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Chapter 2

Fourier and Convolution

The main reference for this chapter is [1]. The Fourier transform offers a perfect blend of analysis (solution
of PDEs, approximation of functions), algebra (characters of groups, representation theory), and computer
science (the FFT). It is the basics of signal processing because it allows us to compute efficiently and study
theoretically convolution operators, which are the shift-invariant operators. This chapter offers a glimpse of
all these different facets.

2.1 Hilbert spaces and Fourier Transforms

2.1.1 Hilbertian bases.

A large class of methods in data sciences (including for instance most signal processing tasks, but also data
pre-processing for machine learning) operate by first projecting the input data on some basis. A particularly
simple instance of this is when the basis is orthogonal since in this case, one has a simple reconstruction
formula and conservation of energy, which is crucial to do a theoretical analysis. We explain this in a general
Hilbert space, which can be for instance H = L2([0, 1]d) when dealing with continuous signal, or H = RN

for discrete signal.
An (complex) Hilbert space (H, ⟨·, ·⟩) is complete, where ⟨·, ·⟩ is an hermitian inner product (i.e. ⟨f, g⟩

is the conjugate of ⟨g, f⟩). If it is separable, it can be equipped with a Hilbertian orthogonal basis (φk)k∈N,
which means that one can expand any f ∈ H as

f =
∑

k

⟨f, φk⟩φk

where the convergence is in the sense of ||f ||2 def.
= ⟨f, f⟩, i.e. ||f −∑N

k=0⟨f, φk⟩φk|| → 0 as N → +∞. One
also has the conservation of energy

||f ||2 =
∑

k

⟨f, φk⟩2.

A way to construct such an ortho-basis is using the Gram-Schmidt orthogonalization procedure. From
some family (φ̄k)k, one defines φ0 = φ̄0/||φ̄0||, φk = φ̃k/||φ̃k|| where φ̃n is computed as φ̃k = φ̄k −

∑
i<k aiφi,

and by orthogonality ai = ⟨φ̄i, φi⟩.
On L2([−1, 1]) equipped with the usual inner product, orthogonalization of monomials defines the Leg-

endre polynomials so that

φ0(x) = 1, φ1(x) = x, φ2(x) =
1

2
(3x2 − 1), etc.

On L2(R) equipped with a Gaussian measure e−x2

dx, this leads to functions of the form Pk(x)e
−x2

where
Pk are Hermite polynomials, P0(x) = 1, P1(x) = x, P2(x) = x2 − 1. Intuitively, orthogonality forces φk to
have k “oscillations”, e.g. orthogonal polynomials have exactly n zeros.
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Another example is provided by the Shannon interpolation theorem, which states that (sinc(x− k))k is

an orthogonal basis of
{
f ; supp(f̂) ⊂ [−π, π]

}
and the reconstruction formula is f =

∑
k f(k) sinc(x − k)

so that ⟨f, sinc(x − k)⟩ = f(k). The convergence is in L2 but it is actually also pointwise as shown in the
proof of the previous chapter.

Another way (that we do not detail here) to construct orthogonal bases is to consider the eigenvectors of
some symmetric operator. We will show below that Fourier bases can be obtained this way, by considering
translation-invariant operators (convolutions).

2.1.2 Fourier basis on R/2πZ.

There is a flurry of different Fourier basis depending on the space on which it is defined. To get an
orthogonal basis, it is important to consider compact spaces (otherwise one obtains a notion of Fourier
transform, which is not a decomposition on a basis).

On L2(T) where T = R/2πZ, equipped with ⟨f, g⟩ def.
= 1

2π

∫
T f(x)ḡ(x)dx, one can use the Fourier basis

φk(x)
def.
= eikx for k ∈ Z. (2.1)

One thus has

f =
∑

n

f̂kke
ik· where f̂k

def.
=

1

2π

∫ 2π

0

f(x)e−ikxdx, (2.2)

in L2(T) sense. Pointwise convergence is delicate, see Section 1.2.
Figure 2.1, left, shows examples of the real part of Fourier atoms.

Figure 2.1: Left: 1D Fourier (real part), right: wavelet bases.

We recall that for f ∈ L1(R), its Fourier transform is defined as

∀ω ∈ R, f̂(ω)
def.
=

∫

R
f(x)e−ixωdx.

and this is extended to L2(R) by density.
The connexion between the Fourier transform on R and the Fourier coefficients on T is given by the

following diagram

f(x)
F−→ f̂(ω)

sampling ↓ ↓ periodization

(f(n))n
Fourier serie−→ ∑

n f(n)e
−iωn

.
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Its commutativity sates ∑

n

f(n)e−iωn =
∑

n

f̂(ω − 2πn) (2.3)

and this is in fact the celebrated Poisson formula (Proposition 1).
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Figure 2.2: The four different settings for Fourier analysis, and the sampling-periodization relationship.

2.2 Convolution on R and T

2.2.1 Convolution

Figure 2.3: Convolution on
R.

On X = R or T, one defines

f ⋆ g(x) =

∫

X
f(t)g(x− t)dt. (2.4)

Young’s inequality shows that this quantity is well defined if (f, g) ∈ Lp(X) ×
Lq(X)

1

p
+

1

q
= 1 +

1

r
=⇒ f ⋆ g ∈ Lr(X) and ||f ⋆ g||Lr(X) ⩽ ||f ||Lp(X)||g||Lq(X).

