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Chapter 5

Inverse Problems

The main references for this chapter are [3, 6, 2].

5.1 Inverse Problems Regularization

Increasing the resolution of signals and images requires to solve an ill posed inverse problem. This
corresponds to inverting a linear measurement operator that reduces the resolution of the image. This
chapter makes use of convex regularization introduced in Chapter ?? to stabilize this inverse problem.

We consider a (usually) continuous linear map Φ : S → H where S can be an Hilbert or a more general
Banach space. This operator is intended to capture the hardware acquisition process, which maps a high
resolution unknown signal f0 ∈ S to a noisy low-resolution obervation

y = Φf0 + w ∈ H

where w ∈ H models the acquisition noise. In this section, we do not use a random noise model, and simply
assume that ||w||H is bounded.

In most applications, H = RP is finite dimensional, because the hardware involved in the acquisition
can only record a finite (and often small) number P of observations. Furthermore, in order to implement
numerically a recovery process on a computer, it also makes sense to restrict the attention to S = RN , where
N is number of point on the discretization grid, and is usually very large, N ≫ P . However, in order to
perform a mathematical analysis of the recovery process, and to be able to introduce meaningful models on
the unknown f0, it still makes sense to consider infinite dimensional functional space (especially for the data
space S).

The difficulty of this problem is that the direct inversion of Φ is in general impossible or not advisable
because Φ−1 have a large norm or is even discontinuous. This is further increased by the addition of some
measurement noise w, so that the relation Φ−1y = f0+Φ−1w would leads to an explosion of the noise Φ−1w.

We now gives a few representative examples of forward operators Φ.

Denoising. The case of the identity operator Φ = IdS , S = H corresponds to the classical denoising
problem, already treated in Chapters ?? and ??.

De-blurring and super-resolution. For a general operator Φ, the recovery of f0 is more challenging,
and this requires to perform both an inversion and a denoising. For many problem, this two goals are in
contradiction, since usually inverting the operator increases the noise level. This is for instance the case for
the deblurring problem, where Φ is a translation invariant operator, that corresponds to a low pass filtering
with some kernel h

Φf = f ⋆ h. (5.1)
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One can for instance consider this convolution over S = H = L2(Td), see Proposition 4. In practice, this
convolution is followed by a sampling on a grid Φf = {(f ⋆ h)(xk) ; 0 ⩽ k < P}, see Figure 5.1, middle, for
an example of a low resolution image Φf0. Inverting such operator has important industrial application to
upsample the content of digital photos and to compute high definition videos from low definition videos.

Interpolation and inpainting. Inpainting corresponds to interpolating missing pixels in an image. This
is modelled by a diagonal operator over the spacial domain

(Φf)(x) =

{
0 if x ∈ Ω,
f(x) if x /∈ Ω.

(5.2)

where Ω ⊂ [0, 1]d (continuous model) or {0, . . . , N − 1} which is then a set of missing pixels. Figure 5.1,
right, shows an example of damaged image Φf0.

Original f0 Low resolution Φf0 Masked Φf0

Figure 5.1: Example of inverse problem operators.

Medical imaging. Most medical imaging acquisition device only gives indirect access to the signal of
interest, and is usually well approximated by such a linear operator Φ. In scanners, the acquisition operator is
the Radon transform, which, thanks to the Fourier slice theorem, is equivalent to partial Fourier mesurments
along radial lines. Medical resonance imaging (MRI) is also equivalent to partial Fourier measures

Φf =
{
f̂(x) ; x ∈ Ω

}
. (5.3)

Here, Ω is a set of radial line for a scanner, and smooth curves (e.g. spirals) for MRI.
Other indirect application are obtained by electric or magnetic fields measurements of the brain activity

(corresponding to MEG/EEG). Denoting Ω ⊂ R3 the region around which measurements are performed (e.g.
the head), in a crude approximation of these measurements, one can assume Φf = {(ψ ⋆ f)(x) ; x ∈ ∂Ω}
where ψ(x) is a kernel accounting for the decay of the electric or magnetic field, e.g. ψ(x) = 1/||x||2.

Regression for supervised learning. While the focus of this chapter is on imaging science, a closely re-
lated problem is supervised learning using linear model. The typical notations associated to this problem are
usually different, which causes confusion. This problem is detailed in Chapter ??, which draws connection
between regression and inverse problems. In statistical learning, one observes pairs (xi, yi)

n
i=1 of n observa-

tion, where the features are xi ∈ Rp. One seeks for a linear prediction model of the form yi = ⟨β, xi⟩ where
the unknown parameter is β ∈ Rp. Storing all the xi as rows of a matrix X ∈ Rn×p, supervised learning
aims at approximately solving Xβ ≈ y. The problem is similar to the inverse problem Φf = y where one
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performs the change of variable Φ 7→ X and f 7→ β, with dimensions (P,N) → (n, p). In statistical learning,
one does not assume some well specified model y = Φf0 +w, and the major difference is that the matrix X
is random, which add extra “noise” which needs to be controlled as n→ +∞. The recovery is performed by
the normalized ridge regression problem

min
β

1

2n
||Xβ − y||2 + λ||β||2

so that the natural change of variable should be 1
nX

∗X ∼ Φ∗Φ (empirical covariance) and 1
nX

∗y ∼ Φ∗y.
The law of large number shows that 1

nX
∗X and 1

nX
∗y are contaminated by a noise of amplitude 1/

√
n,

which plays the role of ||w||.

5.2 Warmup: Oracle Linear Inversion

We first consider a simpler setup were we seek for an “optimal” inversion method which is assumed to be
diagonal in some basis. We will see later that these denoiser can also be seen as solving a multi-dimensional
optimization problem (here, the optimization is just 1-dimensional over each basis coefficient).

