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Chapter 14

Optimization & Machine Learning:
Advanced Topics

14.1 Regularization

When the number n of sample is not large enough with respect to the dimension p of the model, it makes
sense to regularize the empirical risk minimization problem.

14.1.1 Penalized Least Squares

For the sake of simplicity, we focus here on regression and consider

min
x∈Rp

fλ(x)
def.
=

1

2
||Ax− y||2 + λR(x) (14.1)

where R(x) is the regularizer and λ > 0 the regularization parameter. The regularizer enforces some prior
knowledge on the weight vector x (such as small amplitude or sparsity, as we detail next) and λ needs to be
tuned using cross-validation.

We assume for simplicity that R is positive and coercive, i.e. R(x)→ +∞ as ||x|| → +∞. The following
proposition that in the small λ limit, the regularization select a sub-set of the possible minimizer. This is
especially useful when ker(A) 6= 0, i.e. the equation Ax = y has an infinite number of solutions.

Proposition 44. If (xλk
)k is a sequence of minimizers of fλ, then this sequence is bounded, and any

accumulation x? is a solution of the constrained optimization problem

min
Ax=y

R(x). (14.2)

Proof. Let x0 be so that Ax0 = y, then by optimality of xλk

1

2
||Axλk

− y||2 + λkR(xλk
) 6 λkR(x0). (14.3)

Since all the term are positive, one has R(xλk
) 6 R(x0) so that (xλk

)k is bounded by coercivity of R. Then
also ||Axλk

− y|| 6 λkR(x0), and passing to the limit, one obtains Ax? = y. And passing to the limit in
R(xλk

) 6 R(x0) one has R(x?) 6 R(x0) which shows that x? is a solution of (14.2).

14.1.2 Ridge Regression

Ridge regression is by far the most popular regularizer, and corresponds to using R(x) = ||x||2Rp . Since it
is strictly convex, the solution of (14.1) is unique

xλ
def.
= argmin

x∈Rp

fλ(x) =
1

2
||Ax− y||2Rn + λ||x||2Rp .
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One has

∇fλ(x) = A>(Axλ − y) + λxλ = 0

so that xλ depends linearly on y and can be obtained by solving a linear system. The following proposition
shows that there are actually two alternate formula.

Proposition 45. One has

xλ = (A>A+ λIdp)
−1A>y, (14.4)

= A>(AA> + λIdn)−1y. (14.5)

Proof. Denoting B
def.
= (A>A + λIdp)

−1A> and C
def.
= A>(AA> + λIdn)−1, one has (A>A + λIdp)B = A>

while

(A>A+ λIdp)C = (A>A+ λIdp)A
>(AA> + λIdn)−1 = A>(AA> + λIdn)(AA> + λIdn)−1 = A>.

Since A>A+ λIdp is invertible, this gives the desired result.

The solution of these linear systems can be computed using either a direct method such as Cholesky
factorization or an iterative method such as a conjugate gradient (which is vastly superior to the vanilla
gradient descent scheme).

If n > p, then one should use (14.4) while if n < p one should rather use (14.5).

Pseudo-inverse. As λ→ 0, then xλ → x0 which is, using (14.2)

argmin
Ax=y

||x||.

If ker(A) = {0} (overdetermined setting), A>A ∈ Rp×p is an invertible matrix, and (A>A + λIdp)
−1 →

(A>A)−1, so that

x0 = A+y where A+ def.
= (A>A)−1A>.

Conversely, if ker(A>) = {0}, or equivalently Im(A) = Rn (undertermined setting) then one has

x0 = A+y where A+ def.
= A>(AA>)−1.

In the special case n = p and A is invertible, then both definitions of A+ coincide, and A+ = A−1. In the
general case (where A is neither injective nor surjective), A+ can be computed using the Singular Values
Decomposition (SVD). The matrix A+ is often called the Moore-Penrose pseudo-inverse.

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 14.1: `q balls {x ;
∑
k |xk|q 6 1} for varying q.
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14.1.3 Lasso

The Lasso corresponds to using a `1 penalty

R(x) = ||x||1
def.
=

p∑
k=1

|xk|.

The underlying idea is that solutions xλ of a Lasso problem

xλ ∈ argmin
x∈Rp

fλ(x) =
1

2
||Ax− y||2Rn + λ||x||1

are sparse, i.e. solutions xλ (which might be non-unique) have many zero entries. To get some insight about
this, Fig. 14.1 display the `q “balls” which shrink toward the axes as q → 0 (thus enforcing more sparsity)
but are non-convex for q < 1.

This can serve two purposes: (i) one knows before hand that the solution is expected to be sparse, which
is the case for instance in some problems in imaging, (ii) one want to perform model selection by pruning
some of the entries in the feature (to have simpler predictor, which can be computed more efficiently at test
time, or that can be more interpretable). For typical ML problems though, the performance of the Lasso
predictor is usually not better than the one obtained by Ridge.

