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Chapter 10

Theory of Sparse Regularization

We now apply the basics elements of convex analysis from the previous chapter to perform a theoretical
analysis of the properties of the Lasso, in particular its performances to recover sparse vectors.

10.1 Existence and Uniqueness

10.1.1 Existence

We consider problems (9.10) and (9.11), that we rewrite here as

min
x∈RN

fλ(x)
def.
=

1

2λ
||y −Ax||2 + λ||x||1 (Pλ(y))

and its limit as λ→ 0
min
Ax=y

||x||1 = min
x

f0(x)
def.
= ιLy

(x) + ||x||1. (P0(y))

where A ∈ RP×N , and Ly def.
=
{
x ∈ RN ; Ax = y

}
.

We recall that the setup is that one observe noise measures

y = Ax0 + w

and we would like conditions to ensure for x0 to solution to (P0(Ax0)) (i.e. when w = 0) and to be close (in
some sense to be defined, and in some proportion to the noise level ||w||) to the solutions of (P0(y = Ax0+w))
when λ is wisely chosen as a function of ||w||.

First let us note that since (Pλ(y)) is unconstrained and coercive (because || · ||1 is), this problem always
has solutions. Since A might have a kernel and || · ||1 is not strongly convex, it might have non-unique
solutions. If y ∈ Im(A), the constraint set of (P0(y)) is non-empty, and it also has solutions, which might
fail to be unique.

Figure 10.1 gives the intuition of the theory that will be developed in this chapter, regarding the exact
or approximated recovery of sparse vectors x0, and the need for a careful selection of the λ parameter.

10.1.2 Polytope Projection for the Constraint Problem

The following proposition gives a geometric description of those vectors which are recovered by `1 mini-
mization when there is no noise.

Proposition 28. We denote B
def.
=
{
x ∈ RN ; ||x||1 6 1

}
. Then, assuming Im(A) = RP ,

x0 is a solution to P0(Ax0) ⇐⇒ A
x0
||x0||1

∈ ∂(AB) (10.1)

where “∂” denoted the boundary and AB = {Ax ; x ∈ B}.
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Figure 10.1: Display of the evolution λ 7→ xλ of the solutions of (Pλ(y)).

Proof. We first prove “⇒′′. We suppose that x0 is not a solution, and aim at showing thatA x0

||x0||1 ∈ int(ABρ).

Since it is not a solution, there exists z such that Ax0 = Az and ||z||1 = (1−δ)||x0||1 with δ > 0. Then for any
displacement h = Aε ∈ Im(A), where one can impose ε ∈ ker(A)⊥, i.e. ε = A+h, one has Ax0 +h = A(z+ε)
and

||z + ε||1 6 ||z||1 + ||Φ+h|| 6 (1− δ)||x0||1 + ||Φ+||1,1||h||1 <
δ

||A+||1,1
||x0||.

This means that choosing ||h||1 < δ
||A+||1,1 ||x0||1 implies that A x0

||x0||1 ∈ int(AB).

We now prove “⇐”. We suppose that A x0

||x0||1 ∈ int(AB). Then there exists z such that Ax0 = (1− δ)Az
and ||z||1 < ||x0||1. This implies ||(1 − δ)z||1 < ||x0||1 so that (1 − δ)z is better than x0 which is thus not a
solution.

Figure 10.2: Graphical display of the proof for the polytope analysis of `1 exact recovery.
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Figure 10.3: Display of the action of the linear map A on the `1 ball B, and of the inverse non-linear map
A defined by the solution of (P0(y)).

This results state that “friendly” identifiable vectors (those recovered by `1) are those who gets projected
by A on the boundary of the polytope ||x0||1AB. Intuitively, if P is small in comparison to N , then this
projected polytope is small, and most vector will failed to be reconstructed by solving `1 minimization.
This also suggests why using random projections as in Chapter ??, because somehow they results in a low
distortion embedding of the `1 ball from RN to RP .

Note that if x0 is identifiable, so is λx0 for ρx0 for ρ > 0, and in fact, since the recovery condition only
depends on the geometry of the faces of B, the obtained condition (10.1) only depends on sign(x0). We denote
A : y 7→ x? the map from y to a solution of (P0(y)), which we assume is unique for simplicity of exposition.
Condition (10.1) thus shows that A and A are inverse bijection on a family of cones Cs = {x ; sign(x) = s}
and ACs for certain “friendly” sign patterns s. These cones ACs form a partition of the image space RP .
Assuming for simplicity that the columns (aj)j of A have unit norm, for P = 3, the interaction of these ACs
with the unit sphere of R3 for a so-called Delaunay triangulation of the sphere (this construction extends
to higher dimension by replacing triangle by simplexes), see also Figure 10.7. Such Delaunay triangulation
is characterized by the empty spherical cap property (each circumcircle associated to a triangle should not
contains any columns vector aj of the matrix). Figure 10.3 illustrate these conclusions in R2 and R3.

