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Chapter 3

Wavelets

The reference for this chapter is [1].

3.1 Multi-resolution Approximation Spaces

A multiresolution approximation of L2(R) is a set of nested closed subspaces (Vj)j

L2(R) ⊃ . . . ⊃ V j−1 ⊃ Vj ⊃ Vj+1 ⊃ . . . ⊃ {0} (3.1)

which must be related one from each other by dyadic scaling and must also be stable by dyadic translation

f ∈ Vj ⇐⇒ f(·/2) ∈ Vj+1 and f ∈ Vj ⇐⇒ ∀n ∈ Z, f(·+ n2j) ∈ Vj

So large j corresponds to coarse approximation spaces, and 2j is often call the “scale”.
The limit on the left of (3.1) means that ∪jVj is dense in L2(R), or equivalently that PVj

(f) → f as
j → −∞ where PV is the orthogonal projector on V

PV (f) = argmin
f ′∈V

||f − f ′||.

The limit on the right of (3.1) means that ∩jVj = {0}, or equivalently that PVj
(f)→ 0 as j → +∞.

The first example is piecewise constant functions on dyadic intervals

Vj =
{
f ∈ L2(R) ; ∀n, f is constant on [2jn, 2j(n+ 1)[

}
, (3.2)

A second example is the space used for Shannon interpolation of bandlimitted signals

Vj =
{
f ; Supp(f̂) ⊂ [−2−jπ, 2−jπ]

}
(3.3)

which corresponds to function which can be exactly represented using samples f(2jn) (to be compared
with piecewise constant signal on a grid with spacing 2j). In this case, the orthogonal projection is the
bandlimitting operator

PVj (f) = F−1(f̂ � 1[−2−jπ,2−jπ]).

Scaling functions. We also require that there exists a scaling function ϕ ∈ L2(R) so that

{ϕ(· − n)}n is an Hilertian orthonormal basis of V0.

By the dilation property, this implies that

{ϕj,n}n is an Hilertian orthonormal basis of Vj where ϕj,n
def.
=

1

2j/2
ϕ

(
· − 2jn

2j

)
.
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The normalization is such to ensure ||ϕj,n|| = 1.
Note that one then has

PVj
(f) =

∑
n

〈f, ϕj,n〉ϕj,n.

Figure 3.1 illustrates the translation and scaling effect.

ϕj,0 ϕj+1,2 ϕj−1,

Figure 3.1: Translation and scaling to generate approximation spaces.

For the case of piecewise constant signals (3.2), one can use

ϕ = 1[0,1[ and ϕj,n = 2−j/21[2jn,2j(n+1)[.

For the case of Shannon multiresolution (3.3), one can use ϕ(t) = sin(πt)/(πt) and one verifies

〈f, ϕj,n〉 = f(2jn) and f =
∑
n

f(2jn)ϕj,n.

Figure 3.2: BUG: the elevation should be 2−j/2 and not 2j/2 Haar scaling (left) and wavelet (right)
functions.

Spectral orthogonalization. In many case of practical interest, the space Vj is describe by a translation-
invariant basis which is not-orthogonal, Vj = Span(θ(· − n))n∈Z. The following proposition shows how to
orthogonalize it using the Fourier transform. Figure 3.3 shows how it leads to cardinal spline orthogonal
functions.

Proposition 11. For θ ∈ L2(R) (assumed regular and with fast enough decay), {θ(·−n)}n∈Z is orthonormal
if and only if

∀ω, A(ω)
def.
=
∑
k

|θ̂(ω − 2πk)|2 = 1.

If there exists 0 < a 6 b < +∞ such that a 6 A(ω) 6 b, then ϕ defined by

ϕ̂(ω) =
θ̂(ω)√
A(ω)

is such that {ϕ(· − n)}n∈Z is an Hilbertian basis of Span{θ(· − n)}n∈Z.
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Figure 3.3: Orthogonalization of b-spline to defines cardinal orthogonal spline functions.

Proof. One has that {θ(· − n)}n∈Z is orthonormal if and only if

〈θ, θ(· − n)〉 = (θ ? θ̄)(n) = δ0,n
def.
=

{
0 if n = 0,
1 otherwise.

where θ̄ = θ(−·) and δ0 is the discrete Dirac vector. Recall the Poisson summation formula (1.8) for any
function h ∑

n

h(ω − 2nπ) =
∑
n

h(n)e−inω

which here reads ∑
n

F(θ ? θ̄)(ω − 2πn) =
∑
n

δ0,ne
−inω = 1.

We conclude with the Fourier-convolution formula (2.6) shows that F(θ ? θ̄)(ω) = θ̂(ω)θ̂(ω)∗ = |θ̂(ω)|2 which
leads to the desired formula, and it is if and only if. Normalizing by 1/

√
A(ω), which is a bounded function,

shows that ϕ̂ satsifies
∑
k |ϕ̂(ω − 2πk)|2 = 1.