We consider the inversion of an operator which is diagonal in an ortho-basis (ψk):

Φf =
∑
k

φk⟨f, ψk⟩ψk,

where typically φk are attenuation factors. The observation model is

Y = Φf0 + w

where w is a Gaussian white noise. For instance, if (ψk)k is the Fourier basis, this corresponds to a decon-

volution problem Φf = h ⋆ f where ĥk = φk. We consider the same diagonal estimator f̃ as in the denoising
case:

f̃ :=
∑
k

λk⟨Y, ψk⟩ψk.

The estimation error we aim at minimizing with respect to λ is thus

Ew∥f̃ − f0∥2 =
∑
k

E
∣∣∣⟨f̃ − f0, ψk⟩

∣∣∣2 =
∑
k

E |λk(φkck + ⟨w, ψk⟩)− ck|2 .

Leveraging the independence and the zero mean of the noise,

Ew∥f̃ − f0∥2 =
∑
k

|ck|2|φkλk − 1|2 + |λk|2σ2.

The optimal oracle denoiser solves

min
λk

|ck|2|φkλk − 1|2 + |λk|2σ2,

i.e., it satisfies
|ck|2φ̄k(φkλk − 1) + σ2λk = 0,

which gives

λk =
|ck|2φ̄k

|ck|2|φk|2 + σ2
.

When σ → 0 (no noise), then, assuming φk ̸= 0 so that the filter is invertible, one obtains the brute force
inversion of the filter, independently of the signal content:

λk =
1

φk
.
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As σ increases, this inversion is attenuated. For instance, if we consider a smooth signal over a Fourier basis,
it can be modeled as having a polynomial decay c2k = 1/kα. We consider also a low pass convolution with
polynomial decay |φk|2 = 1/kβ , then

λk =
1/kβ/2

1 + σ2/kα+β
.

The shape of lambda is a bell curve: its limit is 1 for k → 0 and is 0 for k → ∞. It starts increasing to
boost higher frequencies canceled by the filter, and then it decreases to prevent the explosion of the noise.
It peaks at a maximum value at

k⋆ =

(
σ2β

α

) 1
α+β

.

5.3 Theoretical Study of Quadratic Regularization

We now give a glimpse on the typical approach to obtain theoretical guarantee on recovery quality in the
case of Hilbert space. The goal is not to be exhaustive, but rather to insist on the modelling hypotethese,
namely smoothness implies a so called “source condition”, and the inherent limitations of quadratic methods
(namely slow rates and the impossibility to recover information in ker(Φ), i.e. to achieve super-resolution).

5.3.1 Singular Value Decomposition

Finite dimension. Let us start by the simple finite dimensional case Φ ∈ RP×N so that S = RN and
H = RP are Hilbert spaces. In this case, the Singular Value Decomposition (SVD) is the key to analyze the
operator very precisely, and to describe linear inversion process.

Proposition 14 (SVD). There exists (U, V ) ∈ RP×R × RN×R, where R = rank(Φ) = dim(Im(Φ)), with
U⊤U = V ⊤V = IdR, i.e. having orthogonal columns (um)Rm=1 ⊂ RN , (vm)Rm=1 ⊂ RP , and (σm)Rm=1 with
σm > 0, such that

Φ = U diagm(σm)V ⊤ =

R∑
m=1

σmumv
⊤
m. (5.4)

Proof. We first analyze the problem, and notice that if Φ = UΣV ⊤ with Σ = diagm(σm), then ΦΦ⊤ =
UΣ2U⊤ and then V ⊤ = Σ−1U⊤Φ. We can use this insight. Since ΦΦ⊤ is a positive symmetric matrix,
we write its eigendecomposition as ΦΦ⊤ = UΣ2U⊤ where Σ = diagRm=1(σm) with σm > 0. We then define

V
def.
= Φ⊤UΣ−1. One then verifies that

V ⊤V = (Σ−1U⊤Φ)(Φ⊤UΣ−1) = Σ−1U⊤(UΣ2U⊤)UΣ−1 = IdR and UΣV ⊤ = UΣΣ−1U⊤Φ = Φ.

This theorem is still valid with complex matrice, replacing ⊤ by ∗. Expression (5.4) describes Φ as a sum
of rank-1 matrices umv

⊤
m. One usually order the singular values (σm)m in decaying order σ1 ⩾ . . . ⩾ σR. If

these values are different, then the SVD is unique up to ±1 sign change on the singular vectors.
The left singular vectors U is an orthonormal basis of Im(Φ), while the right singular values is an

orthonormal basis of Im(Φ⊤) = ker(Φ)⊥. The decomposition (5.4) is often call the “reduced” SVD because
one has only kept the R non-zero singular values. The “full” SVD is obtained by completing U and V to
define orthonormal bases of the full spaces RP and RN . Then Σ becomes a rectangular matrix of size P ×N .

A typical example is for Φf = f ⋆ h over RP = RN , in which case the Fourier transform diagonalizes the
convolution, i.e.

Φ = (um)∗m diag(ĥm)(um)m (5.5)

where (um)n
def.
= 1√

N
e

2iπ
N nm so that the singular values are σm = |ĥm| (removing the zero values) and the

singular vectors are (um)n and (vmθm)n where θm
def.
= |ĥm|/ĥm is a unit complex number.

Computing the SVD of a full matrix Φ ∈ RN×N has complexity N3.
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Compact operators. One can extend the decomposition to compact operators Φ : S → H between
separable Hilbert space. A compact operator is such that ΦB1 is pre-compact where B1 = {s ∈ S ; ||s|| ⩽ 1}
is the unit-ball. This means that for any sequence (Φsk)k where sk ∈ B1 one can extract a converging
sub-sequence. Note that in infinite dimension, the identity operator Φ : S → S is never compact.