10.1.3 Optimality Conditions

In the following, given an index set I ⊂ {1, . . . , N}, denoting A = (ai)
N
i=1 the columns of A, we denote

AI
def.
= (ai)i∈I ∈ RP×|I| the extracted sub-matrix. Similarly, for x ∈ RN , we denote xI

def.
= (xi)i∈I ∈ R|I|.

The following proposition rephrases the first order optimality conditions in a handy way.

Proposition 29. xλ is a solution to (Pλ(y)) for λ > 0 if and only if

ηλ,I = sign(xλ,I) and ||ηλ,Ic || 6 λ

where we define

I
def.
= supp(xλ)

def.
= {i ; xλ,i 6= 0} , and ηλ

def.
=

1

λ
A∗(y −Axλ). (10.2)

Proof. Since (Pλ(y)) involves a sum of a smooth and a continuous function, its sub-differential reads

∂fλ(x) =
1

λ
A∗(Ax− y) + λ∂|| · ||1(x).

Thus xλ is solution to (Pλ(y)) if and only if 0 ∈ ∂fλ(xλ), which gives the desired result.

Note that one has in particular that supp(xλ) ⊂ sat(ηλ).
The following proposition studies the limit case λ = 0 and introduces the crucial concept of “dual

certificates”, which are the Lagrange multipliers of the constraint Ly.

Proposition 30. x? being a solution to (P0(y)) is equivalent to having Ax? = y and that

∃η ∈ D0(y, x?)
def.
= Im(A∗) ∩ ∂|| · ||1(x?). (10.3)
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Proof. Since (P0(y)) involves a sum with a continuous function, one can also computes it sub-differential as

∂f0(x) = ∂ιLy
(x) + ∂|| · ||1(x).

If x ∈ Ly, then ∂ιLy
(x) is the linear space orthogonal to Ly, i.e. ker(A)⊥ = Im(A∗).

Note that one has in particular that supp(x?) ⊂ sat(η) for any valid vector η ∈ D0(y, x?).
Writing I = supp(x?), one thus has

D0(y, x?) = {η = A∗p ; ηI = sign(x?I), ||η||∞ 6 1} .
Although it looks like the definition of D0(y, x?) depends on the choice of a solution x?, convex duality
(studied in the next chapter) shows that it is not the case (it is the same set for all solutions).

10.1.4 Uniqueness

The following proposition shows that the Lasso selects a set of linearly independent regressors (columns
of A). This is why this method is also often called “basis pursuit”.

Proposition 31. For λ > 0, there is always a solution x? to (Pλ(y)) with I = supp(x?) such that ker(AI) =
{0}
Proof. Let x be a solution and denote I = supp(x). If ker(AI) 6= {0}, one selects hI ∈ ker(AI) and define

for t ∈ R the vector xt
def.
= x + th. We denote t0 the smallest |t| such that sign(xt) 6= sign(x), i.e. supp(xt)

is strictly included in I. For t < t0, since Axt = Ax and sign(xt) = sign(x), xt still satisfies the same first
order condition as x0, and one can apply either Proposition 30 (for λ = 0) or Proposition 29 (for λ > 0), so
that xt is a solution of (Pλ(y)). Since the minimized function are lower semi continuous, xt → xt0 is still a
solution. If ker(AJ) 6= {0} with J = supp(xt0), one is over, otherwise one can iterate this argument on xt0
in place of x and have a sequence of supports which is strictly decaying in size, so it must terminate.

Figure 10.4: Trajectory
(xt)t.

This results in particular that if columns of AI are not independent, then
the solution of (Pλ(y)) is necessarily non-unique.

Assuming that xλ is a solution such that ker(AI) = {0}, then from (Pλ(y)),
one obtains the following implicit expression for the solution

xλ,I = A+
I y − λ(A∗IAI)

−1 sign(xλ,I). (10.4)

This expression can be understood as a form of generalized soft thresholding
(one retrieve the soft thresholding when A = IdN ).

The following useful lemma shows that while solutions xλ to (Pλ(y)) are
not necessarily unique, the associated “predictor” (i.e. denoised version of y)
Axλ is however always uniquely defined. Note that according to (10.5), one has

Φxλ = ProjIm(AI) y − λAI(A∗IAI)−1 sign(xλ,I). (10.5)

so up to a O(λ) bias, this predictor is an orthogonal projection on a low dimensional subspace indexed by I.

Lemma 3. For λ > 0, if (x1, x2) are solution to (Pλ(y)), then Ax1 = Ax2.