A typical example of application is spline (e.g. cubic ones) interpolations, which are generated by the
box-spline function θ which is a piecewise polynomial with a compact support.

3.2 Multi-resolution Details Spaces

The details spaces are defined as orthogonal complement of Vj ⊂ Vj−1, which is legit because these are
closed subspaces

∀ j, Wj is such that Vj−1 = Vj ⊕⊥Wj .

This leads to the following sequence of embedded spaces

Once again, we suppose that W0 has an Hilbertian ortho-basis of the form {ψ(· − n)}n, so that

{ψj,n}n is an Hilertian orthonormal basis of Wj where ψj,n
def.
=

1

2j/2
ψ

(
· − 2jn

2j

)
.

Due to the orthogonal complementarity property, one has

L2(R) =

j=+∞⊕
j=−∞

Wj = Vj0

j⊕
j6j0

Vj .
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This means that for all f ∈ L2(R), one has the following convergence in L2(R),

f = lim
(j−,j+)→(−∞,+∞)

j+∑
j=j−

PWj
f = lim

j+→+∞
PVj0

f +

j+∑
j=j0

PWj
f.

This decomposition shows that {
ψj,n ; (j, n) ∈ Z2

}
is an Hilbertian orthogonal basis of L2(R), which is called a wavelet basis. One also have a “truncated”
ortho-basis

{ψj,n ; j 6 j0, n ∈ Z} ∪ {ϕj0,n ; n ∈ Z} .

A (forward) Wavelet transform corresponds to the computation of all the inner products of some function
f with the elements of these basis.
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Figure 3.4: 1-D Haar multiresolution projection PVjf of a function f .

Haar wavelets. For the Haar multiresolution (3.2), one has

Wj =

{
f ; ∀n ∈ Z, f constant on [2j+1n, 2j+1(n+ 1)) and

∫ (n+1)2j

n2j

f = 0

}
. (3.4)

A possible choice for a mother wavelet function is

ψ(t) =
1√
2

 1 for 0 6 t < 1/2,
−1 for 1/2 6 t < 1,
0 otherwise,

as shown on Figure 3.2, right.

Figure 3.5 shows examples of projections on details spaces, and how they can be derived from projection
on approximation spaces.

Shannon and splines. Figure 3.6 shows that Shannon and splines corresponds to a hard and a soft
segmentation of the frequency domain (Shannon being in some sense the high degree limit of splines).
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Figure 3.5: Projection on Haar approximation spaces (left) and detail spaces (right).

3.3 On Bounded Domains

On a periodic bounded domain T = R/Z (note that we use here 1-periodicity, in contrast to the convention
we used for Fourier series of 2π-periodicity), one obtains an orthogonal wavelet basis of L2(T) by periodizing
the original wavelets, and also restricting the translation points 2jn to be in [0, 1], i.e. 0 6 n < 2−j . Similarly
to (1.6), the periodization of a function f ∈ L1(R) is the function

fP =
∑
n∈Z

f(· − n) ∈ L1(T).

The wavelet basis is thus define as{
ψPj,n ; j 6 j0, 0 6 n < 2−j

}
∪
{
ϕPj0,n ; 0 6 n < 2−j0

}
.

and one verifies that it defines an Hilbertian ortho-basis of L2(T), see Figure 3.7. It is possible to define
wavelet basis using Neumann (mirror) boundary conditions, but this is more involved.

3.4 Fast Wavelet Transform

3.4.1 Discretization

We now work over R/Z. The modeling hypothesis is that one has access to a discrete signal aJ ∈ RN

with N = 2−J at some fixed scale 2J , and that this signal exactly matches the inner-product with the scaling
functions, i.e.

∀n,∈ {0, . . . , N − 1}, aJ,n = 〈f, ϕPJ,n〉 ≈ f(2Jn), (3.5)

for some function of interest f we are sampling. This is equivalent to saying that the discretization process
have exactly access to PVJ

f . This hypothesis is questionnable, and similar to the Shannon bandlimit as-
sumption. In practice, the scaling functions (ϕJ,n)n are often quite close to the point-spread function of the
acquisition device, so it is acceptable. One can however improves this by correcting the acquired values by
the device to be closer to asumption (3.5).
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Figure 3.6: Spline and Shannon wavelet segmentation of the frequency axis.

Figure 3.7: Periodizing basis functions. This leads to considering only 0 6 n2−j , so that in practice one
choose j0 = 0.

The discrete wavelet transform then computes, from this input aJ , all the coefficients

∀ j ∈ {J + 1, J + 2, . . . , 0}, ∀n ∈ J0, 2−j − 1K, aj,n
def.
= 〈f, ϕPj,n〉, and dj,n

def.
= 〈f, ψPj,n〉

in this order (increasing values of j). During the algorithm, the previously computed vector aj can be
discarded, and only the dj are kept.

