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Chapter 7

Variational Priors and Regularization

7.1 Sobolev and Total Variation Priors

The simplest prior are obtained by integrating local differential quantity over the image. They corresponds
to norms in functional spaces that imposes some smoothness on the signal of the image. We detail here the
Sobolev and the total variation priors, that are the most popular in image processing.

7.1.1 Continuous Priors

In the following, we consider either continuous functions f ∈ L2([0, 1]2) or discrete vectors f ∈ RN , and
consider continuous priors and there discrete counterparts in Section 7.1.2.

Sobolev prior. The prior energy J(f) ∈ R is intended to be low for images in a class f ∈ Θ. The class of
uniformly smooth functions detailed in Section 4.2.1 corresponds to functions in Sobolev spaces. A simple
prior derived from this Sobolev class is thus

JSob(f) =
1

2
||f ||2Sob =

1

2

∫
||∇f(x)||2dx, (7.1)

where ∇f is the gradient in the sense of distributions.

Total variation prior. To take into account discontinuities in images, one considers a total variation
energy, introduced in Section 4.2.3. It was introduced for image denoising by Rudin, Osher and Fatemi [8]

The total variation of a smooth image f is defined as

JTV(f) = ||f ||TV =

∫
||∇xf ||dx. (7.2)

This energy extends to non-smooth functions of bounded variations f ∈ BV([0, 1]2). This class contains
indicators functions f = 1Ω of sets Ω with a bounded perimeter |∂Ω|.

The total variation norm can be computed alternatively using the co-area formula (4.12), which shows
in particular that ||1Ω||TV = |∂Ω|.

7.1.2 Discrete Priors

An analog image f ∈ L2([0, 1]2) is discretized through an acquisition device to obtain a discrete image
f ∈ RN . Image processing algorithms work on these discrete data, and we thus need to define discrete priors
for finite dimensional images.
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Discrete gradient. Discrete Sobolev and total variation priors are obtained by computing finite differences
approximations of derivatives, using for instance forward differences

δ1fn1,n2 = fn1+1,n2 − fn1,n2

δ2fn1,n2 = fn1,n2+1 − fn1,n2 ,

and one can use higher order schemes to process more precisely smooth functions. One should be careful with
boundary conditions, and we consider here for simplicity periodic boundary conditions, which correspond
to computing the indexes ni + 1 modulo N . More advanced symmetric boundary conditions can be used as
well to avoid boundary artifacts.

A discrete gradient is defined as
∇fn = (δ1fn, δ2fn) ∈ R2

which corresponds to a mapping from images to vector fields

∇ : RN −→ RN×2.

Figure 7.1 shows examples of gradient vectors. They point in the direction of the largest slope of the function
discretized by f . Figure 7.2 shows gradients and their norms displayed as an image. Regions of high gradients
correspond to large intensity variations, and thus typically to edges or textures.

Figure 7.1: Discrete gradient vectors.

Discrete divergence. One can also use backward differences,

δ̃1fn1,n2 = fn1,n2 − fn1−1,n2

δ̃2fn1,n2
= fn1,n2

− fn1,n2−1.

They are dual to the forward differences, so that

δ∗i = −δ̃i,

which means that
∀ f, g ∈ RN , 〈δif, g〉 = −〈f, δ̃ig〉,

which is a discrete version of the integration by part formula∫ 1

0

f ′g = −
∫ 1

0

fg′
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for smooth periodic functions on [0, 1].
A divergence operator is defined using backward differences,

div(v)n = δ̃1v1,n + δ̃2v2,n,

and corresponds to a mapping from vector fields to images

div : RN×2 −→ RN .

It is related to the dual of the gradient
div = −∇∗

which means that
∀ f ∈ RN , ∀ v ∈ RN ×2, 〈∇f, v〉RN×2 = −〈f, div(v)〉RN

which corresponds to a discrete version of the divergence theorem.

Image f ∇f ||∇f ||

Figure 7.2: Discrete operators.