Compact operators Φ can be shown to be equivalently defined as those for which an expansion of the
form (5.4) holds

Φ =

+∞∑
m=1

σmumv
⊤
m (5.6)

where (σm)m is a decaying sequence converging to 0, σm → 0. Here in (5.6) convergence holds in the operator
norm, which is the algebra norm on linear operator inherited from those of S and H

||Φ||L(S,H)
def.
= min

||Φu||H
||u||S ⩽ 1.

For Φ having an SVD decomposition (5.6), ||Φ||L(S,H) = σ1.
When σm = 0 for m > R, Φ has a finite rank R = dim(Im(Φ)). As we explain in the sections below, when

using linear recovery methods (such as quadratic regularization), the inverse problem is equivalent to a finite
dimensional problem, since one can restrict its attention to functions in ker(Φ)⊥ which as dimension R. Of
course, this is not true anymore when one can retrieve function inside ker(Φ), which is often referred to as
a “super-resolution” effect of non-linear methods. Another definition of compact operator is that they are
the limit of finite rank operator. They are thus in some sense the extension of finite dimensional matrices,
and are the correct setting to model ill-posed inverse problems. This definition can be extended to linear
operator between Banach spaces, but this conclusion does not holds.

Typical example of compact operator are matrix-like operator with a continuous kernel k(x, y) for (x, y) ∈
Ω where Ω is a compact sub-set of Rd (or the torus Td), i.e.

(Φf)(x) =

∫
Ω

k(x, y)f(y)dy

where dy is the Lebesgue measure. An example of such a setting which generalizes (5.5) is when Φf = f ⋆ h
on Td = (R/2πZ)d, which is corresponds to a translation invariant kernel k(x, y) = h(x − y), in which case

um(x) = (2π)−d/2eiωx, σm = |f̂m|. Another example on Ω = [0, 1] is the integration, (Φf)(x) =
∫ x

0
f(y)dy,

which corresponds to k being the indicator of the “triangle”, k(x, y) = 1x⩽y.

Pseudo inverse. In the case where w = 0, it makes to try to directly solve Φf = y. The two obstruction
for this is that one not necessarily has y ∈ Im(Φ) and even so, there are an infinite number of solutions if
ker(Φ) ̸= {0}. The usual workaround is to solve this equation in the least square sense

f+
def.
= argmin

Φf=y+

||f ||S where y+ = ProjIm(Φ)(y) = argmin
z∈Im(Φ)

||y − z||H.

The following proposition shows how to compute this least square solution using the SVD and by solving
linear systems involving either ΦΦ∗ or Φ∗Φ.

Proposition 15. One has

f+ = Φ+y where Φ+ = V diagm(1/σm)U∗. (5.7)

In case that Im(Φ) = H, one has Φ+ = Φ∗(ΦΦ∗)−1. In case that ker(Φ) = {0}, one has Φ+ = (Φ∗Φ)−1Φ∗.

Proof. Since U is an ortho-basis of Im(Φ), y+ = UU∗y, and thus Φf = y+ reads UΣV ∗f = UU∗y and
hence V ∗f = Σ−1U∗y. Decomposition orthogonally f = f0 + r where f0 ∈ ker(Φ)⊥ and r ∈ ker(Φ), one
has f0 = V V ∗f = V Σ−1U∗y = Φ+y is a constant. Minimizing ||f ||2 = ||f0||2 + ||r||2 is thus equivalent
to minimizing ||r|| and hence r = 0 which is the desired result. If Im(Φ) = H, then R = N so that
ΦΦ∗ = UΣ2U∗ is the eigen-decomposition of an invertible and (ΦΦ∗)−1 = UΣ−2U∗. One then verifies
Φ∗(ΦΦ∗)−1 = V ΣU∗UΣ−2U∗ which is the desired result. One deals similarly with the second case.
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For convolution operators Φf = f ⋆ h, then

Φ+y = y ⋆ h+ where ĥ+m =

{
ĥ−1
m if ĥm ̸= 0

0 if ĥm = 0.
.

5.3.2 Tikonov Regularization

Regularized inverse. When there is noise, using formula (5.7) is not acceptable, because then

Φ+y = Φ+Φf0 +Φ+w = f+0 +Φ+w where f+0
def.
= Projker(Φ)⊥ ,

so that the recovery error is ||Φ+y− f+0 || = ||Φ+w||. This quantity can be as larges as ||w||/σR if w ∝ uR. The
noise is thus amplified by the inverse 1/σR of the smallest amplitude non-zero singular values, which can be
very large. In infinite dimension, one typically has R = +∞, so that the inverse is actually not bounded
(discontinuous). It is thus mendatory to replace Φ+ by a regularized approximate inverse, which should have
the form

Φ+
λ = V diagm(µλ(σm))U∗ (5.8)

where µλ, indexed by some parameter λ > 0, is a regularization of the inverse, that should typically satisfies

µλ(σ) ⩽ Cλ < +∞ and lim
λ→0

µλ(σ) =
1

σ
.

Figure 5.2, left, shows a typical example of such a regularized inverse curve, obtained by thresholding.

Variational regularization. A typical example of such regularized inverse is obtained by considering a
penalized least square involving a regularization functional

fλ
def.
= argmin

f∈S
||y − Φf ||2H + λJ(f) (5.9)

where J is some regularization functional which should at least be continuous on S. The simplest example
is the quadratic norm J = || · ||2S ,

fλ
def.
= argmin

f∈S
||y − Φf ||2H + λ||f ||2 (5.10)

which is indeed a special case of (5.8) as proved in Proposition 16 below. In this case, the regularized solution
is obtained by solving a linear system

fλ = (Φ∗Φ+ λIdP )
−1Φ∗y. (5.11)

This shows that fλ ∈ Im(Φ∗) = ker(Φ)⊥, and that it depends linearly on y.