The forward discrete wavelet transform on a bounded domain is thus the orthogonal finite dimensional
map

aJ ∈ RN 7−→
{
dj,n ; 0 6 j < J, 0 6 n < 2−j

}
∪ {a0 ∈ R}.

The inverse transform, which is thus the adjoint due to orthogonality, is the inverse map.
Figure 3.8 shows examples of wavelet coefficients. For each scale 2j , there are 2−j coefficients.

3.4.2 Forward Fast Wavelet Transform (FWT)

The algorithm proceeds by computing a series of simple operators

∀ j = J + 1, . . . , 0, (aj , dj) =Wj(aj−1) where Wj : R2−j+1

→ R2−j

× R2−j

(3.6)

The number of such steps is thus |J | = log2(N). Each Wj is orthogonal since it corresponds to linear maps
between coefficients in orthogonal bases.

In order to describe the algorithm that computesWj , we introduce the filters “filter” coefficients f, g ∈ RZ

hn
def.
=

1√
2
〈ϕ(·/2), ϕ(· − n)〉 and gn

def.
=

1√
2
〈ψ(·/2), ϕ(· − n)〉. (3.7)

Figure 3.9 illustrates the computation of these weights for the Haar system.
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Figure 3.8: Wavelet coefficients. Top row: all the coefficients. Bottoms rows: zoom on the different scales

Figure 3.9: Haar wavelets weights as inner products.

We denote as ↓2: RK → RK/2 the subsampling operator by a factor of 2, i.e.

u ↓2
def.
= (u0, u2, u4, . . . , uK−2, uK).

In the following, we assume that these filters are decaying fast enough.

Proposition 12. One has
Wj(aj) = ((h̄ ? aj−1) ↓2, (ḡ ? aj−1) ↓2), (3.8)

where ? denotes periodic convolutions on R−j+1.

Proof. We note that ϕ(·/2) and ψ(·/2) are in Wj , so one has the decompositions

1√
2
ϕ(t/2) =

∑
n

hnϕ(t− n) and
1√
2
ψ(t/2) =

∑
n

gnϕ(t− n) (3.9)

Doing the change of variable t 7→ t−2jp
2j−1 in (3.9), one obtains

1√
2
ϕ

(
t− 2jp

2j

)
=
∑
n

hnϕ

(
t

2j−1
− (n+ 2p)

)
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(similarly for ψ) and then doing the change n 7→ n− 2p, one obtains

ϕj,p =
∑
n∈Z

hn−2pϕj−1,n and ψj,p =
∑
n∈Z

gn−2pψj−1,n.

When working with periodized function (ϕPj,n, ψ
P
j,p), this formula is still valid, but the summation over n ∈ Z

should be done modulo 2−j+1. Taking inner product of both size with respect to f (which is legit if h, g are
decaying fast enough), one obtains the fundamental recursion fromula

aj,p =
∑
n∈Z

hn−2paj−1,n = (h̄ ? aj−1)2p and dj,p =
∑
n∈Z

gn−2paj−1,n = (ḡ ? aj−1)2p (3.10)

where ūn
def.
= u−n. One can show that this formula is still valid when working over a bounded interval

T = R/Z, but then ? denotes the periodic convolution over Z/2−j+1Z.

Figure 3.10 shows two steps of application of these refinement relationships.

Figure 3.10: Forward filter bank decomposition.

The FWT thus operates as follow:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.
aj+1 = (aj ? h̃) ↓ 2 and dj+1 = (aj ? g̃) ↓ 2

Output: the coefficients {dj}j06j<J ∪ {aj0}.
If |h|, |g| 6 C so that both filter are compactly supported, then computing eachWj is (2C)2−j operation,

so that the complexity of the whole wavelet transform is

1∑
j=J

(2C)2−j = (2C)2−J = 2CN.

This shows that the fast wavelet transform is a linear time algorithm. Figure 3.11 shows the process of
extracting iteratively the wavelet coefficients. Figure 3.12 shows an example of computation, where at each
iteration, the coefficients of aj and dj are added to the left of the output vector.

Fast Haar transform. For the Haar wavelets, one has

ϕj,n =
1√
2

(ϕj−1,2n + ϕj−1,2n+1),

ψj,n =
1√
2

(ϕj−1,2n − ϕj−1,2n+1).

This corresponds to the filters

h = [. . . , 0, h[0] =
1√
2
,

1√
2
, 0, . . .],

42



Figure 3.11: Pyramid computation of the coefficients.
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Figure 3.12: Wavelet decomposition algorithm.

g = [. . . , 0, h[0] =
1√
2
, − 1√

2
, 0, . . .].

The Haar wavelet transform algorithm thus processes by iterating averaging and differences:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.

aj+1,n =
1√
2

(aj−1,2n + aj−1,2n+1) and dj+1,n =
1√
2

(aj−1,2n − aj−1,2n+1).

Output: the coefficients {dj}j06j<J ∪ {aj0}.