Discrete laplacian. A general definition of a Laplacian is

∆f = div(∇f),

which corresponds to a semi-definite negative operator.
For discrete images, and using the previously defined gradient and divergence, it is a local high pass filter

∆fn =
∑

p∈V4(n)

fp − 4fn, (7.3)

that approximates the continuous second order derivative

∂2f

∂x2
1

(x) +
∂2f

∂x2
2

≈ N2∆fn for x = n/N.

Lapalacian operators thus correspond to filterings. A continuous Laplacian is equivalently defined over
the Fourier domain in diagonal form as

g = ∆f =⇒ ĝ(ω) = ||ω||2f̂(ω)

and the discrete Laplacian (7.3) as

g = ∆f =⇒ ĝω = ρ2
ω f̂(ω) where ρ2

ω = sin
( π
N
ω1

)2

+ sin
( π
N
ω2

)2

. (7.4)
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Discrete energies. A discrete Sobolev energy is obtained by using the `2 norm of the discrete gradient
vector field

JSob(f) =
1

2

∑
n

(δ1fn)2 + (δ2fn)2 =
1

2
||∇f ||2. (7.5)

Similarly, a discrete TV energy is defined as the `1 norm of the gradient field

JTV(f) =
∑
n

√
(δ1fn)2 + (δ2fn)2 = ||∇f ||1 (7.6)

where the `1 norm of a vector field v ∈ RN×2 is

||v||1 =
∑
n

||vn|| (7.7)

where vn ∈ R2.

7.2 PDE and Energy Minimization

Image smoothing is obtained by minimizing the prior using a gradient descent.

7.2.1 General Flows

The gradient of the prior J : RN → R is a vector grad J(f). It describes locally up to the first order the
variation of the prior

J(f + ε) = J(f) + 〈ε, grad J(f)〉+ o(||ε||).
If J is a smooth function of the image f , a discrete energy minimization is obtained through a gradient

descent
f (k+1) = f (k) − τ grad J(f (k)), (7.8)

where the step size τ must be small enough to guarantee convergence.
For infinitesimal step size τ , one replaces the discrete parameter k by a continuous time, and the flow

t > 0 7−→ ft ∈ RN

solves the following partial differential equation

∂ft
∂t

= − grad J(ft) and f0 = f. (7.9)

The gradient descent can be seen as an explicit discretization in time of this PDE at times tk = kτ .

7.2.2 Heat Flow

The heat flow corresponds to the instantiation of the generic PDE (7.9) to the case of the Sobolev energies
JSob(f) defined for continuous function in (7.1) and for discrete images in (7.5).

Since it is a quadratic energy, its gradient is easily computed

J(f + ε) =
1

2
||∇f +∇ε||2 = J(f)− 〈∆f, ε〉+ o(||ε||2),

so that
grad JSob(f) = −∆f.

Figure 7.4, left, shows an example of Laplacian. It is typically large (positive or negative) near edges.
The heat flow is thus

∂ft
∂t

(x) = −(grad J(ft))(x) = ∆ft(x) and f0 = f. (7.10)
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Figure 7.3: Display of ft for increasing time t for heat flow (top row) and TV flow (bottom row).

Continuous in space. For continuous images and an unbounded domain R2, the PDE (7.10) has an
explicit solution as a convolution with a Gaussian kernel of increasing variance as time increases

ft = f ? ht where ht(x) =
1

4πt
e−
−||x||2

4t . (7.11)

This shows the regularizing property of the heat flow, that operates a blurring to make the image more
regular as time evolves.

Discrete in space. The discrete Sobolev energy (7.5) minimization defined a PDE flow that is discrete
in space

∂fn,t
∂t

= −(grad J(ft))n = (∆ft)n.

It can be further discretized in time as done in (7.8) and leads to a fully discrete flow

f (k+1)
n = f (k)

n + τ
( ∑
p∈V4(n)

fp − 4fn

)
= (f ? h)n

where V4(n) are the four neighbor to a pixel n. The flow thus corresponds to iterative convolutions

f (k) = f ? h ? . . . ? h = f ?k h.

where h is a discrete filter.
It can be shown to be stable and convergent if τ < 1/4.