Proof. For λ = 0, this is trivial because Ax1 = Ax2 = y. Otherwise, let us assume Ax1 6= Ax2. Then for
x = (x1 + x2)/2, one has

||x||1 6
||x1||1 + ||x2||2

2
and ||Ax− y||2 < ||Ax1 − y||

2 + ||Ax2 − y||2
2

where the second inequality follows from the strict convexity of the square. This shows that

1

2λ
||Ax− y||2 + ||x||1 <

1

2λ
||Ax1 − y||2 + ||x1||1,

which is a contradiction to the optimality of x1.
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Proposition 32. For λ > 0, let xλ be a solution to (Pλ(y)) and denote ηλ
def.
= 1

λA
∗(y − Axλ). We define

the “extended support” as

J
def.
= sat(ηλ)

def.
= {i ; |ηλ,i| = 1} .

If ker(AJ) = {0} then xλ is the unique solution of (Pλ(y)).

Proof. If x̃λ is also a minimizer, then by Lemma 3, Axλ = Ax̃λ, so that in particular they share the same
dual certificate

ηλ =
1

λ
A∗(y −Axλ) =

1

λ
A∗(y −Ax̃λ).

The first order condition, Proposition 29, shows that necessarily supp(xλ) ⊂ J and supp(x̃λ) ⊂ J . Since
AJxλ,J = AJ x̃λ,J , and since ker(AJ) = {0}, one has xλ,J = x̃λ,J , and thus xλ = x̃λ because of their supports
are included in J .

Proposition 33. Let x? be a solution to (P0(y)). If there exists η ∈ D0(y, x?) such that ker(AJ) = {0}
where J

def.
= sat(η) then x? is the unique solution of (P0(y)).

Proof. The proof is the same as for Proposition 32, replacing ηλ by η.

These propositions can be used to show that if A is drawn according to a distribution having a density
over Rp×n, then with probability 1 on the matrix A, the solution to (Pλ(y)) is unique. Note that this results
is not true if A is non random but y is.

10.1.5 Duality

We now related the first order conditions and “dual certificate” introduced above to the duality theory
detailed in Section ??. This is not strictly needed to derive the theory of sparse regularization, but this
offers an alternative point of view and allows to better grasp the role played by the certificates.

Theorem 11. For any λ > 0 (i.e. including λ = 0), one has strong duality between (Pλ(y)) and

sup
p∈RP

{
〈y, p〉 − λ

2
||p||2 ; ||A∗p||∞ 6 1

}
. (10.6)

One has for any λ > 0 that (x?, p?) are primal and dual solutions if and only if

A∗p? ∈ ∂|| · ||1(x?) ⇔ (I ⊂ sat(A∗p) and sign(x?I) = A∗Ip) , (10.7)

where we denoted I = supp(x?), and furthermore, for λ > 0,

p? =
y −Ax?

λ
.

while for λ = 0, Ax? = y.

Proof. There are several ways to derive the same dual. One can for instance directly use the Fenchel-
Rockafeller formula (??). But it is instructive to do the computations using Lagrange duality. One can first
consider the following re-writing of the primal problem

min
x∈RN

{f(z) + ||x||1 ; Ax = z} = min
x∈RN

sup
p∈Rp

L(x, z, p)
def.
= fλ(z) + ||x||1 + 〈z −Ax, p〉

where fλ(z)
def.
= 1

2λ ||z − y||2 if λ > 0 and f(z) = ι{y}(z) if λ = 0. For λ > 0 since fλ and || · ||1 are continuous,
strong duality holds. For λ = 0, since the constraint appearing in f0 is linear (actually a singleton), strong
duality holds also. Thus using Theorem ??, one can exchange the min and the max and obtains

max
p∈RP

( min z 〈z, p〉+ fλ(z)) + (minx ||x||1 − 〈x, A∗p〉) = max
p∈RP

− f∗λ(−p)− (|| · ||1)∗(A∗p).
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Figure 10.5: Visualization of Bregman divergences.

Using (??), one has that (|| · ||∗1 = ι||·||∞61. For λ > 0, one has using Proposition ?? that

f∗λ = (
1

2λ
|| · −y||2)∗ =

1

λ
(
1

2
|| · −y||2)∗(λ·) =

1

2λ
||λ · ||2 + 〈·, y〉

which gives the desired dual problem. The first order optimality conditions read Ax? = z? and

0 ∈ ∂|| · ||1(x?)−A∗p? and 0 ∈ ∂fλ(z?) + p?.

The first condition is equivalent to (10.7). For λ > 0, fλ is smooth, and the second condition is equivalent
to

p? =
y −A∗x?

λ
and A∗p? ∈ ∂|| · ||1(x?)

which are the desired formula. For λ = 0, the second condition holds as soon as z? = Ax? = y.