3.4.3 Inverse Fast Transform (iFWT)

The inverse algorithm proceeds by inverting each step (3.11)

∀ j = 0, . . . , J + 1, aj−1 =W−1
j (aj , dj) =W∗j (aj , dj), (3.11)

where W∗j is the adjoint for the canonical inner product on R2−j+1

, i.e. when viewed as a matrix, the
transpose.

We denote ↑2: RK/2 → RK the up-sampling operator

a ↑2= (a0, 0, a1, 0, . . . , 0, aK/2, 0) ∈ RK .
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Proposition 13. One has

W−1
j (aj , dj) = (aj ↑2) ? h+ (dj ↑2) ? g.

Proof. Since Wj is orthogonal, W−1
j =W∗j . We write the whole transform as

Wj = S2 ◦ Ch̄,ḡ ◦ D where


D(a) = (a, a),
Ch̄,ḡ(a, b) = (h̄ ? a, ḡ ? a),
S2(a, b) = (a ↓2, b ↓2).

One has the following adjoint operator

D∗(a, b) = a+ b, C∗h̄,ḡ(a, b) = (h ? a, g ? b), and S2(a, b) = (a ↑2, b ↑2).

Indeed, let us check this for the convolution, assuming involved sequences are in `1 (they are actually finite
sums when considering periodic signals),

〈f ? h̄, g〉 =
∑
n

(f ? h̄)ngn =
∑
n

∑
k

fkhk−ngn =
∑
k

fk
∑
n

hk−ngn = 〈f, h ? g〉,

for the copying

〈D(a), (u, v)〉 = 〈a, u〉+ 〈a, v〉 = 〈a, u+ v〉 = 〈a, D∗(u, v)〉,

and for the down-sampling

〈f ↓2, g〉 =
∑
n

f2ngn =
∑
n

(f2ngn + f2n+10) = 〈f, g ↑2〉.

This is shown using matrix notations in Figure 3.13. Putting everything together gives the desired formula.

=⇒

Figure 3.13: Wavelet inversion in matrix format.

The inverse Fast wavelet transform iteratively applies this elementary step

Input: {dj}j06j<J ∪ {aj0}.
For j = j0, . . . , J + 1.

aj−1 = (aj ↑ 2) ? h+ (dj ↑ 2) ? g.

Output: f = aJ .

This process is shown using a block diagram in Figure 3.14, which is the inverse of the block diagram 3.10.
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Figure 3.14: Backward filterbank recomposition algorithm.

3.5 2-D Wavelets

3.5.1 Anisotropic Wavelets

2-D anisotropic wavelets are defined using tensor product of Wavelet basis functions (2.12). The basis
over T2 is thus of the form{

ψ(j1,j2),(n1,n2) ; (j1, j2) ∈ Z2, 0 6 n1 < 2−j1 , 0 6 n2 < 2−j2
}

where ψ(j1,j2),(n1,n2)(x1, x2) = ψj1,n1
(x1)ψj2,n2

(x2). (3.12)

The computation of the fast anisotropic Wavelet transform in 2-D is similar to the 2-D FFT detailed in

Section 2.5.2. Viewing the input image aJ ∈ R2−J×2−J

as a matrix, one first apply the 1-D FWT to each
row, and then to each column, resulting in a linear time O(N) algorithm, where N = 2−2J .

Image f Row transform Column transform.

Figure 3.15: Steps of the anisotropic wavelet transform.

3.5.2 Isotropic Wavelets

A major issue with these anisotropic wavelet (3.12) is that a function ψ(j1,j2),(n1,n2) is scaled independently
in each direction, leads to functions concentrated along an axis-oriented rectangle of size 2−j1 × 2j2 . This
is not a very good features (since natural images usually do not exhibit such an anisotropy) and typically
leads to visually unpleasant artifacts when used for processing (denoising or compression).
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Figure 3.16: Anisotropic (left) versus isotropic (right) wavelet coefficients.

One rather use isotropic wavelet obtained by considering 2-D multi-resolution, obtained by tensor prod-
ucts of the 1-D approximation spaces

L2(R2) ⊃ . . . ⊃ V j−1 ⊗ V j−1 ⊃ Vj ⊗ Vj ⊃ Vj+1 ⊗ Vj+1 ⊃ . . . ⊃ {0}.

In the following, we denote

V Oj
def.
= Vj ⊗ Vj

this isotropic 2-D multiresolution space.
Recall that the tensor product of two space (V1, V2) ∈ L2(R)2 is

V1 ⊗ V2 = Closure
(
Span

{
f1(x1)f2(x2) ∈ L2(R2) ; f1 ∈ V1, f2 ∈ V2

})
.

If (ϕsk)k are Hilbertian bases for Vs, then one can show that (ϕ1
k(x1)ϕ2

k(x2))k is an Hilbertian basis for
V1 ⊗ V2.