Proposition 16. The solution of (5.10) has the form fλ = Φ+
λ y as defined in (5.8) for the specific choice

of function

∀σ ∈ R, µλ(σ) =
σ

σ2 + λ
.

Proof. Using expression (5.11) and plugging the SVD Φ = UΣV ∗ leads to

Φ+
λ = (V Σ2V ∗ + λV V ∗)−1V ΣU∗ = V ∗(Σ2 + λ)−1ΣU∗

which is the desired expression since (Σ2 + λ)−1Σ = diag(µλ(σm))m.

A special case is when Φf = f ⋆ h is a convolution operator. In this case, the regularized inverse is
computed in O(N log(N)) operation using the FFT as follow

f̂λ,m =
ĥ∗m

|ĥm|2 + σ2
ŷm.
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Figure 5.2 contrast the regularization curve associated to quadratic regularization (5.11) (right) to the
simpler thresholding curve (left).

The question is to understand how to choose λ as a function of the noise level ||w||H in order to guarantees
that fλ → f0 and furthermore establish convergence speed. One first needs to ensure at least f0 = f+0 , which
in turns requires that f0 ∈ Im(Φ∗) = ker(Φ)⊥. Indeed, an important drawback of linear recovery methods
(such as quadratic regularization) is that necessarily fλ ∈ Im(Φ∗) = ker(Φ⊥) so that no information can
be recovered inside ker(Φ). Non-linear methods must be used to achieve a “super-resoltution” effect and
recover this missing information.

Source condition. In order to ensure convergence speed, one quantify this condition and impose a so-
called source condition of order β, which reads

f0 ∈ Im((Φ∗Φ)β) = Im(V diag(σ2β
m )V ∗). (5.12)

In some sense, the larger β, the farther f0 is away from ker(Φ), and thus the inversion problem is “easy”. This
condition means that there should exists z ∈ RP such that f0 = V diag(σ2β

m )V ∗z, i.e. z = V diag(σ−2β
m )V ∗f0.

In order to control the strength of this source condition, we assume ||z|| ⩽ ρ where ρ > 0. The source
condition thus corresponds to the following constraint∑

m

σ−2β
m ⟨f0, vm⟩2 ⩽ ρ2 < +∞. (Sβ,ρ)

This is a Sobolev-type constraint, similar to those imposed in 4.6. A prototypical example is for a low-
pass filter Φf = f ⋆ h where h as a slow polynomial-like decay of frequency, i.e. |ĥm| ∼ 1/mα for large m.
In this case, since vm is the Fourier basis, the source condition (Sβ,ρ) reads∑

m

||m||2αβ |f̂m|2 ⩽ ρ2 < +∞,

which is a Sobolev ball of radius ρ and differential order αβ.

Sublinear convergence speed. The following theorem shows that this source condition leads to a con-
vergence speed of the regularization. Imposing a bound ||w|| ⩽ δ on the noise, the theoretical analysis of the
inverse problem thus depends on the parameters (δ, ρ, β). Assuming f0 ∈ ker(Φ)⊥, the goal of the theoretical
analysis corresponds to studying the speed of convergence of fλ toward f0, when using y = Φf0+w as δ → 0.
This requires to decide how λ should depends on δ.

Theorem 5. Assuming the source condition (Sβ,ρ) with 0 < β ⩽ 2, then the solution of (5.10) for ||w|| ⩽ δ
satisfies

||fλ − f0|| ⩽ Cρ
1

β+1 δ
β

β+1

for a constant C which depends only on β, and for a choice

λ ∼ δ
2

β+1 ρ−
2

β+1 .

Proof. Because of the source condition, f0 ∈ Im(Φ∗). We decompose

fλ = Φ+
λ (Φf0 + w) = f0λ +Φ+

λw where f0λ
def.
= Φ+

λ (Φf0),

so that fλ = f0λ +Φ+
λw, one has for any regularized inverse of the form (5.8)

||fλ − f0|| ⩽ ||fλ − f0λ||+ ||f0λ − f0||. (5.13)

The term ||fλ − f0λ|| is a variance term which account for residual noise, and thus decays when λ increases
(more regularization). The term ||f0λ − f0|| is independent of the noise, it is a bias term coming from the
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Figure 5.2: Bounding µλ(σ) ⩽ Cλ = 1
2
√
λ
.

approximartion (smoothing) of f0, and thus increases when λ increases. The choice of an optimal λ thus
results in a bias-variance tradeoff between these two terms. Assuming

∀σ ⩾ 0, µλ(σ) ⩽ Cλ

the variance term is bounded as

||fλ − f0λ||2 = ||Φ+
λw||

2 =
∑
m

µλ(σm)2w2
m ⩽ C2

λ||w||2H.

The bias term is bounded as, since
f2
0,m

σ2β
m

= z2m,

||f0λ − f0||2 =
∑
m

(1− µλ(σm)σm)2f20,m =
∑
m

(
(1− µλ(σm)σm)σβ

m

)2 f20,m
σ2β
m

⩽ D2
λ,βρ

2 (5.14)

where we assumed
∀σ ⩾ 0,

∣∣(1− µλ(σ)σ)σ
β
∣∣ ⩽ Dλ,β . (5.15)

Note that for β > 2, one has Dλ,β = +∞ Putting (5.14) and (5.15) together, one obtains

||fλ − f0|| ⩽ Cλδ +Dλ,βρ. (5.16)

In the case of the regularization (5.10), one has µλ(σ) =
σ

σ2+λ , and thus (1−µλ(σ)σ)σ
β = λσβ

σ2+λ . For β ⩽ 2,
one verifies (see Figure 5.2 and 5.3) that

Cλ =
1

2
√
λ

and Dλ,β = cβλ
β
2 ,

for some constant cβ . Equalizing the contributions of the two terms in (5.16) (a better constant would be

reached by finding the best λ) leads to selecting δ√
λ
= λ

β
2 ρ i.e. λ = (δ/ρ)

2
β+1 . With this choice,

||fλ − f0|| = O(δ/
√
λ) = O(δ(δ/ρ)−

1
β+1 ) = O(δ

β
β+1 ρ

1
β+1 ).

