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Chapter 17

Non-smooth Convex Optimization

The main references for this chapter are [7, 8, 3], see also [19, 2, 1].
We consider a general convex optimization problem

min
x∈H

f(x) (17.1)

where H = Rp is a finite dimensional Hilbertian (i.e. Euclidean) space, and try to devise “cheap” algorithms
with a low computational cost per iterations. The class of algorithms considered are first order, i.e. they
make use of gradient information.

17.1 Descent Methods

The gradient descent method is covered in detailed in Section 13.4. We explain here how to extend it to
non-smooth and constrained problems.

17.1.1 Gradient Descent

The optimization program (8.26) is an example of unconstrained convex optimization of the form (17.1)
where f : H → R is a C1 function with Lipschitz gradient (so-called “smooth” function). Recall that the
gradient ∇f : H 7→ H of this functional (not to be confound with the discretized gradient ∇x ∈ H of f) is
defined by the following first order relation

f(x+ r) = f(x) + 〈f, r〉H +O(||r||2H)

where we used O(||r||2H) in place of o(||r||H) (for differentiable function) because we assume here f is of class
C1 (i.e. the gradient is continuous). Section 8.4.3 shows typical examples of gradient computation.

For such a function, the gradient descent algorithm is defined as

x(`+1) def.
= x(`) − τ`∇f(x(`)), (17.2)

where the step size τ` > 0 should be small enough to guarantee convergence, but large enough for this
algorithm to be fast.

17.1.2 Sub-gradient Descent

The gradient descent (17.2) cannot be applied on a non-smooth function f . One can use in place of a
gradient a sub-gradient, which defines the sub-gradient descent

x(`+1) def.
= x(`) − τ`g(`) where g(`) ∈ ∂f(x(`)). (17.3)
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The main issue with this scheme is that to ensure convergence, the iterate should go to zero. One can easily
convince oneself why by looking at the iterates on a function f(x) = |x|. This means that in practice this
method is very slow, and should be avoided if the functions has some structure that can be used (as it will
be explained in the remaining part of the chapter).

Theorem 29. If
∑
` τ` = +∞ and

∑
` τ

2
` < +∞, then x(`) converges to a minimizer of f .

17.1.3 Projected Gradient Descent

We consider a generic constraint optimization problem as

min
x∈C

f(x) (17.4)

where C ⊂ RS is a closed convex set and f : RS → R is a smooth convex function (at least of class C1).
The gradient descent algorithm (17.2) is generalized to solve a constrained problem using the projected

gradient descent

x(`+1) def.
= ProjC

(
x(`) − τ`∇f(x(`))

)
, (17.5)

where ProjC is the orthogonal projector on C

ProjC(x) = argmin
x′∈C

||x− x′||

which is always uniquely defined because C is closed and convex. The following proposition shows that all
the convergence properties of the classical gradient descent caries over to this projected algorithm.

Theorem 30. Theorems ?? and 23 still holds when replacing iterations (17.2) by (17.5).

Proof. The proof of Theorem ?? extends because the projector is contractant, ||ProjC(x) − ProjC(x
′)|| 6

||x−x′|| so that the strict contraction properties of the gradient descent is maintained by this projection.

The main bottleneck that often prevents to use (17.5) is that the projector is often complicated to
compute. We are however lucky since for `1 mininization, one can apply in a straightforward manner this
method.

17.2 Interior Point Methods

We give here an informal description of a class of schemes which converge extremely fast in term of
number of iterations, but where each iteration can be very costly. These methods are extensions of the
Newton method for unconstrained minimization, but can deal with a specific class of non-smoothness which
can be encoded using some specific type of constraints (such as for instance positivity of vector or matrices).

To illustrate the main idea, we consider the following problem

min
x∈Rd,Ax6y

f(x) (17.6)

for A ∈ Rm×d. This can be generalized for instance by replacing Ax by a matrix and 6 by PSD matrix
inequalities.