One easily verify that one has the distributivity

(Vj ⊕⊥WJ)⊗ (Vj ⊕⊥WJ) = V Oj ⊕⊥WV
j ⊕⊥WV

j ⊕⊥WV
j where


WV
j

def.
= (Vj ⊗Wj),

WH
j

def.
= (Wj ⊗ Vj),

WD
j

def.
= (Wj ⊗Wj).

Here the letters {V,H,D} stands for Vertical, Horizontal, Diagonal detail spaces. This leads to the following
diagram of embedded spaces

For j ∈ Z, each of the three wavelet spaces is spanned with a wavelet, where basis elements are indexed
by n = (n1, n2) ∈ Z (or in {0, . . . , 2−j − 1}2 on the interval T),

∀ω ∈ {V,H,D}, Wω
j = Span{ψωj,n1,n2

}n1,n2

where

∀ω ∈ {V,H,D}, ψωj,n1,n2
(x) =

1

2j
ψω
(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)
and where the three mother wavelets are

ψH(x) = ψ(x1)ϕ(x2), ψV (x) = ϕ(x1)ψ(x2), and ψD(x) = ψ(x1)ψ(x2).

Figure 3.17 displays an examples of these wavelets.
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ψH ψV ψD Support

Figure 3.17: 2-D wavelets and their approximative support (right).

Haar 2-D multiresolution. For the Haar multiresolution, one obtains 2-D piecewise-constant Haar ap-
proximation. A function of Vj ⊗ Vj is constant on squares of size 2j × 2j . Figure 3.18 shows an example of
projection of an image onto these 2-D Haar approximation spaces.

Figure 3.18: 2-D Haar approximation PV O
j
f for increasing j.

Discrete 2-D wavelet coefficients. Similarly to (3.5), we suppose that the sampling mechanism gives
us access to inner product of the analog (continuous) signal f with the scaling function at scale N = 2−J

∀n,∈ {0, . . . , N − 1}2, aJ,n = 〈f, ϕPJ,n〉

Discrete wavelet coefficients are defined as

∀ω ∈ {V,H,D}, ∀ J < j 6 0, ∀ 0 6 n1, n2 < 2−j , dωj,n = 〈f, ψωj,n〉.

(we use here periodized wavelets). Approximation coefficients are defined as

aj,n = 〈f0, ϕ
O
j,n〉.

Figure 3.19 shows examples of wavelet coefficients, that are packed in an image of N pixels. Figure 3.20
shows other examples of wavelet decompositions.

Forward 2-D wavelet transform basic step. A basic step of the computation of the 2-D wavelet
transform computes detail coefficients and a low pass residual from the fine scale coefficients

aj−1 7−→ (aj , d
H
j , d

V
j , d

D
j ).
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Figure 3.19: 2-D wavelet coefficients.

Similarly to the 1-D setting, this mapping is orthogonal, and is computed using the 1-D filtering and sub-
sampling formula (3.8).

One first applies 1-D horizontal filtering and sub-sampling

ãj = (aj−1 ?
H h̃) ↓H 2

d̃j = (aj−1 ?
H h̃) ↓H 2,

where ?H is the horizontal convolution, that applies the 1-D convolution to each column of a matrix

a ?H bn1,n2
=

P−1∑
m1=0

an1−m1,n2
bm1

where a ∈ CP×P and b ∈ CP are matrix and vectors. The notation ↓H 2 accounts for sub-sampling in the
horizontal direction

(a ↓H 2)n1,n2
= a2n1,n2

.

One then applies 1-D vertical filtering and sub-sampling to ãj and d̃j to obtain

aj = (ãj ?
V h̃) ↓V 2,

dVj = (ãj ?
V g̃) ↓V 2,

dHj = (d̃j ?
V h̃) ↓V 2,

dDj = (d̃j ?
V g̃) ↓V 2,

where the vertical operators are defined similarly to horizontal operators but operating on rows.
These two forward steps are shown in block diagram in Figure 3.21. These steps can be applied in place,

so that the coefficients are stored in an image of N pixels, as shown in Figure 3.22. This gives the traditional
display of wavelet coefficients used in Figure 3.20.

Fast 2-D wavelet transform. The 2-D FWT algorithm iterates these steps through the scales:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.

ãj = (aj−1 ?
H h̃) ↓H 2,

d̃j = (aj−1 ?
H h̃) ↓H 2,

aj = (ãj ?
V h̃) ↓V 2,

dVj = (ãj ?
V g̃) ↓V 2,

dHj = (d̃j ?
V h̃) ↓V 2,

dDj = (d̃j ?
V g̃) ↓V 2.

Output: the coefficients {dωj }j06j<J,ω ∪ {aj0}.
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Figure 3.20: Examples of images (top row) and the corresponding wavelet coefficients (bottom row) .

Fast 2-D inverse wavelet transform. The inverse transform undo the horizontal and vertical filtering
steps. The first step computes

ãj = (aj ?
V h) ↑V 2 + (dVj ?

V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

where the vertical up-sampling is

(a ↑V 2)n1,n2 =

{
ak,n2 if n1 = 2k,
0 if n = 2k + 1.