7.2.3 Total Variation Flows

Total variation gradient. The total variation energy JTV, both continuous (7.2) and discrete (7.6) is
not a smooth function of the image. For instance, the discrete JTV is non-differentiable at an image f such
that there exists a pixel n where ∇fn = 0.
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div(∇f) div(∇f/||∇f ||)

Figure 7.4: Discrete Laplacian and discrete TV gradient.

If ∇fn 6= 0, one can compute the gradient of the TV energy specialized at pixel n as

(grad J(f))n = −div

(
∇f
||∇f ||

)
n

which exhibits a division by zero singularity for a point with vanishing gradient. Figure 7.4 shows an example
of TV gradient, which appears noisy in smooth areas, because ||∇fn|| is small in such regions.

This non-differentiabilty makes impossible the definition of a gradient descent and a TV flow.

Regularized total variation. To avoid this issue, one can modify the TV energy, and define a smoothed
TV prior

JεTV(f) =
∑
n

√
ε2 + ||∇fn||2 (7.12)

where ε > 0 is a small regularization parameter. Figure 7.5 shows this effect of this regularization on the
absolute value function.

ε = 0.1 ε = 0.01

Figure 7.5: Regularized absolute value x 7→
√
x2 + ε2.

This smoothed TV energy is a differentiable function of the image, and its gradient is

grad JεTV(f) = −div

(
∇f√

ε2 + ||∇f ||2

)
. (7.13)

116



One can see that this smoothing interpolate between TV and Sobolev, as

gradεf ∼ −∆/ε when ε→ +∞.

Figure 7.6 shows the evolution of this gradient for several value of the smoothing parameter.

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.5

Figure 7.6: Regularized gradient norm
√
||∇f(x)||2 + ε2.

Regularized total variation flow. The smoothed total variation flow is then defined as

∂ft
∂t

= div

(
∇ft√

ε2 + ||∇ft||2

)
. (7.14)

Choosing a small ε makes the flow closer to a minimization of the total variation, but makes the computation
unstable.

In practice, the flow is computed with a discrete gradient descent (7.8). For the smoothed total variation
flow to converge, one needs to impose that τ < ε/4, which shows that being more faithful to the TV energy
requires smaller time steps and thus slower algorithms.

Figure 7.3 shows a comparison between the heat flow and the total variation flow for a small value of ε.
This shows that the TV flow smooth less the edges than heat diffusion, which is consistent with the ability
of the TV energy to better characterize sharp edges.

7.2.4 PDE Flows for Denoising

PDE flows can be used to remove noise from an observation f = f0 + w. As detailed in Section 6.1.2 a
simple noise model assumes that each pixel is corrupted with a Gaussian noise wn ∼ N (0, σ), and that these
perturbations are independent (white noise).

The denoising is obtained using the PDE flow within initial image f at time t = 0

∂ft
∂t

= − gradft J and ft=0 = f.

An estimator f̃ = ft0 is obtained for a well chose t = t0. Figure 7.7 shows examples of Sobolev and TV flows
for denoising.

Since ft converges to a constant image when t→ +∞, the choice of t0 corresponds to a tradeoff between
removing enough noise and not smoothing too much the edges in the image. This is usually a difficult task.
During simulation, if one has access to the clean image f0, one can monitor the denoising error ||f0− ft|| and
choose the t = t0 that minimizes this error. Figure 7.8, top row, shows an example of this oracle estimation
of the best stopping time.
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Figure 7.7: Denoising using ft displayed for various time t for Sobolev (top) and TV (bottom) flows.