This theorem shows that using larger β ⩽ 2 leads to faster convergence rates as ||w|| drops to zero. The
rate (5.13) however suffers from a “saturation” effect, indeed, choosing β > 2 does not helps (it gives the
same rate as β = 2), and the best possible rate is thus

||fλ − f0|| = O(ρ
1
3 δ

2
3 ).

By choosing more alternative regularization functional µλ and choosing β large enough, one can show that
it is possible to reach rate ||fλ − f0|| = O(δ1−κ) for an arbitrary small κ > 0. Figure 5.2 contrast the
regularization curve associated to quadratic regularization (5.11) (right) to the simpler thresholding curve
(left) which does not suffers from saturation. Quadratic regularization however is much simpler to implement
because it does not need to compute an SVD, is defined using a variational optimization problem and is
computable as the solution of a linear system. One cannot however reach a linear rate ||fλ − f0|| = O(||w||).
Such rates are achievable using non-linear sparse ℓ1 regularizations as detailed in Chapter ??.
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Figure 5.3: Bounding λ σβ

λ+σ2 ⩽ Dλ,β .

5.4 Quadratic Regularization

After this theoretical study in infinite dimension, we now turn our attention to more practical matters,
and focus only on the finite dimensional setting.

Convex regularization. Following (5.9), the ill-posed problem of recovering an approximation of the
high resolution image f0 ∈ RN from noisy measures y = Φf0 + w ∈ RP is regularized by solving a convex
optimization problem

fλ ∈ argmin
f∈RN

E(f) def.
=

1

2
||y − Φf ||2 + λJ(f) (5.17)

where ||y−Φf ||2 is the data fitting term (here || · || is the ℓ2 norm on RP ) and J(f) is a convex functional on
RN .

The Lagrange multiplier λ weights the importance of these two terms, and is in practice difficult to
set. Simulation can be performed on high resolution signal f0 to calibrate the multiplier by minimizing the
super-resolution error ||f0 − f̃ ||, but this is usually difficult to do on real life problems.

In the case where there is no noise, w = 0, the Lagrange multiplier λ should be set as small as possible. In
the limit where λ→ 0, the unconstrained optimization problem (5.17) becomes a constrained optimization,
as the following proposition explains. Let us stress that, without loss of generality, we can assume that
y ∈ Im(Φ), because one has the orthogonal decomposition

||y − Φf ||2 = ||y − ProjIm(Φ)(y)||2 + ||ProjIm(Φ)(y)− Φf ||2

so that one can replace y by ProjIm(Φ)(y) in (5.17).
Let us recall that a function J is coercive if

lim
||f ||→+∞

J(f) = +∞

i.e.
∀K, ∃R, ||x|| ⩾ R =⇒ |J(f)| ⩾ K.

This means that its non-empty levelsets {f ; J(f) ⩽ c} are bounded (and hence compact) for all c.

Proposition 17. We assume that J is coercive and that y ∈ Im(Φ). Then, if for each λ, fλ is a solution
of (5.17), then (fλ)λ is a bounded set and any accumulation point f⋆ is a solution of

f⋆ = argmin
f∈RN

{J(f) ; Φf = y} . (5.18)

Proof. Denoting h, any solution to (5.18), which in particular satisfies Φh = y, because of the optimality
condition of fλ for (5.17), one has

1

2λ
||Φfλ − y||2 + J(fλ) ⩽

1

2λ
||Φh− y||2 + J(h) = J(h).
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This shows that J(fλ) ⩽ J(h) so that since J is coercive the set (fλ)λ is bounded and thus one can consider an
accumulation point fλk

→ f⋆ for k → +∞. Since ||Φfλk
−y||2 ⩽ λkJ(h), one has in the limit Φf⋆ = y, so that

f⋆ satisfies the constraints in (5.18). Furthermore, by continuity of J , passing to the limit in J(fλk
) ⩽ J(h),

one obtains J(f⋆) ⩽ J(h) so that f⋆ is a solution of (5.18).

Note that it is possible to extend this proposition in the case where J is not necessarily coercive on the
full space (for instance the TV functionals in Section 5.5.1 below) but on the orthogonal to ker(Φ). The
proof is more difficult.

Quadratic Regularization. The simplest class of prior functional are quadratic, and can be written as

J(f) =
1

2
||Gf ||2RK =

1

2
⟨Lf, f⟩RN (5.19)

where G ∈ RK×N and where L = G∗G ∈ RN×N is a positive semi-definite matrix. The special case (5.10) is
recovered when setting G = L = IdN .

