dρ0(x)λtdt. (8)

where λt is some weighting scheme. The function φθ(·, t) : Rd → Rd is usually a neural network but of a
specific type because it maps Rd to itself. For images, a model of choice is U-Nets, which operate similarly
to wavelet analysis and synthesis. The minimization of (8) is performed by stochastic gradient descent.

The initial idea of using score matching to perform density estimation was introduced in [1]. The varia-
tional formulation as an optimal denoiser is due to [4].
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