The second inverse step computes

aj−1 = (ãj ?
H h) ↑H 2 + (d̃j ?

H g) ↑H 2.

Figure 3.23 shows in block diagram this inverse filter banks, that is the inverse of the diagram 3.21.
The inverse Fast wavelet transform iteratively applies these elementary steps

Input: {dωj }j06j<J,ω ∪ {aj0}.
For j = j0, . . . , J + 1.

ãj = (aj ?
V h) ↑V 2 + (dVj ?

V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

aj−1 = (ãj ?
H h) ↑V 2 + (d̃j ?

H g) ↑V 2.

Output: f = aJ .
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Figure 3.21: Forward 2-D filterbank step.

Coefficients aj Transform on rows Transform on columns

Figure 3.22: One step of the 2-D wavelet transform algorithm.

3.6 Wavelet Design

To be able to compute the wavelet coefficients using the FWT algorithm, it remains to know how to
compute the scaling and wavelet functions. The FWT only makes use of the filters h and g, so instead
of explicitly knowing the functions ϕ and ψ, one can only know these filters. Indeed, most of the known
wavelets do not have explicit formula, and are implicitly defined through the cascade of the FWT algorithm.

This section shows what are the constraints h and g should satisfy, and gives practical examples. Fur-
thermore, it shows that the knowledge of h determines g under the constraint of having quadrature filters,
which is the most usual choice for wavelet analysis.

3.6.1 Low-pass Filter Constraints

We introduce the following three conditions on a filter h

ĥ(0) =
√

2 (C1)

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (C2)

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0. (C∗)
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Figure 3.23: Backward 2-D filterbank step.

Here we are using the Fourier series associated to a filter h ∈ RZ

∀ω ∈ R/2πZ, ĥ(ω)
def.
=
∑
n∈Z

hne
−inω.

If h ∈ `1(Z), this defines a continuous periodic fonction ĥ ∈ C0(R/2πZ), and this definition can be extended

to h ∈ `2(Z) and defines ĥ ∈ L2(R/2πZ).

Theorem 3. If ϕ defines multi-resolution approximation spaces, then (C1) and (C2) holds for h defined
in (3.7). Conversely, if (C1), (C2) and (C∗) holds, then there exists a ϕ defining multi-resolution approxi-
mation spaces so that associated filter is h as defined in (3.7).

Proof. We only prove the first statement of the theorem. The converse statement is much more difficult to
prove.

We now prove condition (C1). The refinement equation reads like a discrete-continuous convolution (or
equivalently a convolution with a distribution)

1√
2
ϕ

(
t

2

)
=
∑
n∈Z

hnϕ(t− n). (3.13)

Denoting h ? ϕ such a convolution, assuming h ∈ `1(Z) and ϕ ∈ L1(R), one check that one can apply Fubini
and that h ? ϕ ∈ L1(R) and then

F(
∑
n∈Z

hnϕ(t− n))(ω) =

∫
R

∑
n∈Z

hnϕ(t− n)e−iωtdt =
∑
n∈Z

hn

∫
R
ϕ(t− n)e−iωtdt

=
∑
n∈Z

hne
−inω

∫
R
ϕ(x)e−iωxdx = ϕ̂(ω)ĥ(ω)

where we made the change of variable x = t−n. Note that here, ĥ(ω) is the 2π-periodic Fourier transform (i.e.
Fourier series) of infinite filters defined in (3.6.1), whereas ϕ̂(ω) is the Fourier transform of function. This is

thus a product of a 2π-periodic function ĥ and a non-periodic function ϕ̂. We recall that F(f(·/s)) = sf̂(s·).
Over the Fourier domain, equation (3.13) thus reads

ϕ̂(2ω) =
1√
2
ĥ(ω)ϕ̂(ω). (3.14)
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One can show that ϕ̂(0) 6= 0 (actually, |ϕ̂(0)| = 1), so that this relation implies the first condition (C1).
We now prove condition (C2). The orthogonality of ϕ(·−n)}n is rewritten using a continuous convolution

as (see also Proposition 11)
∀n ∈ Z, ϕ ? ϕ̄(n) = δ0

where ϕ̄(x) = ϕ(−x), and thus over the Fourier domain, using (3.14) which shows ϕ̂(ω) = 1√
2
ĥ(ω/2)ϕ̂(ω/2)

1 =
∑
k

|ϕ̂(ω + 2kπ)|2 =
1

2

∑
k

|ĥ(ω/2 + kπ)|2|ϕ̂(ω/2 + kπ)|2.

Since ĥ is 2π-periodic, one can split even and odd k and obtain

2 = |ĥ(ω/2)|2
∑
k

|ϕ̂(ω/2 + 2kπ)|2 + |ĥ(ω/2 + π)|2
∑
k

|ϕ̂(ω/2 + 2kπ + π)|2

This leads to condition (C2). Re-using the fact that
∑
k |ϕ̂(ω + 2kπ)|2 = 1 for ω′ = ω/2 in place of ω, one

thus has
|ĥ(ω′)|2 + |ĥ(ω′ + π)|2 = 2.