Example 3 (Lasso). The Lasso problem (applied to the regression problem Bw ≈ b for B ∈ Rn×p)

min
w∈Rp

1

2
||Bw − b||2 + λ||w||1 (17.7)

can be re-casted as (17.6) by introducing the positive/negative decomposition x = (x−, x+) ∈ R2p (so that
d = 2p) and w = x+ − x− with (x+, x−) > 0, so that f(x) = 1

2 ||B(x+ − x−)− b||2 + λ〈x, 1〉 and A = −Id2p

(so that m = 2p).
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Example 4 (Dual of the Lasso). One can also solve the dual problem to (17.7)

min
||B>q||∞61

f(q) =
λ

2
||q||2 − 〈q, y〉 (17.8)

so that one can use A =

(
B>

−B>
)

and b = 12n (so that d = p and m = 2n).

The main idea of interior point methods is to approximate (17.6) using a logarithmic barrier function

min
x∈Rp,

ft(x)
def.
= f(x)− 1

t
Log(y −Ax) (17.9)

where
Log(u)

def.
=
∑
i

log(ui)

so that -Log is a strictly concave function which acts as a barrier for positivity. On recovers the initial
problem in the limit, i.e. in some sense f + ιA·6y = f∞.

For a fixed t, one can solve (17.9) using a Newton method with some line search procedure (the simplest
being Armijo backtracking (13.14)) to select the step size 0 < τ` 6 1

x(`+1) def.
= x(`) − τ`[∂2ft(x)]−1∇ft(x(`)) (17.10)

where here

∇ft(x) = ∇f(x) +
1

t
A>

1

y −Ax
and ∂2ft(x) = ∂2f(x) +

1

t
A> diag

(
1

(y −Ax)2

)
A.

The natural stopping criterion for this descent step is

〈[∂2ft(x)]−1∇ft(x(`)), ∇ft(x(`))〉 < ε

2
.

The interior point barrier method proceed by ft using (17.10) (defining an approximated “central” path
t 7→ x(t)) for a series of increasing step sizes t = tk = µkt0 for some µ > 1. The crucial point here is to use
a “warm restart” strategy: in order to solve for x(tk), one should initialize the Newton steps (17.10) using
x(tk−1). This is what makes interior point methods efficient. Thanks to the use of a logarithmic barrier, one
can show the upper bound f(x(tk))− f(x?) 6 m/tk (m being the number of scalar constraints), so that in
order to a final error of ε, one needs to use k = 0, . . . ,K such that

m

tK
=

m

t0µK
6 ε.

This shows that only O(| log(ε)|) steps are necessary to reach ε precision. The important question to bound
the complexity of the method is thus to bound the number of Newton steps (17.10). This requires additional
hypotheses on f .

If the function f has a so-called self-concordance property, namely that for any (x, y), ϕ(s)
def.
= f(sx +

(1− s)y) satisfies
|ϕ′′′(s)| 6 2ϕ′′(s)3/2,

one can then that only a constant number of Newton steps are required per iterations (note that − log
being self-concordant, ft is also self-concordant) when using the warm-restart initialization to computes the
succession of x(tk). This result might looks surprising, but is possible because of the combination of the
warm restart strategy with the self-concordance property of ft: although problems become more and more
difficult (ft is becoming less regular) as t increases, the number of iterations of Newton stays constant. This
fundamental result supports the claim that interior point methods solve linear programs (and more general
types of problems including SDP problems) in polynomial times (where polynomial refers to polynomial in
log(ε)).
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Figure 17.1: Proximal map and projection map.

17.3 Proximal Algorithm

For non-smooth functions f , it is not possible to perform an “explicit” gradient descent step because the
gradient is not even defined. One thus needs to replace this “explicit” step by an “implicit” one, which is
possible even if f is non-smooth.

17.3.1 Proximal Map

The implicit stepping of amplitude τ > 0 is defined as

∀x, Proxτf (x)
def.
= argmin

x′

1

2
||x− x′||2 + f(x′). (17.11)

It amounts to minimize function f locally around x, in a ball of radius controlled by τ . This the involved
function 1

2 ||x− ·||
2 + f is strongly convex, this operator Proxτf is well defined and single-valued.

When f = ιC is an indicator, the proximal map boils down to a projection ProxιC = ProjC , it is thus
in some sense a generalization of the projection to arbitrary function. And can also be interpreted as a
projector on a level set of f . An interesting feature of the proximal map is that it is a contraction, thus
generalizing the well-known property of projectors.

Proposition 57. One has || proxf (x)− proxf (y)|| 6 ||x− y||.