Writing down the first order optimality conditions for (5.17) leads to

∇E(f) = Φ∗(Φf − y) + λLf = 0,

hence, if
ker(Φ) ∩ ker(G) = {0},

then (5.19) has a unique minimizer fλ, which is obtained by solving a linear system

fλ = (Φ∗Φ+ λL)−1Φ∗y. (5.20)

In the special case where L is diagonalized by the singular basis (vm)m of Φ, i.e. L = V diag(α2
m)V ∗, then

fλ reads in this basis

⟨fλ, vm⟩ = σm
σ2
m + λα2

m

⟨y, vm⟩. (5.21)

Example of convolution. A specific example is for convolution operator

Φf = h ⋆ f, (5.22)

and using G = ∇ be a discretization of the gradient operator, such as for instance using first order finite
differences (2.16). This corresponds to the discrete Sobolev prior introduced in Section ??. Such an operator
compute, for a d-dimensional signal f ∈ RN (for instance a 1-D signal for d = 1 or an image when d = 2), an
approximation ∇fn ∈ Rd of the gradient vector at each sample location n. Thus typically, ∇ : f 7→ (∇fn)n ∈
RN×d maps to d-dimensional vector fields. Then −∇∗ : RN×d → RN is a discretized divergence operator. In
this case, ∆ = −GG∗ is a discretization of the Laplacian, which is itself a convolution operator. One then
has

f̂λ,m =
ĥ∗mŷm

|ĥm|2 − λd̂2,m
, (5.23)

where d̂2 is the Fourier transform of the filter d2 corresponding to the Laplacian. For instance, in dimension
1, using first order finite differences, the expression for d̂2,m is given in (2.18).

5.4.1 Solving Linear System

When Φ and L do not share the same singular spaces, using (5.21) is not possible, so that one needs to
solve the linear system (5.20), which can be rewritten as

Af = b where A
def.
= Φ∗Φ+ λL and b = Φ∗y.
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It is possible to solve exactly this linear system with direct methods for moderate N (up to a few thousands),
and the numerical complexity for a generic A is O(N3). Since the involved matrix A is symmetric, the
best option is to use Choleski factorization A = BB∗ where B is lower-triangular. In favorable cases, this
factorization (possibly with some re-re-ordering of the row and columns) can take advantage of some sparsity
in A.

For large N , such exact resolution is not an option, and should use approximate iterative solvers, which
only access A through matrix-vector multiplication. This is especially advantageous for imaging applications,
where such multiplications are in general much faster than a naive O(N2) explicit computation. If the matrix
A is highly sparse, this typically necessitates O(N) operations. In the case where A is symmetric and positive
definite (which is the case here), the most well known method is the conjugate gradient methods, which is
actually an optimization method solving

min
f∈RN

E(f) def.
= Q(f)

def.
= ⟨Af, f⟩ − ⟨f, b⟩ (5.24)

which is equivalent to the initial minimization (5.17). Instead of doing a naive gradient descent (as studied
in Section 5.5.2 below), stating from an arbitrary f (0), it compute a new iterate f (ℓ+1) from the previous
iterates as

f (ℓ+1) def.
= argmin

f

{
E(f) ; f ∈ f (ℓ) + Span(∇E(f (0)), . . . ,∇E(f ℓ))

}
.

The crucial and remarkable fact is that this minimization can be computed in closed form at the cost of two
matrix-vector product per iteration, for k ⩾ 1 (posing initially d(0) = ∇E(f (0)) = Af (0) − b)

f (ℓ+1) = f (ℓ) − τℓd
(ℓ) where d(ℓ) = gℓ +

||g(ℓ)||2

||g(ℓ−1)||2
d(ℓ−1) and τℓ =

⟨gℓ, d(ℓ)⟩
⟨Ad(ℓ), d(ℓ)⟩

(5.25)

g(ℓ)
def.
= ∇E(f (ℓ)) = Af (ℓ) − b. It can also be shown that the direction d(ℓ) are orthogonal, so that after

ℓ = N iterations, the conjugate gradient computes the unique solution f (ℓ) of the linear system Af = b. It is
however rarely used this way (as an exact solver), and in practice much less than N iterates are computed.
It should also be noted that iterations (5.25) can be carried over for an arbitrary smooth convex function
E , and it typically improves over the gradient descent (although in practice quasi-Newton method are often
preferred).

5.5 Non-Quadratic Regularization

5.5.1 Total Variation Regularization

A major issue with quadratic regularization such as (5.19) is that they typically leads to blurry recovered
data fλ, which is thus not a good approximation of f0 when it contains sharp transition such as edges in
images. This is can clearly be seen in the convolutive case (5.23), this the restoration operator Φ+

λΦ is a
filtering, which tends to smooth sharp part of the data.

This phenomena can also be understood because the restored data fλ always belongs to Im(Φ∗) =
ker(Φ)⊥, and thus cannot contains “high frequency” details that are lost in the kernel of Φ. To alleviate this
shortcoming, and recover missing information in the kernel, it is thus necessarily to consider non-quadratic
and in fact non-smooth regularization.

Total variation. The most well know instance of such a non-quadratic and non-smooth regularization is
the total variation prior. For smooth function f : Rd 7→ R, this amounts to replacing the quadratic Sobolev
energy (often called Dirichlet energy)

JSob(f)
def.
=

1

2

∫
Rd

||∇f ||2Rddx,
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where ∇f(x) = (∂x1f(x), . . . , ∂xd
f(x))⊤ is the gradient, by the (vectorial) L1 norm of the gradient

JTV(f)
def.
=

∫
Rd

||∇f ||Rddx.

We refer also to Section ?? about these priors. Simply “removing” the square 2 inside the integral might
seems light a small change, but in fact it is a game changer.

Indeed, while JSob(1Ω) = +∞ where 1Ω is the indicator a set Ω with finite perimeter |Ω| < +∞, one can
show that JTV(1Ω) = |Ω|, if one interpret ∇f as a distribution Df (actually a vectorial Radon measure) and∫

Rd ||∇f ||Rddx is replaced by the total mass |Df |(Ω) of this distribution m = Df

|m|(Ω) = sup

{∫
Rd

⟨h(x), dm(x)⟩ ; h ∈ C(Rd 7→ Rd),∀x, ||h(x)|| ⩽ 1

}
.