Minimizing f(x) is still a convex problem, but R is non-smooth, so that one cannot use a gradient descent.
Section 14.1.4 shows how to modify the gradient descent to cope with this issue. In general, solutions xλ
cannot be computed in closed form, excepted when the design matrix A is orthogonal.

Figure 14.2: Evolution with λ of the function F (x)
def.
= 1

2 || · −y||
2 + λ| · |.

Proposition 46. When n = p and A = Idn, one has

argmin
x∈Rp

1

2
||x− y||2 + λ||x1|| = Sλ(x) where Sλ(x) = (sign(xk) max(|xk| − λ, 0))k

Proof. One has fλ(x) =
∑
k

1
2 (xk − yk)2 + λ|xk|, so that one needs to find the minimum of the 1-D function

x ∈ R 7→ 1
2 (x− y)2 + λ|x|. We can do this minimization “graphically” as shown on Fig. 14.2. For x > 0, one

has F ′(x) = x− y + λ wich is 0 at x = y − λ. The minimum is at x = y − λ for λ 6 y, and stays at 0 for all
λ > y. The problem is symmetric with respect to the switch x 7→ −x.

Here, Sλ is the celebrated soft-thresholding non-linear function.

14.1.4 Iterative Soft Thresholding

We now derive an algorithm using a classical technic of surrogate function minimization. We aim at
minimizing

f(x)
def.
=

1

2
||y −Ax||2 + λ||x||1
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and we introduce for any fixed x′ the function

fτ (x, x′)
def.
= f(x)− 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2.

We notice that fτ (x, x) = 0 and one the quadratic part of this function reads

K(x, x′)
def.
= −1

2
||Ax−Ax′||2 +

1

2τ
||x− x′|| = 1

2
〈
(

1

τ
IdN −A>A

)
(x− x′), x− x′〉.

This quantity K(x, x′) is positive if λmax(A>A) 6 1/τ (maximum eigenvalue), i.e. τ 6 1/||A||2op, where we
recall that ||A||op = σmax(A) is the operator (algebra) norm. This shows that fτ (x, x′) is a valid surrogate
functional, in the sense that

f(x) 6 fτ (x, x′), fτ (x, x′) = 0, and f(·)− fτ (·, x′) is smooth.

We also note that this majorant fτ (·, x′) is convex. This leads to define

xk+1
def.
= argmin

x
fτ (x, xk) (14.6)

which by construction satisfies

f(xk+1) 6 f(xk).

Proposition 47. The iterates xk defined by (14.6) satisfy

xk+1 = Sλτ
(
xk − τA>(Axk − y)

)
(14.7)

where Sλ(x) = (sλ(xm))m where sλ(r) = sign(r) max(|r| − λ, 0) is the soft thresholding operator.

Proof. One has

fτ (x, x′) =
1

2
||Ax− y||2 − 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2 + λ||x||1

= C +
1

2
||Ax||2 − 1

2
||Ax||2 +

1

2τ
||x||2 − 〈Ax, y〉+ 〈Ax, Ax′〉 − 1

τ
〈x, x′〉+ λ||x||1

= C +
1

2τ
||x||2 + 〈x, −A>y +AA>x′ − 1

τ
x′〉+ λ||x||1

= C ′ +
1

τ

(
1

2
||x− (x′ − τA>(Ax′ − y))||2 + τλ||x||1.

)
Proposition (46) shows that the minimizer of fτ (x, x′) is thus indeed Sλτ (x′− τA>(Ax′−y)) as claimed.

Equation (14.7) defines the iterative soft-thresholding algorithm. It follows from a valid convex surrogate
function if τ 6 1/||A||2, but one can actually shows that it converges to a solution of the Lasso as soon as
τ < 2/||A||2, which is exactly as for the classical gradient descent.

14.2 Stochastic Optimization

We detail some important stochastic Gradient Descent methods, which enable to perform optimization
in the setting where the number of samples n is large and even infinite.
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14.2.1 Minimizing Sums and Expectation

A large class of functionals in machine learning can be expressed as minimizing large sums of the form

min
x∈Rp

f(x)
def.
=

1

n

n∑
i=1

fi(x) (14.8)

or even expectations of the form

min
x∈Rp

f(x)
def.
= Ez∼π(f(x, z)) =

∫
Z
f(x, z)dπ(z). (14.9)

Problem (14.8) can be seen as a special case of (14.9), when using a discrete empirical uniform measure
π =

∑n
i=1 δi and setting f(x, i) = fi(x). One can also viewed (14.8) as a discretized “empirical” version

of (14.9) when drawing (zi)i i.i.d. according to z and defining fi(x) = f(x, zi). In this setup, (14.8) converges
to (14.9) as n→ +∞.