Examples The following proposition states a few simples examples.

Proposition 58. One has

Prox τ
2 ||·||2(x) =

x

1 + τ
, and Proxτ ||·||1 = S1

τ (x), (17.12)

where the soft-thresholding is defined as

S1
τ (x)

def.
= (Sτ (xi))

p
i=1 where Sτ (r)

def.
= sign(r)(|r| − λ)+,

(see also (9.5)). For A ∈ RP×N , one has

Prox τ
2 ||A·−y||2(x) = (IdN + τA∗A)−1(x+ τA∗y). (17.13)

Proof. The proximal map of || · ||1 was derived in Proposition 26. For the quadratic case

z = Prox τ
2 ||A·−y||2(x) ⇔ z − x+ τA∗(Az − y) = 0 ⇔ (IdN + τA∗A)z = x+ τA∗y.

Note that in some case, the proximal map of a non-convex function is well defined, for instance Proxτ ||·||0
is the hard thresholding associated to the threshold

√
2τ , see Proposition 26.
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17.3.2 Basic Properties

We recap some useful proximal-calculus.

Proposition 59. One has

Proxf+〈y, ·〉 = y + Proxf , Proxf(·−y) = y + Proxf (· − y).

If f(x) =
∑K
k=1 f(xk) for x = (x1, . . . , xK) is separable, then

Proxτf (x) = (Proxτfk(xk))Kk=1. (17.14)

Proof. One has

z = Proxf+〈y, ·〉(x) ⇔ 0 ∈ x− z + (∂f(x) + y) ⇔ 0 ∈ x− (z − y) + ∂f(x)

which is the optimality condition for z − y = Proxf (x).

One has

z = Proxf(·−y)(x) ⇔ 0 ∈ x− z + λ∂f(x− y) ⇔ 0 ∈ x′ − (z − y) + ∂f(x′)

where we defined x′
def.
= x− y, and this is the optimality condition for z − y = Proxf (x′)

The following proposition is very useful.

Proposition 60. If A ∈ RP×N is a tight frame, i.e. AA∗ = IdP , then

Proxf◦A = A∗ ◦ Proxf ◦A+ IdN −A∗A.

In particular, if A is orthogonal, then Proxf◦A = A∗ ◦ Proxf ◦A.

17.3.3 Related Concepts

Link with sub-differential. For a set-valued map U : H ↪→ G, we define the inverse set-valued map
U−1 : G ↪→ H by

h ∈ U−1(g) ⇐⇒ g ∈ U(h) (17.15)

[ToDo: add picture ] The following proposition shows that the proximal map is related to a regularized
inverse of the sub-differential.

Proposition 61. One has Proxτf = (Id + τ∂f)−1.

Proof. One has the following equivalence

z = Proxτf (x)⇔ 0 ∈ z − x+ τ∂f(z)⇔ x ∈ (Id + τ∂f)(z)⇔ z = (Id + τ∂f)−1(x)

where for the last equivalence, we have replace “∈” by “=” because the proximal map is single valued.

The proximal operator is hence often referred to the “resolvent” Proxτf = (Id + τ∂f)−1 of the maximal
monotone operator ∂f .
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Link with duality. One has the following fundamental relation between the proximal operator of a func-
tion and of its Legendre-Fenchel transform

Theorem 31 (Moreau decomposition). One has

Proxτf = Id− τ Proxf∗/τ (·/τ).

This theorem shows that the proximal operator of f is simple to compute if and only the proximal
operator of f∗ is also simple. As a particular instantiation, since according to , one can re-write the soft
thresholding as follow

Proxτ ||·||1(x) = x− τ Proj||·||∞61(x/τ) = x− Proj||·||∞6τ (x) where Proj||·||∞6τ (x) = min(max(x,−τ), τ).

In the special case where f = ιC where C is a closed convex cone, then

(ιC)
∗ = ιC◦ where C◦ def.

= {y ; ∀x ∈ C, 〈x, y〉 6 0} (17.16)

and C◦ is the so-called polar cone. Cones are fundament object in convex optimization because they are
invariant by duality, in the sense of (17.16) (if C is not a cone, its Legendre transform would not be an
indicator). Using (17.16), one obtains the celebrated Moreau polar decomposition

x = ProjC(x) +⊥ ProjC◦(x)

where “+⊥” denotes an orthogonal sum (the terms in the sum are mutually orthogonal). [ToDo: add
drawing] In the case where C = V is a linear space, this corresponds to the usual decomposition Rp =
V ⊕⊥ V ⊥.

