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Chapter 9

Sparse Regularization

Ref [9, 16, 14]

9.1 Sparsity Priors

9.1.1 Ideal sparsity prior.

As detailed in Chapter ??, it is possible to use an orthogonal basis B = {ψm}m to efficiently approximate
an image f in a given class f ∈ Θ with a few atoms from B.

To measure the complexity of an approximation with B, we consider the `0 prior, which counts the
number of non-zero coefficients in B

J0(f)
def.
= # {m ; 〈f, ψm〉 6= 0} where xm = 〈f, ψm〉.

One often also denote it as the `0 “pseudo-norm”

||x||0 def.
= J0(f).

which we treat here as an ideal sparsity measure for the coefficients x of f in B.
Natural images are not exactly composed of a few atoms, but they can be well approximated by a function

fM with a small ideal sparsity M = J0(f). In particular, the best M -term approximation defined in (4.3) is
defined by

fM =
∑

|〈f, ψm〉|>T

〈f, ψm〉ψm where M = # {m ; |〈f, ψm〉| > T} .

As detailed in Section 4.2, discontinuous images with bounded variation have a fast decay of the approxi-
mation error ||f − fM ||. Natural images f are well approximated by images with a small value of the ideal
sparsity prior J0.

Figure 9.1 shows an examples of decomposition of a natural image in a wavelet basis, ψm = ψωj,n m =
(j, n, ω). This shows that most 〈f, ψm〉 are small, and hence the decomposition is quite sparse.

9.1.2 Convex relaxation

Unfortunately, the ideal sparsity prior J0 is difficult to handle numerically because J0(f) is not a convex
function of f . For instance, if f and g have non-intersecting supports of there coefficients in B, then
J0((f + g)/2) = J0(f) + J0(g), which shows the highly non-convex behavior of J0.

This ideal sparsity J0 is thus not amenable to minimization, which is an issue to solve general inverse
problems considered in Section ??.
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Image f Coefficients 〈f, ψm〉

Figure 9.1: Wavelet coefficients of natural images are relatively sparse.

We consider a family of `q priors for q > 0, intended to approximate the ideal prior J0

Jq(f) =
∑
m

|〈f, ψm〉|q.

As shown in Figure 9.2, the unit balls in R2 associated to these priors are shrinking toward the axes, which
corresponds to the unit ball for the `0 pseudo norm. In some sense, the Jq priors are becoming closer to J0

as q tends to zero, and thus Jq favors sparsity for small q.

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 9.2: `q balls {x ; Jq(x) 6 1} for varying q.

The prior Jq is convex if and only if q > 1. To reach the highest degree of sparsity while using a convex
prior, we consider the `1 sparsity prior J1, which is thus defined as

J1(f) = ||(〈f, ψm〉)||1 =
∑
m

|〈f, ψm〉|. (9.1)

In the following, we consider discrete orthogonal bases B = {ψm}N−1
m=0 of RN .

9.1.3 Sparse Regularization and Thresholding

Given some orthogonal basis {ψm}m of RN , the denoising by regularization (7.15) is written using the
sparsity J0 and J1 as

f? = argmin
g∈RN

1

2
||f − g||2 + λJq(f)
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for q = 0 or q = 1. It can be re-written in the orthogonal basis as

f? =
∑
m

x?mψm

where x? = argmin
y∈RN

∑
m

1

2
|xm − ym|2 + λ|ym|q

where xm
def.
= 〈f, ψm〉, ym def.

= 〈g, ψm〉, and where we use the following slight abuse of notation for q = 0

∀u ∈ R, |u|0 =

{
0 if u = 0,
1 otherwise.

Each coefficients of the denoised image is the solution of a 1-D optimization problem

x?m = argmin
u∈R

1

2
|xm − u|2 + λ|u|q (9.2)

and the following proposition this optimization is solved exactly in closed form using thresholding.

Proposition 26. One has

x?m = SqT (xm) where

{
T =

√
2λ for q = 0,

T = λ for q = 1,
(9.3)

where

∀u ∈ R, S0
T (u)

def.
=

{
0 if |u| < T,
u otherwise

(9.4)

is the hard thresholding introduced in (6.6), and

∀u ∈ R, S1
T (u)

def.
= sign(u)(|u| − T )+ (9.5)

is the soft thresholding introduced in (6.7).

Proof. One needs to solve (9.2). Figure 9.3, left shows the function ||x − y||2 + T 2||x||0, and the minimum
is clearly at x = 0 when T > y, and at x = y otherwise. This is thus a hard thresholding with threshold
T 2 = 2λ. Figure (9.3), right, shows the evolution with λ of the function 1

2 ||x − y||2 + λ|x|. For x > 0, one
has F ′(x) = x− y + λ wich is 0 at x = y − λ. The minimum is at x = y − λ for λ 6 y, and stays at 0 for all
λ > y.