(2.5)
This shows that if f ∈ L1(X), then one has the map g ∈ Lp(X) 7→ f ⋆g ∈ Lp(X)
is a continuous map on Lp(X). Furthermore, when r = ∞, f ⋆ g ∈ C0(X) is a
continuous function (which shows some regularizing effect). Note that for X = T, p < q =⇒ Lq(T) ⊂
Lp(T), so that L∞(X) is the smallest space.

Convolution is mostly used in order to regularize functions. For instance, if f ∈ L1(X) and g ∈ C1(X)
is bounded, then f ⋆ g is differentiable and (f ⋆ g)′ = f ⋆ g′. This is used to produce smooth approximate
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Figure 2.4: Signal filtering with a box filter (running average).

identity (ρε = 1
ερ(·/ε))ε with convergence f ⋆ ρε → f in Lp(X) for 1 ⩽ p < +∞ of smooth approximations

(and convergence in L∞(X) if f is uniformly continuous). This is also used for denoising applications in
signal and image processing.

Proposition 2. For (f, g) ∈ L1(X)2 (so on X = T, also in any Lp(X)), one has

F(f ⋆ g) = f̂ ⊙ ĝ. (2.6)

For X = R, then (f ⊙ g)(x) = f(x)g(x) where f, g are continuous functions. For X = T, then ⊙ operates on
ℓ1(Z) (pointwise multiplication of sequences).

Figure 2.6: Commutative
diagram of convolution-
Fourier.

This means that F is a morphism of algebra. For instance, if X = R, its
range is included in the algebra of continuous functions with vanishing limits
in ±∞.

As shown in Figure 2.7, successive convolution of a box leads to a piecewise
polynomial of increasing smoothness, often called cardinal splines.

Note also that the convolution is used extensively in probability and statis-
tics, because if we denote fX the probability density (with respect to Lebesgue
or any measure) of some random vector X, then if X and Y are independent
random variables, then fX+Y = fX ⋆ fY .

Associated code: fourier/test denoising.m and fourier/test fft2.m

2.2.2 Translation Invariant Operators

Translation invariant operators (which commute with translation) are fun-
damental because in most situations, input (signal, image, etc) should be processed without spatial prefer-
ence.

Figure 2.8:
Commutative
diagram for trans-
lation invariance.

The following propositions show that any translation invariant operator (one should
rather actually say “translation equivariant”), i.e. which commutes with translations,
is actually a “convolution” against a distribution with bounded Fourier transform.
The proof and conclusion (regularity of the convolution kernel) vary depending on
the topology on the input and output spaces. We first study the case of convolution
mapping to continuous functions.
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Figure 2.5: Filtering an irregular signal with a Gaussian filter of increasing filter size σ.

Figure 2.7: Cardinal splines are defined by successive convolutions.

Proposition 3. We define Tτf = f(· − τ). A bounded linear operator H : (L2(X), || ·
||2) → (C0(X), || · ||∞) is such that for all τ , H ◦ Tτ = Tτ ◦H if and only if

∀ f ∈ L2(T), H(f) = f ⋆ g

with g ∈ L2(X).

The heuristic proof using distributions is that f(x) = (f ⋆ δ)(x) =
∫
f(t)δ(x− t)dt and thus by linearity

Hf = H(

∫
f(t)δ(·−t)dt) =

∫
f(t)H(δ(·−t))dt =

∫
f(t)H(Ttδ)dt

∫
f(t)Tt(H(δ))dt

∫
f(t)H(δ)(·−t)dt = f⋆H(δ).

Proof. Thanks to (2.5) (and the remark in the case r = ∞), T : f 7→ f ⋆ g with g ∈ L2(X) is indeed a
continuous operator from L2(X) to C0(X). Furthermore

(H ◦ Tτ )(f) =
∫

X
f((· − τ)− y)g(y)dτ = (f ⋆ g)(· − τ) = Tτ (Hf),

so that such an H is translation-invariant.
Conversely, we define ℓ : f 7→ H(f)(0) ∈ R, which is legit since H(f) ∈ C0(X). Since H is continuous,

there exists C such that ||Hf ||∞ ⩽ C||f ||2, and hence |ℓ(f)| ⩽ C||f ||2, so that ℓ is a continuous linear form
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on the Hilbert space L2(X). Hence, according to Fréchet-Riesz theorem, there exists h ∈ L2(X) such that
ℓ(f) = ⟨f, h⟩. Hence, ∀x ∈ X,

H(f)(x) = T−x(Hf)(0) = H(T−xf)(0) = ℓ(T−xf) = ⟨T−xf, h⟩ =
∫

X
f(y + x)h(y)dy = f ⋆ h̄(x).

where g
def.
= h̄ = h(−·) ∈ L2(X).

We now study, on T, the case of convolution which can output non-continuous functions. In this case,
the kernel can be a “distribution”, so the convolution is defined over the Fourier domain.

Proposition 4. A bounded linear operator H : L2(T) → L2(T) is such that for all τ , H ◦ Tτ = Tτ ◦ H if
and only if

∀ f ∈ L2(T), F(H(f)) = f̂ ⊙ c

where c ∈ ℓ∞(Z) (a bounded sequence).

Proof. We denote φn
def.
= ein·. One has

H(φn) = H(TτT−τφn) = H(Tτe
inτφn) = einτH(Tτ (φn)) = einτTτ (H(φn)).