Note that in the case λ > 0, (10.6) is strongly convex, and in fact the optimal solution pλ is computed
as an orthogonal projection

pλ ∈ argmin
p∈RP

{||p− y/λ|| ; ||A∗p||∞ 6 1} .

The sup in (10.6) is thus actually a max if λ > 0. If λ > 0, in case ker(A∗) = Im(A)⊥ = {0}, the constraint
set of the dual is bounded, so that the sup is also a max.

10.2 Consistency and Sparsitency

10.2.1 Bregman Divergence Rates for General Regularizations

Here we consider the case of a general regularization of the form

min
x∈RN

1

2λ
||Ax− y||2 + J(x) (10.8)

for a convex regularizer J .
For any η ∈ ∂J(x0), we define the associated Bregman divergence as

Dη(x|x0)
def.
= J(x)− J(x0)− 〈η, x− x0〉.

One has Dη(x0|x0), and since J is convex, one has Dη(x|x0) > 0 [ToDo: put here drawings].
In the case where J is differentiable, since ∂J(x0) = {∇J(x0)}, this divergence simply reads

D(x|x0)
def.
= J(x)− J(x0)− 〈∇J(x0), x− x0〉.

If furthermore J is strictly convex, then D(x|x0) = 0 if and only if x = x0, so that D(·|·) is similar to a
distance function (but it does not necessarily satisfies the triangular inequality.
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If J = || · ||2, then D(x|x0) = ||x− x0||2 is the Euclidean norm. If J(x) =
∑
i xi(log(xi)− 1) + ιR+(xi) is

the entropy, then

D(x|x0) =
∑
i

xi log

(
xi
x0,i

)
+ x0,i − xi

is the so-called Kulback-Leibler divergence on RN+ .
The following theorem, which is due to Burger-Osher, state a linear rate in term of this Bregman diver-

gence.

Theorem 12. If there exists
η = A∗p ∈ Im(A∗) ∩ ∂J(x0), (10.9)

then one has for any xλ solution of (10.8)

Dη(xλ|x0) 6
1

2

( ||w||√
λ

+
√
λ||p||

)2

. (10.10)

Futhermore, one has the useful bound

||Axλ − y|| 6 ||w||+ (
√

2 + 1)||p||λ. (10.11)

Proof. The optimality of xλ for (10.8) implies

1

2λ
||Axλ − y||2 + J(xλ) 6

1

2λ
||Ax0 − y||2 + J(x0) =

1

2λ
||w||2 + J(x0).

Hence, using 〈η, xλ − x0〉 = 〈p, Axλ −Ax0〉 = 〈p, Axλ − y + w〉, one has

Dη(xλ|x0) = J(xλ)− J(x0)− 〈η, xλ − x0〉 6
1

2λ
||w||2 − 1

2λ
||Axλ − y||2 − 〈p, Axλ − y〉 − 〈p, w〉

=
1

2λ
||w||2 − 1

2λ
||Axλ − y + λp||2 + λ||p||2 − 〈p, w〉

6
1

2λ
||w||2 +

λ

2
||p||2 + ||p||||w|| = 1

2

( ||w||√
λ

+
√
λ||p||

)2

.

From the second line above, since Dη(xλ|x0) > 0, one has using Cauchy-Schwartz

||Axλ − y + λp||2 6 ||w||2 + 2λ2||p||2 + 2λ||p||||w|| 6 ||w||2 + 2
√

2||p||||w||λ+ 2λ2||p||2 =
(
||w||+

√
2λ||p||

)2
.

Hence
||Axλ − y|| 6 ||Axλ − y + λp||+ λ||p|| 6 ||w||+

√
2λ||p||+ λ||p||.

Choosing λ = ||w||/||p|| in (10.10), one thus obtain a linear rate in term of Bregman divergence Dη(xλ|x0) 6
2||w||||p||. For the simple case of a quadratic regularized J(x) = ||x||2/2, as used in Section ??, one sees that
the source conditions (10.9) simply reads

x0 ∈ Im(A∗)

which is equivalent to (8.12) with exponent β = 1
2 , and under this condition, (10.10) gives the following

sub-linear rate in term of the `2 norm

||x0 − xλ|| 6 2
√
||w||||p||.

[ToDo: This seems inconsistent, this should corresponds to β = 1 to obtain the same rates in
both theorems!]

Note that the “source condition” (10.9) is equivalent to x0 such that Ax0 = y is a solution to the
constraint problem

min
Ax=y

J(x).

So simply being a solution of the constraint noiseless problem thus implies a linear rate for the resolution of
the noisy problem in term of the Bregman divergence.
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10.2.2 Linear Rates in Norms for `1 Regularization

The issue with the control (10.10) of the error in term of Bregman divergence is that it is not “distance-
like” for regularizers J which are not strictly convex. This is in particular the case for the `1 norm J = || · ||1
which we now study.