A typical example of such a class of problems is empirical risk minimization for linear model, where in
these cases

fi(x) = `(〈ai, x〉, yi) and f(x, z) = `(〈a, x〉, y) (14.10)

for z = (a, y) ∈ Z = (A = Rp) × Y (typically Y = R or Y = {−1,+1} for regression and classification),
where ` is some loss function. We illustrate below the methods on binary logistic classification, where

L(s, y)
def.
= log(1 + exp(−sy)). (14.11)

But this extends to arbitrary parametric models, and in particular deep neural networks.
While some algorithms (in particular batch gradient descent) are specific to finite sums (14.8), the

stochastic methods we detail next work verbatim (with the same convergence guarantees) in the expectation
case (14.9). For the sake of simplicity, we however do the exposition for the finite sums case, which is
sufficient in the vast majority of cases. But one should keep in mind that n can be arbitrarily large, so it is
not acceptable in this setting to use algorithms whose complexity per iteration depend on n.

If the functions fi(x) are very similar (the extreme case being that they are all equal), then of course
there is a gain in using stochastic optimization (since in this case, ∇fi ≈ ∇f but ∇fi is n times cheaper).
But in general stochastic optimization methods are notÂ necessarily faster than batch gradient descent. If
n is not too large so that one afford the price of doing a few non-stochastic iterations, then deterministic
methods can be faster. But if n is so large that one cannot do even a single deterministic iteration, then
stochastic methods allow one to have a fine grained scheme by breaking the cost of determinstic iterations
in smaller chunks. Another advantage is that they are quite easy to parallelize.

14.2.2 Batch Gradient Descent (BGD)

The usual deterministic (batch) gradient descent (BGD) is studied in details in Section 13.4. Its iterations
read

xk+1 = xk − τk∇f(xk)

and the step size should be chosen as 0 < τmin < τk < τmax
def.
= 2/L where L is the Lipschitz constant of the

gradient ∇f . In particular, in this deterministic setting, this step size should not go to zero and this ensures
quite fast convergence (even linear rates if f is strongly convex).

The computation of the gradient in our setting reads

∇f(x) =
1

n

n∑
i=1

∇fi(x) (14.12)

so it typically has complexity O(np) if computing ∇fi has linear complexity in p.
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Figure 14.3: Evolution of the error of the BGD for logistic classification.

For ERM-type functions of the form (14.10), one can do the Taylor expansion of fi

fi(x+ ε) = `(〈ai, x〉+ 〈ai, ε〉, yi) = `(〈ai, x〉, yi) + `′(〈ai, x〉, yi)〈ai, ε〉+ o(||ε||)
= fi(x) + 〈`′(〈ai, x〉, yi)ai, x〉+ o(||ε||),

where `(y, y′) ∈ R is the derivative with respect to the first variable, i.e. the gradient of the map y ∈ R 7→
L(y, y′) ∈ R. This computation shows that

∇fi(x) = `′(〈ai, x〉, yi)ai. (14.13)

For the logistic loss, one has

L′(s, y) = −s e−sy

1 + e−sy
.

14.2.3 Stochastic Gradient Descent (SGD)

Figure 14.4: Unbiased gra-
dient estimate

For very large n, computing the full gradient ∇f as in (14.12) is prohibitive.
The idea of SGD is to trade this exact full gradient by an inexact proxy using a
single functional fi where i is drawn uniformly at random. The main idea that
makes this work is that this sampling scheme provides an unbiased estimate of
the gradient, in the sense that

Ei∇fi(x) = ∇f(x) (14.14)

where i is a random variable distributed uniformly in {1, . . . , n}.
Starting from some x0,the iterations of stochastic gradient descent (SGD)

read
xk+1 = xk − τk∇fi(k)(xk)

where, for each iteration index k, i(k) is drawn uniformly at random in {1, . . . , n}. It is important that the
iterates xk+1 are thus random vectors, and the theoretical analysis of the method thus studies wether this
sequence of random vectors converges (in expectation or in probability for instance) toward a deterministic
vector (minimizing f), and at which speed.

Figure 14.5:
Schematic view
of SGD iterates

Note that each step of a batch gradient descent has complexity O(np), while a step
of SGD only has complexity O(p). SGD is thus advantageous when n is very large, and
one cannot afford to do several passes through the data. In some situation, SGD can
provide accurate results even with k � n, exploiting redundancy between the samples.

A crucial question is the choice of step size schedule τk. It must tends to 0 in order
to cancel the noise induced on the gradient by the stochastic sampling. But it should
not go too fast to zero in order for the method to keep converging.

A typical schedule that ensures both properties is to have asymptotically τk ∼ k−1
for k → +∞. We thus propose to use

τk
def.
=

τ0
1 + k/k0

(14.15)
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Figure 14.6: Display of a large number of trajectories k 7→ xk ∈ R generated by several runs of SGD. On
the top row, each curve is a trajectory, and the bottom row displays the corresponding density.

where k0 indicates roughly the number of iterations serving as a “warmup” phase.
Figure 14.6 shows a simple 1-D example to minimize f1(x) + f2(x) for x ∈ R and

f1(x) = (x−1)2 and f2(x) = (x+1)2. One can see how the density of the distribution of
xk progressively clusters around the minimizer x? = 0. Here the distribution of x0 is uniform on [−1/2, 1/2].