Thus, for all n,

⟨H(φn), φm⟩ = einτ ⟨Tτ ◦H(φn), φm⟩ = einτ ⟨H(φn), T−τ (φm)⟩ = ei(n−m)τ ⟨H(φn), φm⟩

So for n ̸= m, ⟨H(φn), φm⟩ = 0, and we define cn
def.
= ⟨H(φn), φn⟩. We thus have H(φn) = cnφn. Since H

is continuous, ||Hf ||L2(T) ⩽ C||f ||L2(T) for some constant C, and thus by Cauchy-Schwartz

|cn| = |⟨H(φn), φn⟩| ⩽ ||H(φn)||||φn|| ⩽ C

because ||φn|| = 1, so that c ∈ ℓ∞(Z). By continuity of H, recalling that by definition f̂n
def.
= ⟨f, φn⟩,

H(f) = lim
N
H(

N∑

n=−N

f̂nφn) = lim
N

N∑

n=−N

f̂nH(φn) = lim
N

N∑

n=−N

cnf̂nφn =
∑

n∈Z

cnf̂nφn

where we used that H(φn) = cnφn, so that in particular one has the desired result.

This theorem thus states that translation invariant operators are those which are “diagonal” in the Fourier
ortho-basis.

2.2.3 Revisiting Poisson formula using distributions.

Informally, the Fourier series ∑

n

f(n)e−iωn

can be thought as the Fourier transform F(Π1 ⊙ f) of the discrete distribution

Π1 ⊙ f =
∑

n

f(n)δn where Πs =
∑

n

δsn

for s ∈ R, where δa is the Dirac mass at location a ∈ R, i.e. the distribution such that
∫
fd(da) = f(a) for

any continuous f . Indeed, one can multiply a distribution by a continuous function, and the definition of
the Fourier transform of a distribution µ is a distribution F(µ) such that that

∀ g ∈ S(R),
∫

R
g(x)dF(µ) =

∫

R
F∗(g)dµ, where F∗(g)

def.
=

∫

R
g(x)eix·dx,

where S(R) are smooth and rapidly decaying (Schwartz class) functions.
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Figure 2.9: Sine wave be-
ing summed in the Poisson
formula.

The Poisson formula (2.3) can thus be interpreted as

F(Π1 ⊙ f) =
∑

n

f̂(· − 2πn) =

∫

R
f̂(· − ω)dΠ2π(ω) = f̂ ⋆Π2π

Since F−1 = 1
2πS ◦ F where S(f) = f(−·), one has, applying this operator on

both sides

Π1⊙f =
1

2π
S◦F(f̂⋆Π2π) = S( 1

2π
F(f̂)⊙Π̂2π) = S( 1

2π
F(f̂))⊙S(Π̂2π) = Π̂2π⊙f.

This can be interpreted as the relation

Π̂2π = Π1 =⇒ Π̂1 = 2πΠ2π.

To intuitively understand this relation, one can compute a finite Fourier series

N∑

n=−N

e−inω =
sin((N + 1/2)x)

sin(x/2)

which is a smooth function which grows unbounded with N → +∞ as N → +∞.

2.3 Finite Fourier Transform and Convolution

2.3.1 Discrete Ortho-bases

Discrete signals are finite-dimensional vectors f ∈ CN where N is the number of samples and where each
fn is the value of the signal at a 1D or 2D location. For a 2-D images f ∈ CN ≃ CN0×N0 , N = N0 × N0,
where N0 is the number of pixels along each direction.

Discrete signals and images are processed using a discrete inner product that mimics the continuous L2

inner product

⟨f, g⟩ =
N−1∑

n=0

fnḡn.

One thus defines a distance between discretized vectors as

||f − g||2 =

N−1∑

n=0

|fn − gn|2.

Exactly as in the continuous case, a discrete orthogonal basis {ψk}0⩽k<N of CN , satisfies

⟨ψk, ψk′⟩ = δk−k′ . (2.7)

The decomposition of a signal in such an ortho-basis is written

f =

N−1∑

k=0

⟨f, ψk⟩ψk.

It satisfies a conservation of energy

||f ||2 =

N−1∑

n=0

|fn|2 =

N−1∑

k=0

|⟨f, ψk⟩|2

Computing the set of all inner product {⟨f, ψk⟩}0⩽k<N is done in a brute force way in O(N2) operations.
This is not feasible for large datasets where N is of the order of millions. When designing an ortho-
basis, one should keep this limitation in mind and enforce some structure in the basis elements so that the
decomposition can be computed with a fast algorithm. This is the case for the Fourier and wavelet bases,
that enjoy respectively O(N log(N)) and O(N) algorithms.
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2.3.2 Discrete Fourier transform

We denote f = (fn)
N−1
n=0 ∈ RN , but we insist that such vector should be understood as being indexed

by n ∈ Z/NZ, which is a finite commutative group for the addition. This corresponds to using periodic
boundary conditions.

The discrete Fourier transform is defined as

∀ k = 0, . . . , N − 1, f̂k
def.
=

N−1∑

n=0

fne
− 2iπ

N kn = ⟨f, φk⟩ where φk
def.
= (e

2iπ
N kn)N−1

n=0 ∈ CN (2.8)

where the canonical inner product on CN is ⟨u, v⟩ =
∑N

n=1 unv̄n for (u, v) ∈ (CN )2. This definition can

intuitively be motivated by sampling the Fourier basis x 7→ eikx on R/2πZ at equi-spaced points (2πN n)N−1
n=0 .

The following proposition shows that this corresponds to a decomposition in an ortho-basis.

Proposition 5. One has

⟨φk, φℓ⟩ =
{
N if k = ℓ,
0 otherwise.