7.3 Regularization for Denoising

Instead of performing a gradient descent flow for denoising as detailed in Section 7.2.4 and select a
stopping time, one can formulate an optimization problem. The estimator is then defined as a solution of
this optimization. This setup has the advantage as being well defined mathematically even for non-smooth
priors such as the TV prior JTV or the sparsity prior J1. Furthermore, this regularization framework is also
useful to solve general inverse problems as detailed in Chapter ??.

7.3.1 Regularization

Given some noisy image f = f0 + w of N pixels and a prior J , we consider the convex optimization
problem

f?λ ∈ argmin
g∈RN

1

2
||f − g||2 + λJ(g), (7.15)

where λ > 0 is a Lagrange multiplier parameter that weights the influence of the data fitting term ||f − g||2
and the regularization term J(g).

If one has at his disposal a clean original image f0, one can minimize the denoising error ||f?λ − f0||, but
it is rarely the case. In practice, this parameter should be adapted to the noise level and to the regularity of
the unknown image f0, which might be a non trivial task.

We note that since we did not impose J to be convex, the problem (7.15) might have several optimal
solutions.

An estimator is thus defined as
f̃ = f?λ

for a well chosen λ.
If J is differentiable and convex, one can compute the solution of (7.15) through a gradient descent

f (k+1) = f (k) − τ
(
f (k) − λ grad J(f (k)

)
(7.16)
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Noisy f Sobolev flow TV flow

Sobolev reg TV reg TI wavelets

Figure 7.8: Denoising using PDE flows and regularization.

where the descent step size τ > 0 should be small enough. This gradient descent is similar to the time-
discretized minimization flow (7.8), excepted that the data fitting term prevent the flow to converge to a
constant image.

Unfortunately, priors such as the total variation JTV or the sparsity J1 are non-differentiable. Some
priors such as the ideal sparsity J0 might even be non-convex. This makes the simple gradient descent not
usable to solve for (7.15). In the following Section we show how to compute f?λ for several priors.

7.3.2 Sobolev Regularization

The discrete Sobolev prior defined in (7.5) is differentiable, and the gradient descent (7.16) reads

f (k+1) = (1− τ)f (k) + τf − τλ∆J(f (k).

Since J(f) = ||∇f ||2 is quadratic, one can use a conjugate gradient descent, which converges faster.

The solution f?λ can be computed in closed form as the solution of a linear system

f?λ = (IdN − λ∆)−1f,

which shows that the regularization (7.15) is computing an estimator that depends linearly on the observa-
tions f .
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Sobolev flow TV flow

Sobolev regularization TV regularization

Figure 7.9: SNR as a function of time t for flows (top) and λ for regularization (bottom).

If the differential operators are computed with periodic boundary conditions, this linear system can be
solved exactly over the Fourier domain

(f̂?λ)ω =
1

1 + λρ2
ω

f̂ω (7.17)

where ρω depends on the discretization of the Laplacian, see for instance (7.4).

Equation (7.17) shows that denoising using Sobolev regularization corresponds to a low pass filtering,
whose strength is controlled by λ. This should be related to the solution (7.11) of the heat equation, which
also corresponds to a filtering, but using a Gaussian low pass kernel parameterized by its variance t2.

This Sobolev regularization denoising is a particular case of the linear estimator considered in Section
6.2. The selection of the parameter λ is related to the selection of an optimal filter as considered in Section
6.2.2, but with the restriction that the filter is computed in a parametric family.

7.3.3 TV Regularization

The total variation prior JTV defined in (7.6) is non-differentiable. One can either use a smoothed
approximation of the prior, or use an optimization algorithm not based on a gradient descent.

The TV prior can be approximated to obtain the prior JεTV(g) defined in (7.12), which is differentiable
with respect to g. Using the gradient of this prior defined in (7.13), one obtains the following instantiation
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of the gradient descent (7.16)

f (k+1) = (1− τ)f (k) + τf + λτ div

(
∇ft√

ε2 + ||∇ft||2

)
. (7.18)

which converge to the unique minimizer f?λ of (7.15).
Section ?? details a better alternative which does not require introducing this ε smoothing.
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