Link with Moreau-Yosida regularization. The following proposition shows that the proximal operator
can be interpreted as performing a gradient descent step on the Moreau-Yosida smoothed version fµ of f ,
defined in (16.11).

Proposition 62. One has
Proxµf = Id− µ∇fµ.

17.4 Primal Algorithms

We now describe some important algorithm which assumes some structure (a so-called “splitting”) of the
minimized functional to be able to apply proximal maps on sub-functions. Note that there is obviously many
ways to split or structure a given initial problem, so there are many non-equivalent ways to apply a given
proximal-based method to solve the problem. Finding the “best” way to split a problem is a bit like black
magic, and there is no definite answer. Also all there algorithm comes with step size and related parameters,
and there is no obvious way to tune these parameters automatically (although some insight might be gained
by studying convergence rate).

17.4.1 Proximal Point Algorithm

One has the following equivalence

x? ∈ argmin f ⇔ 0 ∈ ∂f(x?) ⇔ x? ∈ (Id + τ∂f)(x?) (17.17)

⇔ x? = (Id + τ∂f)−1(x?) = Proxτf (x?). (17.18)

This shows that being a minimizer of f is equivalent to being a fixed point of Proxτf . This suggest the
following fixed point iterations, which are called the proximal point algorithm

x(`+1) def.
= Proxτ`f (x(`)). (17.19)

On contrast to the gradient descent fixed point scheme, the proximal point method is converging for any
sequence of steps.
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Theorem 32. If 0 < τmin 6 τ` 6 γmax < +∞, then x(`) → x? a minimizer of f .

This implicit step (17.19) should be compared with a gradient descent step (17.2)

x(`+1) def.
= (Id + τ`∇f)(x(`)).

One sees that the implicit resolvent (Id − τ`∂f)−1 replaces the explicit step Id + τ`∇f . For small τ` and
smooth f , they are equivalent at first order. But the implicit step is well defined even for non-smooth
function, and the scheme (the proximal point) is always convergent (whereas the explicit step size should be
small enough for the gradient descent to converge). This is inline with the general idea the implicit stepping
(e.g. implicit Euler for integrating ODE, which is very similar to the proximal point method) is more stable.
Of course, the drawback is that explicit step are very easy to implement whereas in general proximal map
are hard to solve (most of the time as hard as solving the initial problem).

17.4.2 Forward-Backward

It is in general impossible to compute Proxγf so that the proximal point algorithm is not implementable.
In oder to derive more practical algorithms, it is important to restrict the class of considered function, by
imposing some structure on the function to be minimized. We consider functions of the form

min
x
E(x)

def.
= f(x) + g(x) (17.20)

where g ∈ Γ0(H) can be an arbitrary, but f needs to be smooth.
One can modify the fixe point derivation (17.17) to account for this special structure

x? ∈ argmin f + g ⇔ 0 ∈ ∇f(x?) + ∂g(x?) ⇔ x? − τ∇f(x?) ∈ (Id + τ∂g)(x?)

⇔ x? = (Id + τ∂g)−1 ◦ (Id− τ∇f)(x?).

This fixed point suggests the following algorithm, with the celebrated Forward-Backward

x(`+1) def.
= Proxτ`g

(
x(`) − τ`∇f(x(`))

)
. (17.21)

Derivation using surrogate functionals. An intuitive way to derive this algorithm, and also a way to
prove its convergence, it using the concept of surrogate functional.