We do not prove the converse statement, which requires to “create” a function ϕ from the filter h. The
intuition is that iterating (3.14) leads informally to

ϕ̂(ω) =
∏
k<0

ĥ(ω/2k)√
2

. (3.15)

Condition (C∗) can be shown to imply that this infinite product converge, and define a (non-periodic)
function in L2(R).

Note that for the converse statement of this theorem to holds, condition (C∗) imposes a control on the

behavior of ĥ near 0.

3.6.2 High-pass Filter Constraints

We now introduce the following two conditions on a pair of filter (g, h)

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (C3)

ĝ(ω)ĥ(ω)∗ + ĝ(ω + π)ĥ(ω + π)∗ = 0. (C4)

Figure 3.24 illustrates this constraint.

Figure 3.24: Low/high pass filter constraint.
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Theorem 4. If (ϕ,ψ) defines a multi-resolution analysis, then (C3) and (C4) holds for (h, g) defined in (3.7).
Conversely, if (C1) to (C4) hold, then there exists a (ϕ,ψ) defining multi-resolution analysis so that associ-
ated filters are (h, g) as defined in (3.7). Furthermore,

ψ̂(ω) =
1√
2
ĝ(ω/2)ϕ̂(ω/2). (3.16)

Proof. We prove condition (C3). The refinement equation for the wavelet reads

1√
2
ψ

(
t

2

)
=
∑
n∈Z

gnϕ(t− n)

and thus over the Fourier domain

ψ̂(2ω) =
1√
2
ĝ(ω)ϕ̂(ω). (3.17)

The orthogonality of {ψ(· − n)}n is re-written

∀n ∈ Z, ψ ? ψ̄(n) = δ0

and thus over the Fourier domain (using Poisson formula, see also Proposition 11)∑
k

|ψ̂(ω + 2kπ)|2 = 1.

Using the Fourier domain refinement equation (3.17), similarely to the proof of Theorem 3 for (C1), this
is equivalent to condition (C3). Figure 3.25 shows the Fourier transform of two filters that satisfy this
complementary condition.

Figure 3.25: Complementarity between a low pass and a high pass wavelet filters h and g that satisfy
condition (C3).

We now prove condition (C4). The orthogonality between {ψ(· − n)}n and {ϕ(· − n)}n is written as

∀n ∈ Z, ψ ? ϕ̄(n) = 0

and hence over the Fourier domain (using Poisson formula, similarly to Proposition 11)∑
k

ψ̂(ω + 2kπ)ϕ̂∗(ω + 2kπ) = 0.

Using the Fourier domain refinement equations (3.14) and (3.17), this is equivalent to condition (C4).

Quadrature mirror filters. Quadrature mirror filters (QMF) defines g as a function of h so that the
conditions of Theorem 4 are automatically satisfy. This choice is the natural choice to build wavelet filters,
and is implicitly assumed in most constructions (other choices leading to the same wavelet function anyway,
since it safisfies (3.16)).
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Proposition 14. For a filter h ∈ `2(Z) satisfying (C1), defining g ∈ `2(Z) as

∀n ∈ Z, gn = (−1)1−nh1−n (3.18)

satisfies conditions (C3) and (C4).

Proof. One indeed has that

ĝ(ω) = e−iωĥ(ω + π)∗, (3.19)

so that

|ĝ(ω)|2 + |ĝ(ω + π)|2 = |e−iωĥ(ω + π)∗|2 + |e−i(ω+π)ĥ(ω + 2π)∗|2 = |ĥ(ω + π)|2 + |ĥ(ω + 2π)|2 = 2.

where we used the fact that ĥ is 2π-periodic, and also

ĝ(ω)ĥ(ω)∗ + ĝ(ω + π)ĥ(ω + π)∗ = e−iωĥ(ω + π)∗ĥ(ω)∗ + e−i(ω+π)ĥ(ω + 2π)∗ĥ(ω + π)∗

= (e−iω + e−i(ω+π))ĥ(ω + π)∗ĥ(ω)∗ = 0.

3.6.3 Wavelet Design Constraints

According to the previous sections, the construction of a multi-resolution analysis (i.e. of functions (ϕ,ψ)
is obtained by designing a filter h satisfying conditions (C1) and (C2). The function ϕ is obtained by an
infinite cascade of filtering, or equivalently in the Fourier domain by (3.15), there is in general (put aside
special case such as the Haar multiresolution) no closed form expression for ϕ. Once ϕ is defined, ψ is
automatically defined by the relation (3.16) (and g can be defined as (3.19)).

There exists only one Fourier transform, but there is a large choice of different mother wavelet functions
ψ. They are characterized by

Size of the support.

Number of oscillations (the so called number p of vanishing moments).