The following theorem shows the convergence in expectation with a 1/
√
k rate on the objective.

Theorem 24. We assume f is µ-strongly convex as defined in (Sµ) (i.e. Idp � ∂2f(x) if f is C2), and is
such that ||∇fi(x)||2 6 C2. For the step size choice τk = 1

µ(k+1) , one has

E(||xk − x?||2) 6
R

k + 1
where R = max(||x0 − x?||, C2/µ2), (14.16)

where E indicates an expectation with respect to the i.i.d. sampling performed at each iteration.

Proof. By strong convexity, one has

f(x?)− f(xk) > 〈∇f(xk), x? − xk〉+
µ

2
||xk − x?||2

f(xk)− f(x?) > 〈∇f(x?), xk − x?〉+
µ

2
||xk − x?||2.

Summing these two inequalities and using ∇f(x?) = 0 leads to

〈∇f(xk)−∇f(x?), xk − x?〉 = 〈∇f(xk), xk − x?〉 > µ||xk − x?||2. (14.17)

Considering only the expectation with respect to the ransom sample of i(k) ∼ ik, one has

Eik(||xk+1 − x?||2) = Eik(||xk − τk∇fik(xk)− x?||2)

= ||xk − x?||2 + 2τk〈Eik(∇fik(xk)), x? − xk〉+ τ2kEik(||∇fik(xk)||2)

6 ||xk − x?||2 + 2τk〈∇f(xk)), x? − xk〉+ τ2kC
2

where we used the fact (14.14) that the gradient is unbiased. Taking now the full expectation with respect
to all the other previous iterates, and using (14.17) one obtains

E(||xk+1 − x?||2) 6 E(||xk − x?||2)− 2µτkE(||xk − x?||2) + τ2kC
2 = (1− 2µτk)E(||xk − x?||2) + τ2kC

2. (14.18)

We show by recursion that the bound (14.16) holds. We denote εk
def.
= E(||xk − x?||2). Indeed, for k = 0, this

it is true that

ε0 6
max(||x0 − x?||, C2/µ2)

1
=
R

1
.
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f(xk) log10(f(xk)− f(x?))

Figure 14.7: Evolution of the error of the SGD for logistic classification (dashed line shows BGD).

We now assume that εk 6 R
k+1 . Using (14.18) in the case of τk = 1

µ(k+1) , one has, denoting m = k + 1

εk+1 6 (1− 2µτk)εk + τ2kC
2 =

(
1− 2

m

)
εk +

C2

(µm)2

6

(
1− 2

m

)
R

m
+

R

m2
=

(
1

m
− 1

m2

)
R =

m− 1

m2
R =

m2 − 1

m2

1

m+ 1
R 6

R

m+ 1

A weakness of SGD (as well as the SGA scheme studied next) is that it only weakly benefit from strong
convexity of f . This is in sharp contrast with BGD, which enjoy a fast linear rate for strongly convex
functionals, see Theorem 23.

Figure 14.7 displays the evolution of the energy f(xk). It overlays on top (black dashed curve) the
convergence of the batch gradient descent, with a careful scaling of the number of iteration to account for
the fact that the complexity of a batch iteration is n times larger.

14.2.4 Stochastic Gradient Descent with Averaging (SGA)

Stochastic gradient descent is slow because of the fast decay of τk toward zero. To improve somehow the
convergence speed, it is possible to average the past iterate, i.e. run a “classical” SGD on auxiliary variables
(x̃k)k

x̃(`+1) = x̃k − τk∇fi(k)(x̃k)

and output as estimated weight vector the Cesaro average

xk
def.
=

1

k

k∑
`=1

x̃`.

This defines the Stochastic Gradient Descent with Averaging (SGA) algorithm.

Note that it is possible to avoid explicitly storing all the iterates by simply updating a running average
as follow

xk+1 =
1

k
x̃k +

k − 1

k
xk.

In this case, a typical choice of decay is rather of the form

τk
def.
=

τ0

1 +
√
k/k0

.

Notice that the step size now goes much slower to 0, at rate k−1/2.

Typically, because the averaging stabilizes the iterates, the choice of (k0, τ0) is less important than for
SGD.

Bach proves that for logistic classification, it leads to a faster convergence (the constant involved are
smaller) than SGD, since on contrast to SGD, SGA is adaptive to the local strong convexity of E.
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Figure 14.8: Evolution of log10(f(xk)− f(x?)) for SGD, SGA and SAG.

14.2.5 Stochastic Averaged Gradient Descent (SAG)

For problem size n where the dataset (of size n × p) can fully fit into memory, it is possible to further
improve the SGA method by bookkeeping the previous gradients. This gives rise to the Stochastic Averaged
Gradient Descent (SAG) algorithm.