To derive an iterative algorithm, we modify the energy E(x) to obtain a surrogate functional E(x, x(`))
whose minimization corresponds to a simpler optimization problem, and define the iterations as

x(`+1) def.
= argmin

x
E(x, x(`)). (17.22)

In order to ensure convergence, this function should satisfy the following property

E(x) 6 E(x, x′) and E(x, x) = E(x) (17.23)

and E(x) − E(x, x′) should be a smooth function. Property (17.23) guarantees that f is decaying by the
iterations

E(x(`+1)) 6 E(x(`))

and it simple to check that actually all accumulation points of (x(`))` are stationary points of f .
In order to derive a valid surrogate E(x, x′) for our functional (17.20), since we assume f is L-smooth

(i.e. satisfies (RL)), let us recall the quadratic majorant (13.19)

f(x) 6 f(x′) + 〈∇f(x′), x′ − x〉+
L

2
||x− x′||2,
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so that for 0 < τ < 1
L , the function

E(x, x′)
def.
= f(x′) + 〈∇f(x′), x′ − x〉+

1

2τ
||x− x′||2 + g(x) (17.24)

satisfies the surrogate conditions (17.23). The following proposition shows that minimizing the surrogate
functional corresponds to the computation of a so-called proximal operator.

Proposition 63. The update (17.22) for the surrogate (17.24) is exactly (17.21).

Proof. This follows from the fact that

〈∇f(x′), x′ − x〉+
1

2τ
||x− x′||2 =

1

2τ
||x− (x′ − τ∇f(x′))||2 + cst.

Convergence of FB. Although we impose τ < 1/L to ensure majorization property, one can actually
show convergence under the same hypothesis as for the gradient descent, i.e. 0 < τ < 2/L, with the same
convergence rates. This means that Theorem 30 for the projected gradient descent extend to FB.

Theorem 33. Theorems ?? and 23 still holds when replacing iterations (17.2) by (17.21).

Note furthermore that the projected gradient descent algorithm (17.5) is recovered as a special case
of (17.21) when setting J = ιC the indicator of the constraint set, since ProxρJ = ProjC in this case.

Of course the difficult point is to be able to compute in closed form Proxτg in (17.21), and this is usually
possible only for very simple function. We have already seen such an example in Section 14.1.4 for the
resolution of `1-regularized inverse problems (the Lasso).

17.4.3 Douglas-Rachford

We consider here the structured minimization problem

min
x∈Rp

f(x) + g(x), (17.25)

but on contrary to the Forward-Backward setting studied in Section 17.4.2, no smoothness is imposed on f .
We here suppose that we can compute easily the proximal map of f and g.

Example 5 (Constrained Lasso). An example of a problem of the form (17.25) where one can apply Douglas-
Rachford is the noiseless constrained Lasso problem (9.11)

min
Ax=y

||x||1

where one can use f = ιCy where Cy
def.
= {x ; Ax = y} and g = || · ||1. As noted in Section 9.3.1, this

problem is equivalent to a linear program. The proximal operator of g is the soft thresholding as stated
in (17.12), while the proximal operator of g is the orthogonal projector on the affine space Cy, which can be
computed by solving a linear system as stated in (16.9) (this is especially convenient for inpainting problems
or deconvolution problem where this is achieved efficiently).

The Douglas-Rachford iterations read

x̃(`+1) def.
=
(

1− µ

2

)
x̃(`) +

µ

2
rProxτg(rProxτf (x̃(`))) and x(`+1) def.

= Proxτf (x̃(`+1)), (17.26)

where we have used the following shortcuts

rProxτf (x) = 2 Proxτf (x)− x.

One can show that for any value of τ > 0, any 0 < µ < 2, and any x̃0, x(`) → x? which is a minimizer of
f + g.

Note that it is of course possible to inter-change the roles of f and g, which defines another set of
iterations.
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More than two functions. Another sets of iterations can be obtained by “symetrizing” the algorithm.
More generally, if we have K functions (fk)k, we re-write

min
x

∑
k

fk(x) = min
X=(x1,...,xk)

f(X) + g(X) where f(X) =
∑
k

fk(xk) and g(X) = ι∆(X)

where ∆ = {X ; x1 = . . . = xk} is the diagonal. The proximal operator of f is

Proxτf (X) = Proj∆(X) = (x̄, . . . , x̄) where x̄ =
1

K

∑
k

xk

while the proximal operator of f is easily computed from those of the (fk)k using (17.14). One can thus
apply DR iterations (17.26).

Handling a linear operator. One can handle a minimization of the form (17.28) by introducing extra
variables

inf
x
f1(x) + f2(Ax) = inf

z=(x,y)
f(z) + g(z) where

{
f(z) = f1(x) + f2(y)
g(z) = ιC(x, y),

where C = {(x, y) ; Ax = y}. This problem can be handled using DR iterations (17.26), since the proximal
operator of f is obtained from those of (f1, f2) using (17.14), while the proximal operator of g is the projector
on C, which can be computed in two alternative ways as the following proposition shows.