In particular, this implies

∀n = 0, . . . , N − 1, fn =
1

N

∑

k

f̂ke
2iπ
N kn. (2.9)

Proof. One has, if k ̸= ℓ

⟨φk, φℓ⟩ =
∑

n

e
2iπ
N (k−ℓ)n =

1− e
2iπ
N (k−ℓ)N

1− e
2iπ
N (k−ℓ)

= 0

which is the sum of a geometric series (equivalently, the sum of equispaced points on a circle). The inversion
formula is simply f =

∑
k⟨f, φk⟩ φk

||φk||2 .

2.3.3 Fast Fourier transform

Assuming N = 2N ′, one has

f̂2k =

N ′−1∑

n=0

(fn + fn+N/2)e
− 2iπ

N′ kn

f̂2k+1 =

N ′−1∑

n=0

e−
2iπ
N n(fn − fn+N/2)e

− 2iπ
N′ kn.

For the second line, we used the computation

e−
2iπ
N (2k+1)(n+N/2) = e−

2iπ
N (2kn+kN+n+N/2) = −e− 2iπ

N ne−
2iπ
N′ kn.

Denoting FN (f) = f̂ the discrete Fourier transform on RN , and introducing the notation fe = (fn +

fn+N/2)n ∈ RN ′
, fo = (fn − fn+N/2)n ∈ RN ′

and αN = (e−
2iπ
N′ n)n ∈ RN ′

, one has the following recursion
formula

FN (f) = IN (FN/2(fe),FN/2(fo ⊙ αN ))

where IN is the “interleaving” operator, defined by IN (a, b)
def.
= (a1, b1, a2, b2, . . . , aN ′ , bN ′). Their iterations

define the so-called Fast Fourier Transform algorithm, which works here when N is a power of 2. These
iterations can be extended to arbitrary number N , but a workaround is to simply pad with 0 (or use more
complicated extensions) to have vectors with size that are power of 2.

This algorithm can also be interpreted as a factorization of the Fourier matrix into O(log(N)) product
of matrices.

18



Figure 2.10: Diagram of one step of the FFT.

Denoting C(N) the numerical complexity (number of elementary operations) associated to the compu-

tation of f̂ , one thus has
C(N) = 2C(N/2) +NK (2.10)

where KN is the complexity of N complex additions and N/2 multiplications. Making the change of variable

ℓ
def.
= log2(N) and T (ℓ)

def.
=

C(N)

N

i.e. C(N) = 2ℓT (ℓ), the relation (2.10) becomes

2ℓT (ℓ) = 2× 2ℓ−1T (ℓ− 1) + 2ℓK =⇒ T (ℓ) = T (ℓ− 1) +K =⇒ T (ℓ) = T (0) +Kℓ

and using the fact that T (0) = C(1)/1 = 0, one obtains

C(N) = KN log2(N).

This complexity should be contrasted with the complexity O(N2) of directly computing the N coeffi-
cients (2.8), each involving a sum of size N .

2.3.4 Finite convolution

For (f, g) ∈ (RN )2, one defines f ⋆ g ∈ RN as

∀n = 0, . . . , N − 1, (f ⋆ g)n
def.
=

N−1∑

k=0

fkgn−k =
∑

k+ℓ=n

fkgℓ (2.11)

where one should be careful that here + and − should be understood modulo N (vectors should be seen as
being defined on the group Z/NZ, or equivalently, one uses periodic boundary conditions). This defines an

commutative algebra structure (RN ,+, ⋆), with neutral element the “Dirac” δ0
def.
= (1, 0, . . . , 0)⊤ ∈ RN . The

following proposition shows that F : f 7→ f̂ is an algebra bijective isometry (up to a scaling by
√
N of the

norm) mapping to (RN ,+,⊙) with neutral element 1N = (1, . . . , 1) ∈ RN .

Proposition 6. One has F(f ⋆ g) = f̂ ⊙ ĝ.

Proof. We denote T : g 7→ f ⋆ g. One has

(Tφℓ)n = (f ⋆ φℓ)n =
∑

p

fpe
2iπ
N ℓ(n−p) = e

2iπ
N ℓnf̂ℓ = f̂ℓ(φℓ)n.

This shows that (φℓ)ℓ are the N eigenvectors of T with associated eigenvalues f̂ℓ. So T is diagonalizable on

this basis. Denoting F = (e−
2iπ
N kn)k,n the matrix of the Fourier transform, the Fourier inversion formula (2.9)
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reads F−1 = 1
N F

∗ where F ∗ = F̄⊤ is the adjoint matrix (trans-conjugate). The diagonalization of T now
reads

T = F−1 diag(f̂)F = =⇒ F(Tg) = diag(f̂)Fg =⇒ F(f ⋆ g) = diag(f̂)ĝ.

This proposition shows that one can compute in O(N log(N)) operation via the formula

f ⋆ g = F−1(f̂ ⊙ ĝ).

This is very advantageous with respect to the naive implementation of formula (2.11), in the case where
f and g have large support. In case where |Supp(g)| = P is small, then direct implementation is O(PN)
which might be advantageous. An example is g = [1, 1, 0, . . . , 0, 1]/3, the moving average, where

(f ⋆ g)n =
fn−1 + fn + fn+1

3

needs 3N operations.

Convolution as translation invariant operator. We define the translation operator on Z/NZ as

(Tf)n
def.
= fn−τ where n − τ is computed modulo N . The following proposition mimics the previous one

on R and R/Z, but this time on Z/NZ. It is simpler because there is no convergence issue, and one can
directly define the impulse response.

Proposition 7. If H : RN → RN is a linear operator. Then H ◦ Tτ = Tτ ◦H for all τ if and only if there
exists h ∈ RN (often called the impulse response) so that Hf = f ⋆ h.