Figure 10.6: Controlling
Bregman divergence with
the `1 norm when η is not
saturating.

The following fundamental lemma shows however that this Bregman diver-
gence for `1 behave like a distance (and in fact controls the `1 norm) on the
indexes where η does not saturate.

Lemma 4. For η ∈ ∂|| · ||1(x0), let J
def.
= sat(η). Then

Dη(x|x0) > (1− ||ηJc ||∞)||(x− x0)Jc ||1. (10.12)

Proof. Note that x0,Jc = 0 since supp(x0) ⊂ sat(η) by definition of the sub-
differential of the `1 norm. Since the `1 norm is separable, each term in the
sum defining Dη(x|x0) is positive, hence

Dη(x|x0) =
∑
i

|xi| − |x0,i| − ηi(xi − x0,i) >
∑
i∈Jc

|x| − |x0| − ηi(xi − x0,i)

=
∑
i∈Jc

|xi| − ηixi >
∑
i∈Jc

(1− |ηi|)|xi| > (1− ||ηJc ||∞)
∑
i∈Jc

|xi| = (1− ||ηJc ||∞)
∑
i∈Jc

|xi − x0,i|.

The quantity 1 − ||ηJc ||∞ > 0 controls how much η is “inside” the sub-
differential. The larger this coefficients, the better is the control of the Bregman divergence.

The following theorem uses this lemma to state the convergence rate of the sparse regularized solution,
under the same hypothesis has Proposition 33 (with x? = x0).

Theorem 13. If there exists

η ∈ D0(Ax0, x0) (10.13)

and ker(AJ) = {0} where J
def.
= sat(η) then choosing λ = c||w||, there exists C (depending on c) such that any

solution xλ of P(Ax0 + w) satisfies

||xλ − x0|| 6 C||w||. (10.14)

Proof. We denote y = Ax0 + w. The optimality of xλ in (Pλ(y)) implies

1

2λ
||Axλ − y||2 + ||xλ||1 6

1

2λ
||Ax0 − y||2 + ||x0||1 =

1

2λ
||w||2 + ||x0||1

and hence

||Axλ − y||2 6 ||w||2 + 2λ||x0||1

Using the fact that AJ is injective, one has A+
JAJ = IdJ , so that

||(xλ − x0)J ||1 = ||A+
JAJ(xλ − x0)J ||1 6 ||A+

J ||1,2||AJxλ,J − y + w|| 6 ||A+
J ||1,2 (||AJxλ,J − y||+ ||w||)

6 ||A+
J ||1,2 (||Axλ − y||+ ||AJcxλ,Jc ||+ ||w||)

6 ||A+
J ||1,2 (||Axλ − y||+ ||AJc ||2,1||xλ,Jc − x0,Jc ||1 + ||w||)

6 ||A+
J ||1,2

(
||w||+ (

√
2 + 1)||p||λ+ ||AJc ||2,1||xλ,Jc − x0,Jc ||1 + ||w||

)
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where we used x0,Jc = 0 and (10.11). One plug this bound in the decomposition, and using (10.12) and (10.10)

||xλ − x0||1 = ||(xλ − x0)J ||1 + ||(xλ − x0)Jc ||1
6 ||(xλ − x0)Jc ||1

(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)

6
Dη(x|x0)

1− ||ηJc ||∞
(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)

6

1
2

(
||w||√
λ

+
√
λ||p||

)2
1− ||ηJc ||∞

(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)
.

Thus setting λ = c||w||, one obtains the constant

C
def.
=

1
2

(
1√
c

+
√
c||p||

)2
1− ||ηJc ||∞

(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||c+ 2
)
.

Note that this theorem does not imply that xλ is a unique solution, only x0 is unique in general. The
condition (10.13) is often called a “source condition”, and is strengthen by imposing a non-degeneracy
ker(AJ) = {0}. This non-degeneracy imply some stability in `2 sense (10.14). The result (10.14) shows a
linear rate, i.e. the (possibly multi-valued) inverse map y 7→ xλ is Lipschitz continuous.

It should be compared with Theorem 10 on linear methods for inverse problem regularization, which only
gives sub-linear rate. The sources conditions in the linear (8.12) and non-linear (10.13) cases are however
very different. In the linear case, for β = 1/2, it reads x0 ∈ Im(A∗) = ker(A)⊥, which is mandatory because
linear method cannot recover anything in ker(A). On contrary, the non-linear source condition only requires
that η to be in Im(A∗), and is able (in the favorable cases of course) to recover information in ker(A).

10.2.3 Sparsistency for Low Noise

Theorem 13 is abstract in the sense that it rely on hypotheses which are hard to check. The crux of the
problem, to be able to apply this theorem, is to be able to “construct” a valid certificate (10.13). We now
give a powerful “recipe” which – when it works – not only give a sufficient condition for linear rate, but also
provides “support stability”.