Figure 9.3: Leftmost: function || · −y||2 + T 2|| · ||0 . Others: evolution with λ of the function F (x)
def.
=

1
2 || · −y||2 + λ| · |.

One thus has
fλ,q =

∑
m

SqT (〈f, ψm〉)ψm.

As detailed in Section 6.3, these denoising methods has the advantage that the threshold is simple to set for
Gaussian white noise w of variance σ2. Theoretical values indicated that T =

√
2 log(N)σ is asymptotically

optimal, see Section 6.3.3. In practice, one should choose T ≈ 3σ for hard thresholding (`0 regularization),
and T ≈ 3σ/2 for soft thresholding (`1 regularization), see Figure 6.14.
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9.2 Sparse Regularization of Inverse Problems

Sparse `1 regularization in an orthogonal basis {ψm}m of RN makes use of the J1 prior defined in (9.1),
so that the inversion is obtained by solving the following convex program

fλ ∈ argmin
f∈RN

1

2
||y − Φf ||2 + λ

∑
m

|〈f, ψm〉|. (9.6)

This corresponds to the basis pursuit denoising for sparse approximation introduced by Chen, Donoho and
Saunders in [3]. The resolution of (9.6) can be perform using an iterative thresholding algorithm as detailed
in Section 9.3.

Analysis vs. synthesis priors. When the set of atoms Ψ = {ψm}Qm=1 is non-orthognal (and might even
be redundant in the case Q > N), there is two distincts way to generalizes problem (9.6), which we formulate
as in (??), by introducing a generic convex prior J

fλ ∈ argmin
f∈RN

1

2
||y − Φf ||2 + λJ(f). (9.7)

In the following, with a slight abuse of notation, we denote the “analysis” and “synthesis” operator as

Ψ : x ∈ RQ 7→ Ψx =
∑
m

xmψm and Ψ∗ : f ∈ RN 7→ (〈f, ψm〉)Qm=1 ∈ RQ.

The so-called analysis-type prior is simply measuring the sparsity of the correlations with the atoms in
the dictionary

JA
1 (f)

def.
=
∑
m

|〈f, ψm〉| = ||Ψ∗f ||1. (9.8)

The so-called synthesis-type priori in contrast measure the sparsity of the sparsest expansion of f in Ψ, i.e.

JS
1 (f)

def.
= min

x∈Rq,Ψx=f
||x||1. (9.9)

While the analysis regularization (9.8) seems simpler to handle, it is actually the contrary. Solving (9.7) with
J = JA

1 is in fact quite involved, and necessitate typically primal-dual algorithm as detailed in Chapter ??.
Furthermore, the theoretical study of the performance of the resulting regularization method is mostly an
open problem.

We thus now focus on the synthesis regularization problem J = JS
1 , and we re-write (9.7) conveniently

as fλ = Ψxλ where xλ is any solution of the following Basis Pursuit Denoising problem

xλ ∈ argmin
x∈RQ

1

2λ
||y −Ax||2 + ||x||1 (9.10)

where we introduced the following matrix

A
def.
= ΦΨ ∈ RP×Q.

As λ→ 0, we consider the following limit constrained problem

x? = argmin
Ax=y

||x||1 (9.11)

and the signal is recovered as f? = Ψx? ∈ RN .

9.3 Iterative Soft Thresholding Algorithm

This section details an iterative algorithm that compute a solution of (9.10).
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Φf =
y

f!

Φf =
y

f! f!||Φf − y|| !
ε

min
Φf=y

||Ψ∗f ||1 min
Φf=y

||f ||2 min
||Φf=y||6ε

||Ψ∗f ||1

Figure 9.4: Geometry of convex optimizations.

9.3.1 Noiseless Recovery as a Linear Program

Before detailing this methods, which only deal with the case λ > 0, let us note that in the noiseless
settig, λ = 0 and (9.11) is actually equivalent to a linear program. Indeed, decomposing a = x+ − x− with

(x+, x−) ∈ (RQ+)2, one has

x? = argmin
(x+,x−)∈(RQ

+)2
{〈x+, 1Q〉+ 〈x−, 1Q〉 ; y = A(x+ − x−)} . (9.12)

which is a linear program. For small to medium scale problem (Q of the order of a few thousands) it can
be solved using the simplex algorithm or interior point methods. For large scale problems such as those
encountered in imaging or machine learning, this is not possible, and one has to ressort to simpler first order
schemes. A possible option is the Douglas-Rachford splitting scheme, which is detailed in Section ??. Let
us however stress that the constrained problem (9.11), because of its polyhedral (linear) nature, is in fact
harder to solve than the penalized problem (9.10) that we now target.