Proof. For the only statement, we first note that Tτ = f ⋆ δτ is a convolution against a translated Dirac
δτ = Tτ (δ) where δ = (1, 0, . . . , 0). By commutativity of the convolution, one has if Hf = f ⋆ h.

H ◦ Tτ (f) = h ⋆ δτ ⋆ f = δτ ⋆ h ⋆ fTτ ◦H(f).

For the “if” statement, we define h
def.
= H(δ). Then

H(f) = H(
∑

i

fi(Tiδ)) =
∑

i

fiH(Tiδ) =
∑

i

fiTiH(δ) =
∑

i

fih·−i = f ⋆ h.

Polynomial multiplication. An example of the application of the FFT is the multiplication of large
polynomials, and thus of large integers (viewing the expansion in a certain basis as a polynomial). Indeed

(

A∑

i=0

aiXi)(

B∑

j=0

biX
j) =

A+B∑

k=0

(
∑

i+j=k

aibj)X
k

Ignoring for the sake of simplicity of the exposure that one needs to caries over reminder during the mul-
tiplication (which can be achieved in linear time), one can write

∑
i+j=k aibj = (ā ⋆ b̄)k when one defines

ā, b̄ ∈ RA+B by zero padding.

2.4 Discretisation Issues

Besides computing convolutions, another major application of the FFT is to approximate the Fourier
transform and its inverse, thus leading to a computationally efficient spectral interpolation method.
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Figure 2.11: Fourier transform approximation by zero-padding in the spatial domain.

2.4.1 Fourier approximation via spatial zero padding.

It is possible to view the discrete finite Fourier transform (2.8) as a first-order approximation to compute
Fourier coefficients, or rather actually samples from the Fourier transform (1.2). Supposing that f is a
smooth enough function is supported on [0, 1], we consider the discrete Fourier transform of the vector

fQ
def.
= (f(n/N))Q−1

n=0 ∈ RQ where Q ⩾ N induced a padding by 0 (since f(n/N) = 0 for n > N)

∀ k ∈ J−Q
2
,
Q

2
K,

1

N
f̂Qk =

1

N

N−1∑

n=0

f
( n
N

)
e−

2iπ
Q nk ≈

∫ 1

0

f(x)e−
2kiπ
T xdx = f̂

(
2kπ

T

)
where T

def.
=

Q

N
.

The approximation is first order accurate, i.e. O(1/N) for a C1 function f .

2.4.2 Fourier interpolation via spectral zero padding.

One can reverse the roles of space and frequency in the previous construction. If one has at its disposal
N uniform discrete samples fN = (fNn )N−1

n=0 , one can compute its discrete Fourier transform F(fN ) = f̂N

(in O(N log(N)) operations with the FFT),

f̂Nk
def.
=

N−1∑

n=0

fNn e
− 2iπ

N nk,

and then zero-pad it to obtain a vector of length Q. For simplicity, we assume N = 2N ′ + 1 is odd, and
this computation can be also done (but is more involved) with an even size. Indexing the frequencies as
−N ′ ⩽ k ⩽ N ′ The padding vector is of the form,

f̃Q
def.
= (0, . . . , 0, f̂N , 0, . . . , 0) ∈ RQ

WARNING: there is most likely an error in the following derivation, should be rewritten. One can
then compute the (with a normalization constant Q/N) inverse discrete Fourier transform of size Q (in
O(Q log(Q)) operations with the FFT) to obtain

Q

N
F−1(f̃Q)ℓ =

Q

N
× 1

N

N ′∑

k=−N ′

f̂Nk e
2iπ
Q ℓk =

1

N

N ′∑

k=−N ′

N−1∑

n=0

fNn e
2iπ
N nke

2iπ
Q ℓk

=

N−1∑

n=0

fNn
1

N

N ′∑

k=−N ′

e2iπ(−
n
N + ℓ

Q )k =

N−1∑

n=0

fNn

sin
[
πN

(
ℓ
Q − n

N

)]

N sin
[
π
(

ℓ
Q − n

N

)]

=

N−1∑

n=0

fNn sincN

(
ℓ

T
− n

)
where T

def.
=

Q

N
and sincN (u)

def.
=

sin(πu)

N sin(πu/N)
.
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Figure 2.12: Interpolation by zero-padding in the frequency domain.

Here we use the following summation rule for geometric series for ρ = eiω, a = −b, ω = 2π
(
− n

N + ℓ
Q

)
,

b∑

i=a

ρi =
ρa−

1
2 − ρb+

1
2

ρ−
1
2 − ρ

1
2

=
sin((b+ 1

2 )ω)

sin(ω/2)
.

This zero-padding method leads to a discrete version of the Shannon interpolation formula (1.9), which
allows to compute the interpolation on a grid of size Q are cost O(Q log(Q)). Increasing N increases the
accuracy of the formula, since sincN → sinc as N → +∞.

2.5 Fourier in Multiple Dimensions

The Fourier transform is extended from 1-D to arbitrary finite dimension d > 1 by tensor product.

2.5.1 On Continuous Domains

Figure 2.13: 2-D sine wave.

On Rd. The crux of the power of Fourier transform in arbitrary dimension is
that a product of elementary 1-D sine waves is still a sine wave

d∏

ℓ=1

eixℓωℓ = ei⟨x, ω⟩

moving orthogonally to the wave vector ω = (ωℓ)
d
ℓ=1 ∈ Rd. Here ⟨x, ω⟩ =∑

ℓ xℓωℓ is the canonical inner product on Rd.
The definition of the Fourier transform and its inverse are

∀ω ∈ Rd, f̂(ω)
def.
=

∫

Rd

f(x)e−i⟨x, ω⟩dx,

∀x ∈ Rd, f(x) =
1

(2π)d

∫

Rd

f(x)ei⟨x, ω⟩dω,

under hypotheses of integrability matching exactly those in 1-D.