Proposition 64. One has

ProjC(x, y) = (x+A∗ỹ, y − ỹ) = (x̃, Ax̃) where

{
ỹ

def.
= (IdP +AA∗)−1(Ax− y)

x̃
def.
= (IdN +A∗A)−1(A∗y + x).

(17.27)

Proof. [ToDo: todo]

Remark 10 (Inversion of linear operator). At many places (typically to compute some sort of projector) one
has to invert matrices of the form AA∗, A∗A, IdP +AA∗ or IdN +A∗A (see for instance (17.27)). There are
some case where this can be done efficiently. Typical examples where this is simple are inpainting inverse
problem where AA∗ is diagonal, and deconvolution or partial Fourier measurement (e.g. fMRI) for which
A∗A is diagonalized using the FFT. If this inversion is too costly, one needs to use more advanced methods,
based on duality, which allows to avoid trading the inverse A by the application of A∗. They are however
typically converging more slowly.

17.5 Dual and Primal-Dual Algorithms

Convex duality, detailed in Section 16.2 (either from the Lagrange or the Fenchel-Rockafellar point of
view – which are essentially equivalent), is very fruitful to derive new optimization algorithm or to apply
existing algorithm on a dual reformulation.

17.5.1 Forward-backward on the Dual

Let us illustrate first the idea of applying a known algorithm to the dual problem. We consider here the
structured minimization problem associated to Fenchel-Rockafellar duality (16.12)

p? = inf
x
f(x) + g(Ax), (17.28)

but furthermore assume that f is µ-strongly convex, and we assume for simplicity that both (f, g) are
continuous. If f were also smooth (but it needs to be!), one could think about using the Forward-Backward
algorithm (17.21). But the main issue is that in general Proxτg◦A cannot be computed easily even if one can
compute Proxτg◦A. An exception to this is when A is a tight frame, as exposed in Proposition 60, but in
practice it is rarely the case.
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Example 6 (TV denoising). A typical example, which was the one used by Antonin Chambolle [6] to develop
this class of method, is the total variation denoising

min
x

1

2
||y − x||2 + λ||∇x||1,2 (17.29)

where ∇x ∈ RN×d is the gradient (a vector field) of a signal (d = 1)or image (d = 2) x, and || · ||1,2 is the
vectorial-`1 norm (also called `1 − `2 norm), such that for a d-dimensional vector field (vi)

p
i=1

||v||1,2
def.
=
∑
i

||vi||.

Here

f =
1

2
|| · −y||2 and g = λ|| · ||1,2

so that f is µ = 1 strongly convex, and one sets A = ∇ the linear operator.

Example 7 (Support Vector Machine). We consider a supervised classification problems with data (ai ∈
Rp, yi ∈ {−1,+1})ni=1. The support vector machine classification method, with a ridge penalty ||x||2 reads

min
x∈Rp

`(−yi〈x, ai〉) +
λ

2
||x||2 =

λ

2
||x||2 + g(Ax) (17.30)

where `(s) = max(0, s+1) is the hinge loss function, where we denoted Ai,j = −yiai[j] and L(u) =
∑
i `(ui).

It corresponds to the split (17.28) using f(x) = λ
2 ||x||

2.

Applying Fenchel-Rockafellar Theorem 28 (since strong duality holds, all involved functions being con-
tinuous), one has that

p? = sup
u
− g∗(u)− f∗(−A∗u). (17.31)

But more importantly, since f is µ-strongly convex, one has that f∗ is smooth with a 1/µ-Lipschitz gradient.
One can thus use the Forward-Backward algorithm (17.21) on (minus the energy of) this problem, which
reads

u(`+1) = Proxτkg∗
(
u(`) + τkA∇f∗(A∗u(`))

)
.

To guarantee convergence, the step size τk should be smaller than 2/L where L is the Lipschitz constant of
A ◦ ∇f∗ ◦A∗, which is smaller than ||A||2/µ.