For any solution xλ of (Pλ(y)), as already done in (10.2), we define the (unique, independent of the
chosen solution) dual certificate

ηλ
def.
= A∗pλ where pλ

def.
=

y −Axλ
λ

.

The following proposition shows that pλ converge to a very specific dual certificate of the constrained problem,
which we coined “minimal norm” certificate.

Proposition 34. If y = Ax0 where x0 is a solution to (Pλ(y = Ax0)), one has

pλ → p0
def.
= argmin

p∈RP

{||p|| ; A∗p ∈ D0(y, x0)} . (10.15)

The vector η0
def.
= A∗p0 is called the “minimum norm certificate”.

Proof. This follows from the fact that pλ is the unique solution to (10.6) and then applying the same proof
as the one done in Proposition 25 to study the small λ limit of penalized problems.
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Figure 10.7: Visualization of the condition that ||ηF ||∞ 6 1 as a spherical Delaunay triangulation constraint
that all Delaunay spherical caps indexes by identifiable vector should be empty of (±ai)i.

This proposition shows that, while dual certificate D0(y, x0) for λ = 0 are non-unique, taking the limit
as λ→ 0 singles-out a specific one, which is of paramount importance to study stability of the support when
the noise and λ are small.

A major difficulty in computing (10.24) is that it should satisfy the non-linear constraint ||η0||∞. One
thus can “simplify” this definition by removing this `∞ constraint and define the so-called “minimum norm
certificate”

ηF
def.
= A∗pF where pF

def.
= argmin

p∈RP

{||p|| ; A∗Ip = sign(x0,I)} . (10.16)

The notation “ηF ” refers to the “Fuchs” certificate, which we named in honour of J-J. Fuchs who first used
it to study `1 minimization.

We insists that pF is not necessarily a valid certificate (hence the naming “pre-certificate”) since one
does not have in general ||ηF ||∞ 6 1. The vector pF is a least square solution to the linear system A∗Ip =
sign(x0,I), and it can thus be compute in closed form using the pseudo-inverse pF = A∗,+I sign(x0,I) (see
Proposition (23)). In case ker(AI) = {0}, one has the simple formula

pF = AI(A
∗
IAI)

−1 sign(x0,I).

Denoting C
def.
= A∗A the “correlation” matrix, one has the nice formula

ηF = C·,IC
−1
I,I sign(x0,I). (10.17)

The following proposition relates ηF to η0, and shows that ηF can be used as a “proxy” for η0

Proposition 35. If ||ηF ||∞ 6 1, then pF = p0 and ηF = η0.

The condition ||ηF ||∞ 6 1 implies that x0 is solution to (P0(y)). The following theorem shows that if one
strengthen this condition to impose a non-degeneracy on ηF , then one has linear rate with a stable support
in the small noise regime.

Before proceeding to the proof, let us note that the constraint ||ηF ||∞ 6 1 corresponds to the definition of
the spherical Delaunay triangulation, as highlighted by Figure 10.7. This remark was made to us by Charles
Dossal.

Remark 1 (Operator norm). In the proof, we use the `p − `q matrix operator norm, which is defined as

||B||p,q def.
= max {||Bu||q ; ||u||p 6 1} .

For p = q, we denote ||B||p def.
= ||B||p,p. For p = 2, ||B||2 is the maximum singular value, and one has

||B||1 = max
j

∑
i

|Bi,j | and ||B||∞ = max
i

∑
j

|Bi,j |.
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Theorem 14. If
||ηF ||∞ 6 1 and ||ηF,Ic ||∞ < 1,

and ker(AI) = {0}, then there exists C,C ′ such that if max(||w||, ||w||/λ) 6 C, then the solution xλ of (Pλ(y))
is unique, is supported in I, and in fact

xλ,I = x0,I +A+
I w − λ(A∗IAI)

−1 sign(x?0,I). (10.18)

In particular, ||xλ − x0|| = O(||A∗w||∞) = O(||w||).