On (R/2πZ)d. Given an Hilbertian basis (φn1
)n1∈N of L2(X), one construct an Hilbertian basis of L2(Xd)

by tensorization

∀ k = (k1, . . . , kd) ∈ Nd, ∀x ∈ Xd, φk(x) = φk1
(x1) . . . φkd

(xd). (2.12)

Orthogonality is simple to check, and one can also prove convergence for sums of the form
∑

||k||∞⩽N ⟨f, φk⟩φk →
f in L2(Xd).
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Figure 2.14: 2D Fourier orthogonal bases.

Figure 2.15: The 2-
dimensional torus
T2 = (R/2πZ)2

For the multi-dimensional torus (R/2πZ)d, using the Fourier basis (2.1),
this leads to consider the basis

∀ k ∈ Zd, φk(x) = ei⟨x, k⟩

which is indeed a Hilbertian orthonormal basis for the inner product ⟨f, g⟩ def.
=

1
(2π)d

∫
Td f(x)ḡ(x)dx. This defines the Fourier transform and the reconstruction

formula on L2(Td)

f̂k
def.
=

1

(2π)d

∫

Td

f(x)e−i⟨x, k⟩dx and f =
∑

k∈Zd

f̂ke
i⟨x, k⟩.

2.5.2 On Discrete Domains

Figure 2.16: Discrete 2-D
torus.

Discrete Fourier Transform. On d-dimensional discrete domain of the
form

n = (n1, . . . , nd) ∈ Yd
def.
= J1, N1K × . . .× J1, NdK

(we denote Ja, bK def.
= {i ∈ Z ; a ⩽ i ⩽ b}) of N = N1 . . . Nd points, with periodic

boundary conditions, one defines an orthogonal basis (φk)k by the same tensor
product formula as (2.12) but using the 1-D discrete Fourier basis (2.8)

∀ (k, n) ∈ Y2
d, φk(n) = φk1

(n1) . . . φkd
(nd) =

d∏

ℓ=1

e
2iπ
Nℓ

kℓnℓ = e2iπ⟨k, n⟩Yd

(2.13)
where we used the (rescaled) inner product

⟨k, n⟩Yd

def.
=

d∑

ℓ=1

kℓnℓ
Nℓ

. (2.14)

The basis (φk)k is indeed orthonormal for this inner product. The Fourier transform gathers inner products
in this basis, and (similarly to the 1-D case) the convention is to not normalize them with (Nℓ)ℓ, so that

∀ k ∈ Yd, f̂k
def.
=
∑

n∈Yd

fne
−i⟨k, n⟩Yd ,

∀n ∈ Yd, fn =
1

N

∑

k∈Yd

f̂ke
i⟨k, n⟩Yd .
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Fast Fourier Transform. We detail the algorithm in dimension d = 2 for notation simplicity, but this
extends similarly in arbitrary dimensions. The general idea is that if a fast algorithm is available to compute
ortho-decompositions on two 1-D bases (φ1

k1
)N1

k1=1, (φ
2
k2
)N2

k2=1, is extended to compute decomposition on the

tensor product basis (φ1
k1

⊗ φ2
k2
)k1,k2

by apply succesively the algorithm on the “rows” and then “columns”

(the order does not matters) of the matrix (fn)n=(n1,n2) ∈ RN1×N2 . Indeed

∀ k = (k1, k2), ⟨f, φ1
k1

⊗ φ2
k2
⟩ =

∑

n=(n1,n2)

fnφ
1
k1
(n1)φ

1
k1
(n2) =

∑

n1

(∑

n2

fn1,n2
φ1
k1
(n2)

)
φ1
k1
(n1).

Denoting C(N1) the complexity of the 1-D algorithm on RN1 , the complexity of the resulting 2-D decom-
position is N2C(N1) + N1C(N2), and hence for the FFT, it is O(N1N2 log(N1N2)) = O(N log(N)) for
N = N1N2.

If we represent f ∈ RN1×N2 as a matrix, and denote FN = (e−
2iπ
N kn)k,n the Fourier transform matrix

(or the matrix where rows are the φ∗
k), then one can compute the 2-D Fourier transform as matrix-matrix

products

f̂ = FN1
× f × F ∗

N2
∈ RN1×N2 .

But of course, these multiplications are not computed explicitly (one uses the FFT).

Figure 2.17: 2D Fourier analysis of a image (left), and attenuation of the periodicity artifact using masking
(right).

Associated code: coding/test fft2.m

2.5.3 Shannon sampling theorem.

The sampling Theorem 1 extends easily to Rd by tensorization, assuming that the sampling is on a
uniform Cartesian grid. In 2-D for instance, if supp(f̂) ⊂ [−π/s1, π/s1] × [−π/s2, π/s2] and f is decaying
fast enough,

∀x ∈ R2, f(x) =
∑

n∈Z2

f(n1s1, n2s2) sinc(x1/s1 − n1) sinc(x2/s2 − n2) where sinc(u) =
sin(πu)

πu
.

2.5.4 Convolution in higher dimension.

Convolution on Xd with X = R or X = R/2πZ are defined in the very same way as in 1-D (2.4) as

f ⋆ g(x) =

∫

Xd

f(t)g(x− t)dt.
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Figure 2.18: Heat diffusion as a convolution.