Last but not least, one some (not necessarily unique) dual minimizer u? is computed, the primal-dual
relationships (16.18) ensures that one retrieves the unique primal minimizer x? as

−A∗u? ∈ ∂f(x?) ⇔ x? ∈ (∂f)−1(−A∗u?) = ∂f∗(−A∗u?) ⇔ x? = ∇f∗(−A∗u?)

where we used here the crucial fact that f∗ is smooth.

Example 8 (TV denoising). In the particular case of the TV denoising problem (17.29), one has

g∗ = ι||·||∞,26λ where ||v||∞,2
def.
= max

i
||vi|| =⇒

f?(h) =
1

2
||h||2 + 〈h, y〉,

so that the dual problem (re-written as a min) reads

min
||v||∞,26λ

1

2
|| − ∇∗v + y||2.

This can be minimized by projected gradient descent (special case of FB) using

Proxτg∗(u) =

(
min(||vi||, λ)

vi
||vi||

)
i

and ∇f?(h) = h+ y.

Furthermore, one has µ = 1 and A∗A = ∆ is the usual finite difference approximation of the Laplacian, so
that ||A||2 = ||∆|| = 4d where d is the dimension.
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Example 9 (Support Vector Machine). For the SVM problem (17.30), one has

∀u ∈ Rn, g?(u) =
∑
i

`?(ui)

where
`?(t) = sup

s
ts−max(0, s+ 1) = −t+ sup

u
ts−max(0, s) = −t+ ι[0,1](t)

where we used the fact that the Legendre transform of max(0, s) is the indicator of the sub-differential at 0,
which is [0, 1] [ToDo: drawing]. Also, one has f(x) = λ

2 ||x||
2 so that

f?(z) = λ(|| · ||2/2)(z/λ) = λ
||z/λ||2

2
=
||z||2

2λ
.

The dual problem reads

min
06v61

− 〈1, v〉+
||A>v||2

2λ

which can be solved using forward backward, in this case being equivalent to gradient descent. One thus has

Proxτg∗(u) = min
v∈[0,1]n

1

2
||u− v||2 − 〈1, v〉 = Proj[0,1]n(u− 1) = min(max(u− 1, 0),1).

17.5.2 Alternating Direction Method of Multipliers

In order to minimize the general splitting (17.28), of the form f+g◦A, in the absence of strong convexity
property of f , one can use Douglas-Rachford splitting presented in Section 17.4.3. This requires to be able to
compute Proxτf and Proxτg◦A. The Alternating Direction Method of Multipliers (ADMM) algorithm takes
a different route, and rather assume one is able to compute, in addition to Proxτg∗ (thus being equivalent to
the computation of Proxτg) and Proxτf?◦A∗ . In fact, it can be shown that ADMM is equivalent to applying
DR on the dual problem (17.31), which is the reason why it requires the use of the proximal map of the dual
functions.

For A ∈ Rn×p, we consider the problem derived in (16.13) using Lagrange duality and an extra scaling
by γ > 0

inf
x∈Rp

f(x) + g(Ax) = inf
y=Ax

f(x) + g(y) = inf
x∈Rp,y∈Rn

sup
z∈Rn

L((x, y), z)
def.
= f(x) + g(y) + γ〈z, Ax− y〉. (17.32)

The augmented Lagrangian corresponds to solving the problem

inf
x∈Rp,y∈Rn

sup
z∈Rn

Lγ((x, y), z)
def.
= L((x, y), z) +

γ

2
||Ax− y||2 = f(x) + g(y) + γ〈z, Ax− y〉+

γ

2
||Ax− y||2.

which is equivalent to (17.32) in the sense that they have the same solutions because the additional term
||Ax− y||2 is zero at the solutions.

The ADMM method then updates

y(`+1) def.
= argmin

y
Lγ((x(`), y), z(`)), (17.33)

x(`+1) def.
= argmin

x
Lγ((x, y(`+1)), z(`)), (17.34)

z(`+1) def.
= z(`) +Ax(`+1) − y(`+1). (17.35)

This is very similar to the dual ascent method, which perform a gradient descent on the dual (which a well
chosen step size), which can be shown to be the iterations

(x(`+1), y(`+1))
def.
= argmin

x,y
Lγ((x, y), z(`)),

z(`+1) def.
= z(`) +Ax(`+1) − y(`+1),
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excepted that for ADMM the x and y variable are updated alternatively (hence the naming), which in many
situation gives tractable steps.