We store all the previously computed gradients in (Gi)ni=1, which necessitates O(n × p) memory. The
iterates are defined by using a proxy g for the batch gradient, which is progressively enhanced during the
iterates.

The algorithm reads

xk+1 = xk − τg where


h← ∇fi(k)(x̃k),
g ← g −Gi(k) + h,
Gi(k) ← h.

Note that in contrast to SGD and SGA, this method uses a fixed step size τ . Similarly to the BGD, in order
to ensure convergence, the step size τ should be of the order of 1/L where L is the Lipschitz constant of f .

This algorithm improves over SGA and SGD since it has a convergence rate of O(1/k) as does BGD.
Furthermore, in the presence of strong convexity (for instance when X is injective for logistic classification),
it has a linear convergence rate, i.e.

E(f(xk))− f(x?) = O
(
ρk
)
,

for some 0 < ρ < 1.

Note that this improvement over SGD and SGA is made possible only because SAG explicitly uses the
fact that n is finite (while SGD and SGA can be extended to infinite n and more general minimization of
expectations (14.9)).

Figure 14.8 shows a comparison of SGD, SGA and SAG.

14.3 Automatic Differentiation

The main computational bottleneck of gradient descent methods (batch or stochastic) is the computation
of gradients ∇f(x). For simple functionals, such as those encountered in ERM for linear models, and also for
MLP with a single hidden layer, it is possible to compute these gradients in closed form, and that the main
computational burden is the evaluation of matrix-vector products. For more complicated functionals (such as
those involving deep networks), computing the formula for the gradient quickly becomes cumbersome. Even
worse: computing these gradients using the usual chain rule formula is sub-optimal. We presents methods
to compute recursively in an optimal manner these gradients. The purpose of this approach is to automatize
this computational step.
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Figure 14.9: A computational graph.

14.3.1 Finite Differences and Symbolic Calculus

We consider f : Rp → R and want to derive a method to evaluate ∇f : Rp 7→ Rp. Approximating this
vector field using finite differences, i.e. introducing ε > 0 small enough and computing

1

ε
(f(x+ εδ1)− f(x), . . . , f(x+ εδp)− f(x))> ≈ ∇f(x)

requires p + 1 evaluations of f , where we denoted δk = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at index k. For
a large p, this is prohibitive. The method we describe in this section (the so-called reverse mode automatic
differentiation) has in most cases a cost proportional to a single evaluation of f . This type of method is similar
to symbolic calculus in the sense that it provides (up to machine precision) exact gradient computation. But
symbolic calculus does not takes into account the underlying algorithm which compute the function, while
automatic differentiation factorizes the computation of the derivative according to an efficient algorithm.

14.3.2 Computational Graphs

We consider a generic function f(x) where x = (x1, . . . , xs) are the input variables. We assume that
f is implemented in an algorithm, with intermediate variable (xs+1, . . . , xt) where t is the total number
of variables. The output is xt, and we thus denote xt = f(x) this function. We denote xk ∈ Rnk the

dimensionality of the variables. The goal is to compute the derivatives ∂f(x)
∂xk

∈ Rnt×nk for k = 1, . . . , s. For
the sake of simplicity, one can assume in what follows that nk = 1 so that all the involved quantities are
scalar (but if this is not the case, beware that the order of multiplication of the matrices of course matters).

A numerical algorithm can be represented as a succession of functions of the form

∀ k = s+ 1, . . . , t, xk = fk(x1, . . . , xk−1)

where fk is a function which only depends on the previous variables, see Fig. 14.9. One can represent this
algorithm using a directed acyclic graph (DAG), linking the variables involved in fk to xk. The node of this
graph are thus conveniently ordered by their indexing, and the directed edges only link a variable to another
one with a strictly larger index. The evaluation of f(x) thus corresponds to a forward traversal of this graph.
Note that the goal of automatic differentiation is not to define an efficient computational graph, it is up
to the user to provide this graph. Computing an efficient graph associated to a mathematical formula is a
complicated combinatorial problem, which still has to be solved by the user. Automatic differentiation thus
leverage the availability of an efficient graph to provide an efficient algorithm to evaluate derivatives.

14.3.3 Forward Mode of Automatic Differentiation

The forward mode correspond to the usual way of computing differentials. It compute the derivative
∂xk

∂x1
of all variables xk with respect to x1. One then needs to repeat this method p times to compute all

the derivative with respect to x1, x2, . . . , xp (we only write thing for the first variable, the method being of
course the same with respect to the other ones).
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Figure 14.10: Relation between the variable for the forward (left) and backward (right) modes.