Similarly, finite discrete convolution of vectors f ∈ RN1×N2 extend formula (2.11) as

∀n ∈ J0, N1 − 1K × J0, N2 − 1K, (f ⋆ g)n
def.
=

N1−1∑

k1=0

N2−1∑

k2=0

fkgn−k

where additions and subtractions of vectors are performed modulo (N1, N2).

The Fourier-convolution theorem is still valid in all these cases, namely F(f ⋆ g) = f̂ ⊙ ĝ. In the finite
case, this offers a fast O(N log(N)) method to compute convolutions even if f and g do not have small
support.

2.6 Application to ODEs and PDEs

2.6.1 On Continuous Domains

We here give only the intuition without formal proof.

One X = R or T, one has

F(f (k))(ω) = (iω)kf̂(ω).

Intuitively, f (k) = f ⋆ δ(k) where δ(k) is a distribution with Fourier transform δ̂(k)(ω) = (iω)k. Similarly on
X = Rd (see Section 2.5 for the definition of the Fourier transform in dimension d), one has

F(∆f)(ω) = −||ω||2f̂(ω) (2.15)

(and similarly on T replacing ω by n ∈ Zd). The Fourier transform (or Fourier coefficients) are thus
powerful to study linear differential equations with constant coefficients because they are turned into algebraic
equations.

As a typical example, we consider the heat equation

∂ft
∂t

= ∆ft =⇒ ∀ω, ∂f̂t(ω)

∂t
= −||ω||2f̂(ω).

This shows that f̂t(ω) = f̂0(ω)e
−||ω||2t and by inverse Fourier transform and the convolution theorem

ft = Gt ⋆ f0 where Gt =
1

(4πt)d/2
e−

||x||2
4t

which is a Gaussian of standard deviation
√
2t.
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2.6.2 Finite Domain and Discretization

On R/NZ (i.e. discrete domains with periodic boundary conditions), one typically considers forward
finite differences (first and second order)

D1f
def.
= N(fn+1 − fn)n = f ⋆ d1 where d1 = [1, 0, . . . , 0,−1]⊤ ∈ RN , (2.16)

D2f = D⊤
1 D1f

def.
= N2(fn+1 + fn−1 − 2fn)n = f ⋆ d2 where d2 = d1 ⋆ d̄1 = [−2, 1, 0, . . . , 0, 1]⊤ ∈ RN .

(2.17)

Figure 2.19: Comparison
of the spectrum of ∆ and
D2.

Thanks to Proposition 6, one can alternatively computes

F(D2f) = d̂2 ⊙ f̂ where (d̂2)k = N2(e
2iπ
N + e−

2iπ
N − 2) = −4N2 sin

(
πk

N

)2

.

(2.18)

For N ≫ k, one thus has (d̂2)k ∼ −(2πk)2 which matches the scaling of (2.15).

2.7 A Bit of Group Theory

The reference for this section is [2].

2.7.1 Characters

For (G,+) a commutative group, a character is a group morphism χ :
(G,+) → (C∗, ·), i.e. is satisfies

∀ (n,m) ∈ G, χ(n+m) = χ(n)χ(m).

The set of characters is the so-called dual (Ĝ,⊙) and is a group for the pointwise multiplication (χ1⊙χ2)(n)
def.
=

χ1(n)χ2(n). Indeed, the inverse of a character χ is χ−1(n) = χ(−n).
Note that for a finite group G with |G| = N , then since N×n = 0 for any n ∈ G, then χ(n)N = χ(Nn) =

χ(0) = 1, so that characters assume values in the unit circle, and more precisely

χ(n) ∈
{
e

2iπ
N k ; 0 ⩽ k ⩽ N − 1

}
. (2.19)

So in particular Ĝ is a finite group (since there is a finite number of applications between two finite sets)
and χ−1 = χ̄. In the case of a cyclic group, the dual is simple to describe.

Proposition 8. For G = Z/NZ, then Ĝ = (φk)
N−1
k=0 where φk = (e

2iπ
N nk)n and k 7→ φk defines a (non-

canonical) isomorphism G ∼ Ĝ.

Proof. The φk are indeed characters.

Conversely, for any χ ∈ Ĝ, according to (2.19), χ(1) = e
2iπ
N k for some k. Then

χ(n) = χ(1)n =
2iπ
N kn= φk(n).

Note that all these applications are different (because φk(1) are all distinct) which shows that |G| = |Ĝ| so
that they are isomorphic.

This proposition thus shows that characters of cyclic groups are exactly the discrete Fourier orthonormal
basis defined in (2.8).
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Commutative groups. For more general commutative groups with a finite number of generators, accord-
ing to the celebrated structure theorem, one can “decompose” them as a product of cyclic group (which are
in some sense the basic building blocks), i.e. there is the following isomorphism of groups

G ∼ (Z/N1Z)× . . .× (Z/NdZ)× ZQ. (2.20)

If G is finite, then Q = 0 and N = N1 ×Nd. In this case, G is simply a discrete d-dimensional “rectangle”
with periodic boundary conditions.

For two finite groups (G1, G2) one has

̂G1 ×G2 = Ĝ1 ⊗ Ĝ2 =
{
χ1 ⊗ χ2 ; (χ1, χ2) ∈ Ĝ1 × Ĝ2

}
. (2.21)

Here ⊗ is the tensor product of two functions

∀ (n1, n2) ∈ G1 ×G2, (χ1 ⊗ χ2)(n1, n2)
def.
= χ1(n1)χ2(n2).