9.3.2 Projected Gradient Descent for `1.

As a first practical example to solve (9.10), we will show how to use the projected gradient descent
method, which is analyzed in detailed in Section ??. Similarly to (9.12), we remap (9.10) as the resolution
of a constraint minimization problem of the form (??) where here C is a positivity constraint and

u = (u+, u−) ∈ (RQ)2, C = (RQ+)2, and E(u) =
1

2
||Φ(u+ − u−)− y||2 + λ〈u+, 1Q〉+ λ〈u−, 1Q〉.

The projection on C is here simple to compute

Proj(RQ
+)2(u+, u−) = ((u+)⊕, (u−)⊕) where (r)⊕

def.
= max(r, 0),

and the gradient reads

∇E(u+, u−) = (η + λ1Q,−η + λ1Q) where η = Φ∗(Φ(u+ − u−)− y)

Denoting u(`) = (u
(`)
+ , u

(`)
− ) and x(`) def.

= u
(`)
+ − u(`)

− , the iterate of the projected gradient descent algo-
rithm (??) read

u
(`+1)
+

def.
=
(
u

(`)
+ − τ`(η(`) + λ)

)
⊕

and u
(`+1)
−

def.
=
(
u

(`)
− − τ`(−η(`) + λ)

)
⊕
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where η(`) def.
= Φ∗(Φx(`) − y).

Theorem ?? ensures that u(`) → u? a solution to (??) if

∀ `, 0 < τmin < τ` < τmax <
2

||Φ||2 ,

and thus x(`) → x? = u?+ − u?− which is thus a solution to (9.10).

9.3.3 Iterative Soft Thresholding and Forward Backward

A drawback of this projected gradient descent scheme is that it necessitate to store 2Q coefficients. A
closely related method, which comes with exactly the same convergence guarantees and rate, is the so called
“iterative soft thresholding algorithm” (ISTA). This algorithm was derived by several authors, among which
[8, 5], and belongs to the general family of forward-backward splitting in proximal iterations [4], which we
detail in Section ??.

For the sake of simplicity, let us derive this algorithm in the special case of `1 by surrogate function
minimization. We aim at minimizing (9.6)

E(x)
def.
=

1

2
||y −Ax||2 + λ||x||1

and we introduce for any fixed x′ the function

Eτ (x, x′)
def.
= E(x)− 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2.

We notice that E(x, x) = 0 and one has

K(x, x′)
def.
= −1

2
||Ax−Ax′||2 +

1

2τ
||x− x′|| = 1

2
〈
(

1

τ
IdN −A∗A

)
(x− x′), x− x′〉.

This quantity K(x, x′) is positive if λmax(A∗A) 6 1/τ (maximum eigenvalue), i.e. τ 6 1/||A||2op, where we
recall that ||A||op = σmax(A) is the operator (algebra) norm. This shows that Eτ (x, x′) is a valid surrogate
functional, in the sense that

E(x) 6 Eτ (x, x′), Eτ (x, x′) = 0, and E(·)− Eτ (·, x′) is smooth.

This leads to define
x(`+1) def.

= argmin
x

Eτ`(x, x(`)) (9.13)

which by construction satisfies
E(x(`+1)) 6 E(x(`)).

Proposition 27. The iterates x(`) defined by (9.13) satisfy

x(`+1) = S1
λτ`

(
x(`) − τ`A∗(Ax(`) − y)

)
(9.14)

where S1
λ(x) = (S1

λ(xm))m where S1
λ(r) = sign(r)(|r| − λ)⊕ is the soft thresholding operator defined in (9.5).

Proof. One has

Eτ (x, x′) =
1

2
||Ax− y||2 − 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2 + λ||x||1

= C +
1

2
||Ax||2 − 1

2
||Ax||2 +

1

2τ
||x||2 − 〈Ax, y〉+ 〈Ax, Ax′〉 − 1

τ
〈x, x′〉+ λ||x||1

= C +
1

2τ
||x||2 + 〈x, −A∗y +AA∗x′ − 1

τ
x′〉+ λ||x||1

= C ′ +
1

τ

(
||x− (x′ − τA∗(Ax′ − y)) ||2 + τλ||x||1.

)
Proposition (26) shows that the minimizer of Eτ (x, x′) is thus indeed S1

λτ (x′ − τ`A∗(Ax′ − y)).
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Of course, these iterations (9.14) are the same as the FB iterates (??), when, for the special case (9.6),
one can consider a splitting of the form (??) defining

F =
1

2
||A · −y||2 and G = λ|| · ||1. (9.15)

In the case (9.15), Proposition (26) shows that ProxρJ is the soft thresholding.

9.4 Example: Sparse Deconvolution

9.4.1 Sparse Spikes Deconvolution

Sparse spikes deconvolution makes use of sparsity in the spacial domain, which corresponds to the orthog-
onal basis of Diracs ψm[n] = δ[n−m]. This sparsity was first introduced in the seismic imaging community
[], where the signal f0 represent the change of density in the underground and is assumed to be composed
of a few Diracs impulse.