The method initialize the derivative of the input nodes

∂x1
∂x1

= Idn1×n1 ,
∂x2
∂x1

= 0n2×n1 , . . . ,
∂xs
∂x1

= 0ns×n1 ,

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

∀ k = s+ 1, . . . , t,
∂xk
∂x1

=
∑

`∈parent(k)

[
∂xk
∂x`

]
× ∂x`
∂x1

=
∑

`∈parent(k)

∂fk
∂x`

(x1, . . . , xk−1)× ∂x`
∂x1

.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 14.10,
left. Here the quantities being computed (i.e. stored in computer variables) are the derivatives ∂x`

∂x1
, and

× denotes in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since
here ∂xk

∂x`
should be interpreted not as a numerical variable but needs to be interpreted as derivative of the

function fk, which can be evaluated on the fly (we assume that the derivative of the function involved are
accessible in closed form).

Assuming all the involved functions ∂fk
∂xk

have the same complexity (which is likely to be the case if all

the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for ∂

∂x1
, . . . , ∂

∂xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
√
y log(x) (14.19)

whose computational graph is displayed on Figure 14.11. The iterations of the forward mode to compute
the derivative with respect to x read

∂x

∂x
= 1,

∂y

∂x
= 0

∂a

∂x
=

[
∂a

∂x

]
∂x

∂x
=

1

x

∂x

∂x
{x 7→ a = log(x)}

∂b

∂x
=

[
∂b

∂a

]
∂a

∂x
+

[
∂b

∂y

]
∂y

∂x
= y

∂a

∂x
+ 0 {(y, a) 7→ b = ya}

∂c

∂x
=

[
∂c

∂b

]
∂b

∂x
=

1

2
√
b

∂b

∂x
{b 7→ c =

√
b}

∂f

∂x
=

[
∂f

∂b

]
∂b

∂x
+

[
∂f

∂c

]
∂c

∂x
= 1

∂b

∂x
+ 1

∂c

∂x
{(b, c) 7→ f = b+ c}
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Figure 14.11: Example of a simple computational graph.

One needs to run another forward pass to compute the derivative with respect to y

∂x

∂y
= 0,

∂y

∂y
= 1

∂a

∂y
=

[
∂a

∂x

]
∂x

∂y
= 0 {x 7→ a = log(x)}

∂b

∂y
=

[
∂b

∂a

]
∂a

∂y
+

[
∂b

∂y

]
∂y

∂y
= 0 + a

∂y

∂y
{(y, a) 7→ b = ya}

∂c

∂y
=

[
∂c

∂b

]
∂b

∂y
=

1

2
√
b

∂b

∂y
{b 7→ c =

√
b}

∂f

∂y
=

[
∂f

∂b

]
∂b

∂y
+

[
∂f

∂c

]
∂c

∂y
= 1

∂b

∂y
+ 1

∂c

∂y
{(b, c) 7→ f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + εx′ where ε is a symbol
obeying the rule that ε2 = 0. Here (x, x′) ∈ R2 and x′ is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ εx′)(y + εy′) = xy + ε(xy′ + yx′) and
1

x+ εx′
=

1

x
− ε x

′

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ε) = f(x) + εf ′(x).

For a more general basic function f , one needs to overload it so that

f(x+ εx′)
def.
= f(x) + εf ′(x)x′.

Using this definition, one has that

(f ◦ g)(x+ ε) = f(g(x)) + εf ′(g(x))g′(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ε, x2, . . . , xs) = f(x1, . . . , xs) + ε
∂f

∂x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic differentiation to compute
∂f
∂x1

(x1, . . . , xs) (and similarly for the other variables).

232



14.3.4 Reverse Mode of Automatic Differentiation

Instead of evaluating the differentials ∂xk

∂x1
which is problematic for a large p, the reverse mode evaluates

the differentials ∂xt

∂xk
, i.e. it computes the derivative of the output node with respect to the all the inner

nodes.

The method initialize the derivative of the final node

∂xt
∂xt

= Idnt×nt
,

and then iteratively makes use, from the last node to the first, of the following recursion formula

∀ k = t− 1, t− 2, . . . , 1,
∂xt
∂xk

=
∑

m∈son(k)

∂xt
∂xm

×
[
∂xm
∂xk

]
=

∑
m∈son(k)

∂xt
∂xm

× ∂fm(x1, . . . , xm)

∂xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 14.10,
right.

Back-propagation. In the special case where xt ∈ R, then ∂xt

∂xk
= [∇xk

f(x)]> ∈ R1×nk and one can write
the recursion on the gradient vector as follow

∀ k = t− 1, t− 2, . . . , 1, ∇xk
f(x) =

∑
m∈son(k)

(
∂fm(x1, . . . , xm)

∂xk

)>
(∇xm

f(x)) .

where
(
∂fm(x1,...,xm)

∂xk

)>
∈ Rnk×nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.