The total variation of a function such that Df has a bounded total mass (a so-called bounded variation
function) is hence defined as

JTV(f)
def.
= sup

{∫
Rd

f(x) div(h)(x)dx ; h ∈ C1
c (R

d;Rd), ||h||∞ ⩽ 1

}
.

Generalizing the fact that JTV(1Ω) = |Ω|, the functional co-area formula reads

JTV(f) =

∫
R
Hd−1(Lt(f))dt where Lt(f) = {x ; f(x) = t}

and where Hd−1 is the Hausforf measures of dimension d− 1, for instance, for d = 2 if L has finite perimeter
|L|, then Hd−1(L) = |L| is the perimeter of L.

Discretized Total variation. For discretized data f ∈ RN , one can define a discretized TV semi-norm
as detailed in Section ??, and it reads, generalizing (??) to any dimension

JTV(f) =
∑
n

||∇fn||Rd

where ∇fn ∈ Rd is a finite difference gradient at location indexed by n.
The discrete total variation prior JTV(f) defined in (??) is a convex but non differentiable function of f ,

since a term of the form ||∇fn|| is non differentiable if ∇fn = 0. We defer to chapters ?? and ?? the study
of advanced non-smooth convex optimization technics that allows to handle this kind of functionals.

In order to be able to use simple gradient descent methods, one needs to smooth the TV functional. The
general machinery proceeds by replacing the non-smooth ℓ2 Euclidean norm || · || by a smoothed version, for
instance

∀u ∈ Rd, ||u||ε
def.
=
√
ε2 + ||u||.

This leads to the definition of a smoothed approximate TV functional, already introduced in (??),

Jε
TV(f)

def.
=
∑
n

||∇fn||ε

One has the following asymptotics for ε→ {0,+∞}

||u||ε
ε→0−→ ||u|| and ||u||ε = ε+

1

2ε
||u||2 +O(1/ε2)

which suggest that Jε
TV interpolates between JTV and JSob.

The resulting inverse regularization problem (5.17) thus reads

fλ
def.
= argmin

f∈RN

E(f) = 1

2
||y − Φf ||2 + λJε

TV(f) (5.26)

It is a strictly convex problem (because || · ||ε is strictly convex for ε > 0) so that its solution fλ is unique.

74



5.5.2 Gradient Descent Method

The optimization program (5.26) is a example of smooth unconstrained convex optimization of the form

min
f∈RN

E(f) (5.27)

where E : RN → R is a C1 function. Recall that the gradient ∇E : RN 7→ RN of this functional (not to be
confound with the discretized gradient ∇f ∈ RN of f) is defined by the following first order relation

E(f + r) = E(f) + ⟨f, r⟩RN +O(||r||2RN )

where we used O(||r||2RN ) in place of o(||r||RN ) (for differentiable function) because we assume here E is of
class C1 (i.e. the gradient is continuous).

For such a function, the gradient descent algorithm is defined as

f (ℓ+1) def.
= f (ℓ) − τℓ∇E(f (ℓ)), (5.28)

where the step size τℓ > 0 should be small enough to guarantee convergence, but large enough for this
algorithm to be fast.

We refer to Section 5.5.2 for a detailed analysis of the convergence of the gradient descent, and a study
of the influence of the step size τℓ.

5.5.3 Examples of Gradient Computation

Note that the gradient of a quadratic function Q(f) of the form (5.24) reads

∇G(f) = Af − b.

In particular, one retrieves that the first order optimality condition ∇G(f) = 0 is equivalent to the linear
system Af = b.

For the quadratic fidelity term G(f) = 1
2 ||Φf − y||2, one thus obtains

∇G(f) = Φ∗(Φy − y).

In the special case of the regularized TV problem (5.26), the gradient of E reads

∇E(f) = Φ∗(Φy − y) + λ∇Jε
TV(f).

Recall the chain rule for differential reads ∂(G1 ◦ G2) = ∂G1 ◦ ∂G2, but that gradient vectors are actually
transposed of differentials, so that for E = F ◦ H where F : RP → R and H : RN → RP , one has

∇E(f) = [∂H(f)]∗ (∇F(Hf)) .

Since Jε
TV = || · ||1,ε ◦ ∇, one thus has

∇Jε
TV = ∇⋆ ◦ (∂|| · ||1,ε) where ||u||1,ε =

∑
n

||un||ε

so that
Jε
TV(f) = −div(N ε(∇f)),

whereN ε(u) = (un/||un||ε)n is the smoothed-normalization operator of vector fields (the differential of ||·||1,ε),
and where div = −∇∗ is minus the adjoint of the gradient.

Since div = −∇∗, their Lipschitz constants are equal || div ||op = ||∇||op, and is for instance equal to
√
2d

for the discretized gradient operator. Computation shows that the Hessian of || · ||ε is bounded by 1/ε, so
that for the smoothed-TV functional, the Lipschitz constant of the gradient is upper-bounded by

L =
||∇||2

ε
+ ||Φ||2op.
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Furthermore, this functional is strongly convex because || · ||ε is ε-strongly convex, and the Hessian is lower
bounded by

µ = ε+ σmin(Φ)
2

where σmin(Φ) is the smallest singular value of Φ. For ill-posed problems, typically σmin(Φ) = 0 or is very
small, so that both L and µ degrades (tends respectively to 0 and +∞) as ε → 0, so that gradient descent
becomes prohibitive for small ε, and it is thus required to use dedicated non-smooth optimization methods
detailed in the following chapters. On the good news side, note however that in many case, using a small but
non-zero value for ε often leads to better a visually more pleasing results, since it introduce a small blurring
which diminishes the artifacts (and in particular the so-called “stair-casing” effect) of TV regularization.