Symmetry (only possible for non-orthogonal bases).

Smoothness (number of derivatives).

We now detail how these constraints are integrated together with conditions (C1)- (C4).

Vanishing moments. A wavelet ψ has p vanishing moments if

∀ k 6 p− 1,

∫
R
ψ(x)xkdx = 0. (3.20)

This ensures that 〈f, ψj,n〉 is small if f is Cα, α < p on Supp(ψj,n), which can be seen by doing a Taylor
expansion of f around the point 2jn on the support of the wavelet. This condition is equivalently expressed
over Fourier as followed (see Fig. 3.26).

Proposition 15. Assuming enough regularity of ψ, and using the QMF construction (3.19), it has p van-
ishing moments if and only if

∀ k 6 p− 1,
dkĥ

dωk
(π) =

dkĝ

dωk
(0) = 0. (3.21)

Proof. Since ψ is regular, one has that ψ̂(k) = F((−i·)kψ(·)), so that

(−i)k
∫

R
xkψ(x)dx = ψ̂(k)(0).
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Figure 3.26: Wanishing moment condition as zero derivative conditions.

Relation (3.16) and (3.19) implies

ψ̂(2ω) = ĥ(ω + π)∗ρ(ω) where ρ(ω)
def.
=

1√
2
e−iωϕ̂(ω).

and differentiating this relation shows

2ψ̂(1)(2ω) = ĥ(ω + π)∗ρ(1)(ω) + ĥ(1)(ω + π)∗ρ(ω)

which shows that, since ρ(0) = ϕ̂(0) 6= 0, ψ(1)(0) = 0 ⇔ ĥ(1)(π)∗ = 0. Recursing this argument and

iterating the derrivative, one obtains that ψ(k)(0) = 0 ⇔ ĥ(k)(π)∗ = 0 (assuming this hold for previous
derivatives).

Note that conditions (C1) and (C1) implies that ĥ(π) = 0, so that an admissible wavelet necessarily has
1 vanishing moment, i.e.

∫
ψ = 0. Condition (3.21) shows that having more vanishing moment is equivalent

to having a Fourier transform ĥ which is “flatter” arround ω = π.

Support. Figure 3.27 shows the wavelet coefficients of a piecewise smooth signal. Coefficients of large
magnitude are clustered near the singularities, because the wavelet ψ has enough vanishing moments.

To avoid that many wavelets create large coefficients near singularities, one should choose ψ with a small
support. One can show that the size of the support of ψ is proportional to the size of the support of h. This
requirement is however contradictory with the vanishing moment property (3.20). Indeed, one can prove
that for an orthogonal wavelet basis with p vanishing moments

|Supp(ψ)| > 2p− 1,

where sup(a) is the largest closed interval outside of which the function f is zero.

Chapter ?? studies in details the tradeoff of support size and vanishing moment to perform non-linear
approximation of piecewise smooth signals.

Smoothness. In compression or denoising applications, an approximate signals is recovered from a partial
set IM of coefficients,

fM =
∑

(j,n)∈IM

〈f, ψj,n〉ψj,n.

This approximation fM has the same smoothness as ψ.

To avoid visually unpleasant artifacts, one should thus choose a smooth wavelet function ψ. This is
only for cosmetic reasons, since increasing smoothness does not leads to a better approximation. However,
for most wavelet family, increasing the number of vanishing moments also increases the smoothness of the
wavelets. This is for instance the case of the Daubechies family exposed in the next section.
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Figure 3.27: Location of large wavelet coefficients.

3.6.4 Daubechies Wavelets

To build a wavelet ψ with a fixed number p of vanishing moments, one designs the filter h, and use the
quadrature mirror filter relation (3.19) to compute g. One thus look for h such that

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, ĥ(0) =
√

2, and ∀ k < p,
dkĥ

dωk
(π) = 0.

This corresponds to algebraic relationships between the coefficients of h, and it turns out that they can be
solved explicitly using the Euclidean division algorithm for polynomials.

This leads to Daubechies wavelets with p vanishing moments, which are orthogonal wavelets with a
minimum support length of 2p− 1.

For p = 1, it leads to the Haar wavelet, with

h = [h0 = 0.7071; 0.7071].

For p = 2, one obtains the celebrated Daubechies 4 filter

h = [0.4830;h0 = 0.8365; 0.2241;−0.1294],
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and for p = 3,
h = [0; 0.3327; 0.8069;h0 = 0.4599;−0.1350;−0.0854; 0.0352].

Wavelet display. Figure 3.28 shows examples of Daubechies mother wavelet functions with an increasing
number of vanishing moments. These displays are obtained by computing in fact a discrete wavelet ψ̄j,n
defined in (??) for a very large number of samples N . This discrete wavelet is computed by applying the
inverse wavelet transform to the coefficients dj′,n′ = δj−j′δn−n′ .

Figure 3.28: Examples of Daubechies mother wavelets ψ with an increasing number p of vanishing moments.
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