In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its
drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (14.19), the iterations of the reverse mode
read

∂f

∂f
= 1

∂f

∂c
=
∂f

∂f

[
∂f

∂c

]
=
∂f

∂f
1 {c 7→ f = b+ c}

∂f

∂b
=
∂f

∂c

[
∂c

∂b

]
+
∂f

∂f

[
∂f

∂b

]
=
∂f

∂c

1

2
√
b

+
∂f

∂f
1 {b 7→ c =

√
b, b 7→ f = b+ c}

∂f

∂a
=
∂f

∂b

[
∂b

∂a

]
=
∂f

∂b
y {a 7→ b = ya}

∂f

∂y
=
∂f

∂b

[
∂b

∂y

]
=
∂f

∂b
a {y 7→ b = ya}

∂f

∂x
=
∂f

∂a

[
∂a

∂x

]
=
∂f

∂a

1

x
{x 7→ a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.
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Figure 14.12: Complexity of forward (left) and backward (right) modes for composition of functions.

14.3.5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft ◦ ft−1 ◦ . . . ◦ f2 ◦ f1 (14.20)

for functions fk : Rnk−1 → Rnk .
The forward function evaluation algorithm initializes x0 = x ∈ Rn0 and then computes

∀ k = 1, . . . , t, xk = fk(xk−1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= ∂fk(xk−1) ∈ Rnk×nk−1 the Jacobian, one has

∂f(x) = At ×At−1 × . . . A2 ×A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

∂f(x) = At × (At−1 × (. . .× (A3 × (A2 ×A1)))) ,

∂f(x) = ((((At ×At−1)×At−2)× . . .)×A2)×A1.

We note that the computation of the product A × B of A ∈ Rn×p with B ∈ Rp×q necessitates npq
operations. As shown on Figure 14.12, the complexity of the forward and backward modes are

n0

t−1∑
k=1

nknk+1 and nt

t−2∑
k=0

nknk+1

So if nt � n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

14.3.6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

∀ k = 1, . . . , t, xk = fk(xk−1, θk−1) (14.21)

where θk−1 is a vector of parameters and x0 ∈ Rn0 is given. The function to minimize has the form

f(θ)
def.
= L(xt) (14.22)

where L : Rnt → R is some loss function (for instance a least square or logistic prediction risk) and θ =
(θk)t−1k=0. Figure 14.13, top, displays the associated computational graph.

One can use the reverse mode automatic differentiation to compute the gradient of f by computing
successively the gradient with respect to all (xk, θk). One initializes

∇xtf = ∇L(xt)
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Figure 14.13: Computational graph for a feedforward architecture.

Figure 14.14: Multi-layer perceptron parameterization.

and then recurse from k = t− 1 to 0

zk−1 = [∂xfk(xk−1, θk−1)]>zk and ∇θk−1
f = [∂θfk(xk−1, θk−1)]>(∇xk

f) (14.23)

where we denoted zk
def.
= ∇xk

f(θ) the gradient with respect to xk.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

∀xk−1 ∈ Rnk−1 , fk(xk−1, θk−1) = ρ(θk−1xk−1) (14.24)

where θk−1 ∈ Rnk×nk−1 are the neuron’s weights and ρ a fixed pointwise linearity, see Figure 14.14. One
has, for a vector zk ∈ Rnk (typically equal to ∇xk

f){
[∂xfk(xk−1, θk−1)]>(zk) = θ>k−1wkzk,

[∂θfk(xk−1, θk−1)]>(zk) = wkx
>
k−1

where wk
def.
= diag(ρ′(θk−1xk−1)).

Link with adjoint state method. One can interpret (14.21) as a time discretization of a continuous
ODE. One imposes that the dimension nk = n is fixed, and denotes x(t) ∈ Rn a continuous time evolution,
so that xk → x(kτ) when k → +∞ and kτ → t. Imposing then the structure

fk(xk−1, θk−1) = xk−1 + τu(xk−1, θk−1, kτ) (14.25)

where u(x, θ, t) ∈ Rn is a parameterized vector field, as τ → 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), θ(t), t) (14.26)

with x(t = 0) = x0.
Denoting z(t) = ∇x(t)f(θ) the “adjoint” vector field, the discrete equations (14.28) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = −[∂xu(x(t), θ(t), t)]>z(t) and ∇θ(t)f(θ) = [∂θu(x(t), θ(t), t)]>z(t).

Note that the correct normalization is 1
τ∇θk−1

f → ∇θ(t)f(θ)
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Figure 14.15: Computational graph for a recurrent architecture.

14.3.7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter θ = θk and fk = h recursively
in (14.24), so that

∀ k = 1, . . . , t, xk = h(xk−1, θ). (14.27)

We consider a real valued function of the form

f(θ) = L(xt, θ)

so that here the final loss depends on θ (which is thus more general than (14.22)). Figure 14.15, bottom,
displays the associated computational graph.