Proof. In the following we denote T
def.
= mini∈I |x0,i| the signal level, and δ

def.
= ||A∗w||∞ which is the natural

way to measure the noise amplitude in the sparse setting. We define s
def.
= sign(x0), and consider the

“ansatz” (10.18) and thus define the following candidate solution

x̂I
def.
= x0,I +A+

I w − λ(A∗IAI)
−1sI , (10.19)

and x̂Ic = 0. The goal is to show that x̂ is indeed the unique solution of (Pλ(y)).
Step 1. The first step is to show sign consistency, i.e. that sign(x̂) = s. This is true if ||x0,I − x̂I ||∞ < T , and
is thus implied by

||x0,I − x̂I ||∞ 6 K||A∗Iw||∞ +Kλ < T where K
def.
= ||(A∗IAI)−1||∞, (10.20)

where we used the fact that A+
I = (A∗IAI)

−1A∗I .
Step 2. The second step is to check the first order condition of Proposition 32, i.e. ||η̂Ic ||∞ < 1, where
λη̂ = A∗(y −Ax̂). This implies indeed that x̂ is the unique solution of (Pλ(y)). One has

λη̂ = A∗(AIx0,I + w −AI
(
x0,I +A+

I w − λ(A∗IAI)
−1sI)

)
= A∗(AIA

+
I − Id)w + ληF .

The condition ||η̂Ic ||∞ < 1 is thus implied by

||A∗IcAI(A∗IAI)−1||∞||A∗Iw||∞ + ||A∗Icw||∞ + λ||ηF,Ic ||∞ 6 R||A∗Iw||∞ − Sλ < 0 (10.21)

R
def.
= KL+ 1 and S

def.
= 1− ||ηF,Ic ||∞ > 0

where we denoted L
def.
= ||A∗IcAI ||∞, and also we used the hypothesis ||ηF,Ic ||∞ < 1.

Conclusion. Putting (10.20) and (10.21) together shows that x̂ is the unique solution if (λ,w) are such that
the two linear inequations are satisfies

R =

{
(δ, λ) ; δ + λ <

T

K
and Rδ − Sλ < 0

}
This region R is trianglular-shaped, and includes the following “smaller” simpler triangle

R̃ =

{
(δ, λ) ;

δ

λ
<
S

R
and λ < λmax

}
where λmax

def.
=

T (KL+ 1)

K(R+ S)
. (10.22)

Figure 10.8: Zone in the
(λ, δ) where sign consis-
tency occurs.

It is important to realize that Theorem 14 operates in a “small noise” regime,
i.e. ||w|| (and hence λ) needs to be small enough for the support to be identifiable
(otherwise small amplitude comment of x0 will be killed by the regularization).
In contrast, Theorem 13 is “global” and holds for any noise level ||w||. The
price to pay is that one has no controls about the support (and one does not
even knows whether xλ is unique) and than the constant involved are more
pessimistic.

A nice feature of this proof is that it gives access to explicit constant, in-
volving the three key parameter K,L, S, which controls:
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Figure 10.9: Display of certificate ηF for a A ∈ Rp×n, n = 64, with independent Gaussian entries.

K accounts for the conditionning of the operator on the support I ;

L accounts for the worse correlation between atoms inside and outside the
support ;

S accounts for how much the certificates ηF is non-degenerate.

The constant on ||A∗w||/λ and on λ are given by (10.22). Choosing (which is in
practice impossible, because it requires knowledge about the solution) the smallest possible λ gives λ = δ SR
and in this regime the error is bounded in `∞ (using other error norms would simply leads to using other
matrix norm)

||x0 − xλ||∞ 6

(
1 +

KL+ 1

S

)
Kδ.

The crux of the analysis of the performance (in term of support stability) of `1 regularization is to be
able to say wether, for some class of signal x0 of interest, ηF is a valid certificate, i.e. ||ηF ||∞ 6 1. Figure 10.9
displays numerically what one obtains when A is random. One see that ηF is non-degenerate when P is
large enough. Section ?? performs a mathematical analysis of this phenomena.

10.2.4 Sparsistency for Arbitrary Noise

A flow of the previous approach is that it provides only asymptotic sparsistency when the noise is small
enough with respect to the signal. In particular, it cannot be used to asses the performance of sparse recovery
for approximately sparse (e.g. compressible signal), for which the residual error is of the error of the signal
itself (and thus not small).

This can be aleviated by controlling all possible certificate associated to all the sign pattern of a given
support. This is equivalent to the ERC condition of Tropp. [ToDo: write me]

The proof proceeds by restricting the optimization to the support, which is still a convex program, and
then showing that this candidate solution is indeed the correct one. Since one does not know in advance the
sign of this candidate, this is why one needs to control all possible certificates.

10.3 Sparse Deconvolution Case Study

Chapter ?? studies the particular case where A is random, in which case it is possible to make very
precise statement about wether ηF is a valid certificate.
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Figure 10.10: Convolution operator.

Another interesting case study, which shows the limitation of this approach, is the case of “super-
resolution”. It corresponds to inverse problems where the columns (ai)i of A are highly correlated, since
typically they are obtained by sampling a smooth kernel.

We thus consider the case where ai = ϕ(zi) where the (zi)i ⊂ X is a sampling grid of a domain X and
ϕ : X→ H is a smooth map. One has

Ax =
∑
i

xiϕ(zi).