5.6 Examples of Inverse Problems

We detail here some inverse problem in imaging that can be solved using quadratic regularization or
non-linear TV.

5.6.1 Deconvolution

The blurring operator (5.1) is diagonal over Fourier, so that quadratic regularization are easily solved
using Fast Fourier Transforms when considering periodic boundary conditions. We refer to (5.22) and the
correspond explanations. TV regularization in contrast cannot be solved with fast Fourier technics, and is
thus much slower.

5.6.2 Inpainting

For the inpainting problem, the operator defined in (5.3) is diagonal in space

Φ = diagm(δΩc [m]),

and is an orthogonal projector Φ∗ = Φ.

In the noiseless case, to constrain the solution to lie in the affine space
{
f ∈ RN ; y = Φf

}
, we use the

orthogonal projector

∀x, Py(f)(x) =

{
f(x) if x ∈ Ω,
y(x) if x /∈ Ω.

In the noiseless case, the recovery (5.18) is solved using a projected gradient descent. For the Sobolev
energy, the algorithm iterates

f (ℓ+1) = Py(f
(ℓ) + τ∆f (ℓ)).

which converges if τ < 2/||∆|| = 1/4. Figure 5.4 shows some iteration of this algorithm, which progressively
interpolate within the missing area.

Figure 5.5 shows an example of Sobolev inpainting to achieve a special effect.

For the smoothed TV prior, the gradient descent reads

f (ℓ+1) = Py

(
f (ℓ) + τ div

(
∇f (ℓ)√

ε2 + ||∇f (ℓ)||2

))

which converges if τ < ε/4.

Figure 5.6 compare the Sobolev inpainting and the TV inpainting for a small value of ε. The SNR is not
improved by the total variation, but the result looks visually slightly better.
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k = 1 k = 10 k = 20 k = 100

Figure 5.4: Sobolev projected gradient descent algorithm.

Image f0 Observation y = Φf0 Sobolev f⋆

Figure 5.5: Inpainting the parrot cage.

5.6.3 Tomography Inversion

In medical imaging, a scanner device compute projection of the human body along rays ∆t,θ defined

x · τθ = x1 cos θ + x2 sin θ = t

where we restrict ourself to 2D projection to simplify the exposition.
The scanning process computes a Radon transform, which compute the integral of the function to acquires

along rays

∀ θ ∈ [0, π),∀ t ∈ R, pθ(t) =

∫
∆t,θ

f(x) ds =

∫∫
f(x) δ(x · τθ − t) dx

see Figure (5.7)
The Fourier slice theorem relates the Fourier transform of the scanned data to the 1D Fourier transform

of the data along rays
∀ θ ∈ [0, π) , ∀ ξ ∈ R p̂θ(ξ) = f̂(ξ cos θ, ξ sin θ). (5.29)

This shows that the pseudo inverse of the Radon transform is computed easily over the Fourier domain using
inverse 2D Fourier transform

f(x) =
1

2π

∫ π

0

pθ ⋆ h(x · τθ) dθ

with ĥ(ξ) = |ξ|.
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Image f0 Observation y = Φf0

Sobolev f⋆ TV f⋆

SNR=?dB SNR=?dB

Figure 5.6: Inpainting with Sobolev and TV regularization.

Imaging devices only capture a limited number of equispaced rays at orientations {θk = π/k}0⩽k<K .
This defines a tomography operator which corresponds to a partial Radon transform

Rf = (pθk)0⩽k<K .

Relation (5.29) shows that knowing Rf is equivalent to knowing the Fourier transform of f along rays,

{f̂(ξ cos(θk), ξ sin(θk))}k.

We thus simply the acquisition process over the discrete domain and model it as computing directly samples
of the Fourier transform

Φf = (f̂ [ω])ω∈Ω ∈ RP

where Ω is a discrete set of radial lines in the Fourier plane, see Figure 5.8, right.
In this discrete setting, recovering from Tomography measures y = Rf0 is equivalent in this setup to

inpaint missing Fourier frequencies, and we consider partial noisy Fourier measures

∀ω ∈ Ω, y[ω] = f̂ [ω] + w[ω]

where w[ω] is some measurement noise, assumed here to be Gaussian white noise for simplicity.
The peuso-inverse f+ = R+y defined in (5.7) of this partial Fourier measurements reads

f̂+[ω] =

{
y[ω] if ω ∈ Ω,
0 if ω /∈ Ω.
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Figure 5.7: Principle of tomography acquisition.

Figure 5.9 shows examples of pseudo inverse reconstruction for increasing size of Ω. This reconstruction
exhibit serious artifact because of bad handling of Fourier frequencies (zero padding of missing frequencies).

The total variation regularization (??) reads

f⋆ ∈ argmin
f

1

2

∑
ω∈Ω

|y[ω]− f̂ [ω]|2 + λ||f ||TV.

It is especially suitable for medical imaging where organ of the body are of relatively constant gray value,
thus resembling to the cartoon image model introduced in Section ??. Figure 5.10 compares this total
variation recovery to the pseudo-inverse for a synthetic cartoon image. This shows the hability of the total
variation to recover sharp features when inpainting Fourier measures. This should be contrasted with the
difficulties that faces TV regularization to inpaint over the spacial domain, as shown in Figure ??.
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Image f Radon sub-sampling Fourier domain

Figure 5.8: Partial Fourier measures.

Image f0 13 projections 32 projections.

Figure 5.9: Pseudo inverse reconstruction from partial Radon projections.

Image f0 Pseudo-inverse TV

Figure 5.10: Total variation tomography inversion.
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