In a simplified linearized 1D set-up, ignoring multiple reflexions, the acquisition of underground data
f0 is modeled as a convolution y = h ? f0 + w, where h is a so-called “wavelet” signal sent in the ground.
This should not be confounded with the construction of orthogonal wavelet bases detailed in Chapter ??,
although the term “wavelet” originally comes from seismic imaging.

The wavelet filter h is typically a band pass signal that perform a tradeoff between space and frequency
concentration especially tailored for seismic exploration. Figure (9.5) shows a typical wavelet that is a second
derivative of a Gaussian, together with its Fourier transform. This shows the large amount of information
removed from f during the imaging process.

The sparse `1 regularization in the Dirac basis reads

f? = argmin
f∈RN

1

2
||f ? h− y||2 + λ

∑
m

|fm|.

Figure 9.5 shows the result of `1 minimization for a well chosen λ parameter, that was optimized in an oracle
manner to minimize the error ||f? − f0||.

The iterative soft thresholding for sparse spikes inversion iterates

f̃ (k) = f (k) − τh ? (h ? f (k) − y)

and
f (k+1)
m = S1

λτ (f̃ (k)
m )

where the step size should obeys
τ < 2/||Φ∗Φ|| = 2/max

ω
|ĥ(ω)|2

to guarantee convergence. Figure 9.6 shows the progressive convergence of the algorithm, both in term of
energy minimization and iterates. Since the energy is not strictly convex, we note that convergence in energy
is not enough to guarantee convergence of the algorithm.

9.4.2 Sparse Wavelets Deconvolution

Signal and image acquired by camera always contain some amount of blur because of objects being out
of focus, movements in the scene during exposure, and diffraction. A simplifying assumption assumes a
spatially invariant blur, so that Φ is a convolution

y = f0 ? h+ w.

In the following, we consider h to be a Gaussian filter of width µ > 0. The number of effective measurements
can thus be considered to be P ∼ 1/µ, since Φ nearly set to 0 large enough Fourier frequencies. Table ??
details the implementation of the sparse deconvolution algorithm.
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h ĥ

f0 y = h ? f + w

f+ f?

Figure 9.5: Pseudo-inverse and `1 sparse spikes deconvolution.

Figures 9.7 and 9.8 shows examples of signal and image acquisition with Gaussian blur.
Sobolev regularization (7.17) improves over `2 regularization (??) because it introduces an uniform

smoothing that reduces noise artifact. It however fail to recover sharp edge and thus does a poor job
in inverting the operator. To recover sharper transition and edges, one can use either a TV regularization
or a sparsity in an orthogonal wavelet basis.

Figure 9.7 shows the improvement obtained in 1D with wavelets with respect to Sobolev. Figure 9.8 shows
that this improvement is also visible for image deblurring. To obtain a better result with fewer artifact, one
can replace the soft thresholding in orthogonal wavelets in during the iteration (??) by a thresholding in a
translation invariant tight frame as defined in (6.10).

Figure 9.9 shows the decay of the SNR as a function of the regularization parameter λ. This SNR is
computed in an oracle manner since it requires the knowledge of f0. The optimal value of λ was used in the
reported experiments.

9.4.3 Sparse Inpainting

This section is a follow-up of Section 8.5.2.
To inpaint using a sparsity prior without noise, we use a small value for λ. The iterative thresholding

algorithm (??) is written as follow for τ = 1,

f (k+1) =
∑
m

S1
λ(〈Py(f (k)), ψm〉)ψm

Figure 9.10 shows the improvevement obtained by the sparse prior over the Sobolev prior if one uses soft
thresholding in a translation invariant wavelet frame.
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log10(E(f (k))/E(f?)− 1) log10(||f (k) − f?||/||f0||)

Figure 9.6: Decay of the energy and convergence through the iterative thresholding iterations.

Signal f0 Filter h

Observation y = h ? f0 + w `1 recovery f?

Figure 9.7: Sparse 1D deconvolution using orthogonal wavelets.
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Image f0 Observations y = h ? f0 + w `2 regularization
SNR=?dB SNR=?dB

Sobolev regularization `1 regularization `1 invariant
SNR=?dB SNR=?dB SNR=?dB

Figure 9.8: Image deconvolution.

S
N

R

λλopt

S
N

R

λλopt

S
N

R

λλopt

`2 regularization Sobolev regularization `1 regularization

Figure 9.9: SNR as a function of λ.
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Image f0 Observation y = Φf0

Sobolev f? Ortho. wav f? TI. wav f?

SNR=?dB SNR=?dB SNR=?dB

Figure 9.10: Inpainting with Sobolev and sparsity.
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