Since we seek for sparse x, one can view x as representing the weights of a discrete measure mx
def.
=
∑N
i=1 xiδzi

where the dirac masses are constraint to be on the sampling grid.
The matrix A is a discretized version of an infinite dimensional operator mapping Radon measures to

vectors of observations A : m ∈M(X) 7→ y = Am ∈ H

A(m)
def.
=

∫
X
ϕ(x)dm(x).

Indeed, one has for discrete measure A(mx) = Ax.
A typical example is when using H = L2(X) with X = Rd or X = Td and ϕ(z) = ϕ̃(z − ·), which

corresponds to a convolution

(Am)(z) =

∫
ϕ̃(z − x)dm(x) = (ϕ̃ ? m)(z).

Note that here H is infinite dimensional, and to get finite dimensional observations, it suffices to sample the
output and consider ϕ(z) = (ϕ(z − rj))Pj=1 (note that the observation grid r ∈ XP can be different from the

recovery grid z ∈ XN ).

Another example, actually very much related, is when using ϕ(z) = (eikz)fck=−fc on X = T, so that A
corresponds to computing the fc low-frequencies of the Fourier transform of the measure

A(m) =

(∫
T
eikxdm(x)

)fc
k=−fc

.

The operator A∗A is a convolution against an ideal low pass (Dirichlet) kernel. By weighting the Fourier
coefficients, one can this way model any low pass filtering on the torus.

Yet another interesting example on X = R+ is the Laplace transform

A(m) = z 7→
∫

R+

e−xzdm(x).

We denote the “continuous” covariance as

∀ (z, z′) ∈ X2, C(z, z′) def.
= 〈ϕ(z), ϕ(z′)〉H.

Note that this C is the kernel associated to the operator A∗A. The discrete covariance, defined on the
computational grid is C = (C(zi, z′i)))(i,i′) ∈ RN×N , while its restriction to some support set I is CI,I =
(C(zi, z′i)))(i,i′)∈I2 ∈ RI×I .
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Using (10.17), one sees that ηF is obtained as a sampling on the grid of a “continuous’ ’ certificate η̃F

ηF = (η̃F (zi))
N
i=1 ∈ RN ,

where η̃F (x) =
∑
i∈I

biC(x, zi) where bI = C−1I,I sign(x0,I), (10.23)

so that ηF is a linear combination of I basis functions (C(x, zi))i∈I .
The question is wether ||ηF ||`∞ 6 1. If the gris is fine enough, i.e. N large enough, this can only hold

if ||η̃F ||L∞ 6 1. The major issue is that η̃F is only constrained by construction to interpolate sign(x0,i)
are points z0,i for i ∈ I. So nothing prevents η̃F to go outside [−1, 1] around each interpolation point.
Figure 10.11 illustrates this fact.

In order to guarantee this property of “local” non-degeneracy around the support, one has to impose on
the certificate the additional constraint η′(zi) = 0 for i ∈ I. This leads to consider a minimum pre-certificate
with vanishing derivatives

ηV
def.
= A∗pV where pV argmin

p∈L2(R)

{
||p||L2(R) ; η̃(zI) = sign(x0,I), η̃

′(zI) = 0I
}
. (10.24)

where we denoted η̃ = ψ̄ ? p. Similarly to (10.23), this vanishing pre-certificate can be written as a linear
combination, but this time of 2|I| basis functions

η̃V (x) =
∑
i∈I

biC(x, zi) + ci∂2C(x, zi),

where ∂2C is the derivative of C with respect to the second variable, and (b, c) are solution of a 2|I| × 2|I|
linear system (

b
c

)
=

(
(C(xi, xi′))i,i′∈I2 (∂2C(xi, xi′))i,i′∈I2

(∂1C(xi, xi′))i,i′∈I2 (∂1∂2C(xi, xi′))i,i′∈I2

)−1(
sign(x0,I)

0I

)
.

The associated continuous pre-certificate is η̃V = ψ̄ ? pV , and ηV is a sampling on the grid of η̃V . Fig-
ure 10.9 shows that this pre-certificate ηV is much better behaved than ηF . If ||ηV ||∞ 6 1, one can
apply (13) and thus obtain a linear convergence rate with respect to the `2 norm on the grid. But for very
fine grid, since one is interested in sparse solution, the `2 norm becomes meaningless (because the L2 norm is
not defined on measures). Since ηV is different from ηF , one cannot directly applies Theorem 14: the support
is not stable on discrete grids, which is a fundamental property of super-resolution problems (as opposed to
compressed sensing problems). The way to recover interesting results is to use and analyze methods without
grids. Indeed, after removing the grid, one can show that ηV becomes the minimum norm certificate (and is
the limit of ηλ).
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Figure 10.11: Display of “continuous” certificate ηF and ηV for A being a convolution operator.
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