Step (17.35) can be understood as a gradient ascent on Lγ on the z variable, using a specific step size of
1/γ, so that the primal-dual relation ∇f(x?) + γA>z? = 0 (which are the optimality condition with respect
to x, assuming Ax? = y?, here we assume f is smooth for simplicity) is imposed at the end of the z update.
Indeed, the optimality condition for (17.34) reads

0 = ∇xLγ((x(`+1), y(`+1)), z(`)) = ∇f(x(`+1)) + γA>z(`) +A>(Ax(`+1) − y(`+1)) = ∇f(x(`+1)) + γA>z(`+1).

Step (17.33) is a proximal step, since

y(`+1) = argmin
y

g(y) + γ〈z(`), Ax(`) − y〉+
γ

2
||Ax(`) − y||2

= argmin
y

1

2
||y −Ax(`) − z(`)||2 +

1

γ
g(y) = Proxg/γ(Ax(`) + z(`)).

Step (17.34) is more involved, since it is a proximal step for a metric twisted by A

x(`+1) = argmin
x

f(x) + γ〈z(`), Ax− y(`+1)〉+
γ

2
||Ax− y(`+1)||2

= argmin
x

1

2
||Ax− y(`+1) + z(`)||2 1

γ
f(x)

def.
= ProxAf/γ(z(`) − y(`+1)).

The following formula, which can be shown after some tedious computation, shows that actually computing
this twisted proximal map is equivalent to the computation of the proximal operator of f∗ ◦A∗

ProxAf/γ(u) = A+

(
u− 1

γ
Proxγf∗◦A∗(γu)

)
.

Example 10 (Constrained TV recovery). We consider the problem of minimizing a TV norm under affine
constraints

min
Bx=y

||∇x||1

which is of the form f + g ◦A when defining A = ∇, g = || · ||1 and f = ιB·=y. The proximal map of g is the
soft thresholding, while the “twisted” proximal operator is

ProxAf/γ(u) = argmin
Bx=y

1

2
||Ax− u||2 = argmin

Bx=y
min
w

1

2
||∇x− u||2 + 〈w, Bx− y〉

where we added Lagrange multipliers w for the constraint Bx = y. From the first order conditions, an
optimal pair (x?, w?) is obtained by solving a linear system(

∇>∇ B>

B 0

)(
x?

w?

)
=

(
∇>u
y

)
and note that ∆ = −∇>∇ is usually called the (discrete) Laplacian.

17.5.3 Primal-Dual Splitting

In the case where one cannot compute neither Proxτg◦A or Proxτf?◦A∗ , then one needs to use more
general proximal methods, which directly operate over the primal-dual saddle point. They are more general,
but in general less efficient than purely primal or dual methods. We thus consider the general structure
problem of the form (17.28), which we intend to solve in the primal-dual, using the fact that g = (g∗)∗

(otherwise one can re-use the approach using Lagrange duality performed in (16.13)) form as

inf
x
f(x) + g(Ax) = inf

x
f(x) + sup

u
〈Ax, u〉 − g∗() = sup

u
inf
x
f(x) + 〈Ax, u〉 − g∗(u). (17.36)

We make no assumption such as strong convexity of f .
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Example 11 (Total Variation regularization of inverse problems). A typical instance of such a problem is for
the TV regularization of the inverse problem Kx = y, which corresponds to solving

min
x

1

2
||y −Kx||2 + λ||∇x||1,2.

where A = ∇, f(x) = 1
2 ||y − K · ||

2 and g = λ|| · ||1,2. If one would be using directly f ◦ A (for instance in
combination with DR splitting), computing its proximal operator of f , which, following (17.13), requires
inverting either IdP +AA∗ or IdN +A∗A, see Remark 10. The goal is to avoid this here.

A standard primal-dual algorithm, which is detailed in [], reads

z(`+1) def.
= Proxσg∗(z

(`) + σA(x̃(`))

x(`+1) def.
= Proxτf (x(`) − τA∗(z(`+1)))

x̃(`) def.
= x(`+1) + θ(x(`+1) − x(`))

if 0 6 θ 6 1 and στ ||K||2 < 1, then x(`) converges to a minimizer of (17.36) .
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