The back-propagation then operates as

∇xk−1
f = [∂xh(xk−1, θ)]

>∇xk
f and ∇θf = ∇θL(xt, θ) +

∑
k

[∂θh(xk−1, θ)]
>∇xk

f. (14.28)

Similarly, writing h(x, θ) = x+ τu(x, θ), letting (k, kτ)→ (+∞, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), θ)

and the following linear backward adjoint equation, for f(θ) = L(x(T ), θ)

ż(t) = −[∂xu(x(t), θ)]>z(t) and ∇θf(θ) = ∇θL(x(T ), θ) +

∫ T

0

[∂θf(x(t), θ)]>z(t)dt. (14.29)

with z(0) = ∇xL(xt, θ).

Residual recurrent networks. A recurrent network is defined using

h(x, θ) = x+W>2 ρ(W1x)

as displayed on Figure 14.16, where θ = (W1,W2) ∈ (Rn×q)2 are the weights and ρ is a pointwise non-
linearity. The number q of hidden neurons can be increased to approximate more complex functions. In the
special case where W2 = −τW1, and ρ = ψ′, then this is a special case of an argmin layer (14.31) to minimize
the function E(x, θ) = ψ(W1x) using gradient descent, where ψ(u) =

∑
i ψ(ui) is a separable function. The

Jacobians ∂θh and ∂xh are computed similarly to (14.29).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute ∇f(θ) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to
reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).
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Figure 14.16: Recurrent residual perceptron parameterization.

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (14.26) has a symplectic structure of the form u((r, s), θ, t) =
(F (s, θ, t), G(r, θ, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + τF (sk, θk, τk) and sk+1 = sk + τG(rk+1, θk+1/2, τ(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 − τG(rk+1, θk+1/2, τ(k + 1/2)). and rk = rk+1 − τF (sk, θk, τk).

Fixed point maps In some applications (some of which are detailed below), the iterations xk converges
to some x?(θ) which is thus a fixed point

x?(θ) = h(x?(θ), θ).

Instead of applying the back-propagation to compute the gradient of f(θ) = L(xt, θ), one can thus apply the
implicit function theorem to compute the gradient of f?(θ) = L(x?(θ), θ). Indeed, one has

∇f?(θ) = [∂x?(θ)]>(∇xL(x?(θ), θ)) +∇θL(x?(θ), θ). (14.30)

Using the implicit function theorem one can compute the Jacobian as

∂x?(θ) = −
(
∂h

∂x
(x?(θ), θ)

)−1
∂h

∂θ
(x?(θ), θ).

In practice, one replace in these formulas x?(θ) by xt, which produces an approximation of ∇f(θ). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter θ to a point x(θ) by solving a parametric
optimization problem

x(θ) = argmin
x

E(x, θ).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk − τ∇E(xk, θ). (14.31)

This has the form (14.25) when using the vector field u(x, θ) = ∇E(xk, θ).
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Using formula (14.30) in this case where h = ∇E , one obtains

∇f?(θ) = −
(
∂2E
∂x∂θ

(x?(θ), θ)

)>(
∂2E
∂x2

(x?(θ), θ)

)−1
(∇xL(x?(θ), θ)) +∇θL(x?(θ), θ)

In the special case where the function f(θ) is the minimized function itself, i.e. f(θ) = E(x?(θ), θ), i.e.
L = E , then one can apply the implicit function theorem formula (14.30), which is much simpler since in
this case ∇xL(x?(θ), θ) = 0 so that

∇f?(θ) = ∇θL(x?(θ), θ). (14.32)

This result is often called Danskin theorem or the envelope theorem.

Sinkhorn’s algorithm Sinkhorn algorithm approximates the optimal distance between two histograms

a ∈ Rn and b ∈ Rm using the following recursion on multipliers, initialized as x0
def.
= (u0, v0) = (1n, 1m)

uk+1 =
a

Kvk
, and vk+1 =

b

K>uk
.

where ·· is the pointwise division and K ∈ Rn×m+ is a kernel. Denoting θ = (a, b) ∈ Rn+m and xk = (uk, vk) ∈
Rn+m, the OT distance is then approximately equal to

f(θ) = E(xt, θ)
def.
= 〈a, log(ut)〉+ 〈b, log(vt)〉 − ε〈Kut, vt〉.

Sinkhorn iteration are alternate minimization to find a minimizer of E .

Denoting K def.
=

(
0 K
K> 0

)
∈ R(n+m)×(n+m), one can re-write these iterations in the form (14.27) using

h(x, θ) =
θ

Kx
and L(xt, θ) = E(xt, θ) = 〈θ, log(xt)〉 − ε〈Kut, vt〉.

One has the following differential operator

[∂xh(x, θ)]> = −K> diag

(
θ

(Kx)2

)
, [∂θh(x, θ)]> = diag

(
1

Kx

)
.

Similarly as for the argmin layer, at convergence xk → x?(θ), one finds a minimizer of E , so that∇xL(x?(θ), θ) =
0 and thus the gradient of f?(θ) = E(x?(θ), θ) can be computed using (14.32) i.e.

∇f?(θ) = log(x?(θ)).
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