Indeed, one verifies that χ1 ⊗ χ2 is a morphism, and in fact one has the factorization χ = χ(·, 0) ⊗ χ(0, ·)
because one decomposes (n1, n2) = (n1, 0) + (0, n2).

This construction, thanks to the structure theorem, leads to a constructive proof of the isomorphism
theorem.

Proposition 9. If G is commutative and finite then Ĝ ∼ G.

Proof. The structure theorem (2.20) for Q = 0 and the dual of a product (2.21) shows that

Ĝ ∼ Ĝ1 ⊗ . . .⊗ Ĝd

where we denoted Gℓ
def.
= Z/NℓZ. One then remark that Ĝ1 ⊗ Ĝ2 ∼ Ĝ1 × Ĝ2. One concludes thanks to

Proposition 8, since one has Ĝk ∼ Gk.

Note that the isomorphism Ĝ ∼ G is not “canonical” since it depends on the indexing of the roots of

unity on the circle. Similarly to the case of the duality of vector space, the isomorphism
ˆ̂
G ∼ G can be made

canonical by considering the evaluation map

g ∈ G 7−→ eg ∈ ˆ̂
G where

(
eg : χ ∈ Ĝ 7→ χ(g) ∈ C∗.

)

Discrete Fourier transform from character’s point of view. One can be even more constructive by
remarking that characters in Ĝℓ are the discrete Fourier atoms (2.8), i.e. are of the form

(e
2iπ
Nℓ

kℓnℓ)Nℓ−1
nℓ=0 for some 0 ⩽ kℓ < Nℓ.

Identifying G and G1× . . .×Gd, by tensorizing these functions together, one thus obtains that the characters
composing Ĝ are exactly the orthogonal multi-dimensional discrete Fourier basis (2.13).

2.7.2 More General cases

Infinite groups. For an infinite group with a finite number of generators, one has Q > 0, and the definition
of Ĝ should impose the continuity of the characters (and also use an invariant measure on G to define inner
products). In the case G = Z, the dual vectors are indexed by a continuous parameter,

Ẑ =
{
φω : n 7→ einω ∈ CZ ; ω ∈ R/2πZ

}

so that Ẑ ∼ R/2πZ. The case G = ZQ follows by tensorization. The (φω)ω are “orthogonal” in the sense
that ⟨φω, φω′⟩Z = δ(ω − ω′) can be understood as a Dirac kernel (this is similar to the Poisson formula),

where ⟨u, v⟩Z
def.
=
∑

n unv̄n. The “decomposition” of a sequence (cn)n∈Z on the set of characters is equivalent
to forming a Fourier series

∑
n cne

−inω.

Similarly, for G = R/2πZ, one has Ĝ = Z, with orthonormal characters φn = ei·n, so that the decom-
position of functions in L2(G) is the computation of Fourier coefficients. Intuitively, a Hilbertian theory is
associated with a compact group, which comes with an invariant measure.
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Non-commutative groups. For noncommutative group, one observes that G is not isometric to Ĝ. A
typical example is the symmetric group ΣN of N elements, where one can show that Ĝ = {Id, ε} where
ε(σ) = (−1)q is the signature, where q is the number of permutations involved in a decomposition of
σ ∈ ΣN .

In order to study non-commutative groups, one has to replace morphisms χ : G → C∗ by morphisms
ρ : G→ GL(Cnρ) for some nρ, which are called “representations” of the group G. For (g, g′) ∈ G (denoting
now multiplicatively the operation on G), one should thus have ρ(gg′) = ρ(g) ◦ ρ(g′). When nρ = 1,
identifying GL(C) ∼ C∗, one retrieves the definition of characters. Note that if ρ is a representation, then

χ(g)
def.
= tr(ρ(g)), where tr is the trace, defines a character.

If there is a subspace V stable by all the ρ(g), one can build W such that Rnρ = V +W which is also
stable, thus reducing the study of ρ to the study on a small space (matrices have a block diagonal form). It
suffices to consider the inner product

⟨x, y⟩ def.
=
∑

g∈G

⟨ρ(g)x, ρ(g)y⟩Rnρ

and select the orthogonal V ⊥ for this product. Note that when using an ortho-basis of Rnρ for this inner
product, the matrices associated to the ρ(g) are unitary. In order to limit the set of such representations, one
is only interested in “elementary” ones, which do not have invariant sub-spaces, and are called “irreducible”
(otherwise one could create arbitrary large representation by stacking others in a block diagonal way). One
also only considers these irreducible representations up to isomorphism, where two representations (ρ, ρ′)
are said to be isomorphic if ρ(g) = U−1ρ(g)U where U ∈ GL(Cd) is a change of basis. The set of all these
representations up to isomorphism is called the dual group and denoted Ĝ.

For the symmetric group, there is an explicit description of the set of irreducible representations. For
instance, for G = Σ3, |G| = 6, and there are two representations of dimension 1 (the identity and the
signature, which are the characters) and one representation of dimension 2, which is obtained by identifying
G with the isometric of the equilateral triangle in R2, and the dimensions indeed satisfy 6 = |G| =∑n2ρ =
1 + 1 + 22.

One can show that the dimensions nρ of these irreducible representations ρ ∈ Ĝ satisfies
∑

ρ∈Ĝ n
2
ρ = N

and that the entries of the matrices involved in these representations define an orthogonal basis of the space
of functions f : G → C (note however that this set of basis function is not canonical since it depends on a
particular choice of basis for each representation up to isomorphism). The associated Fourier transform of a
function f : G→ C is defined as

∀ ρ ∈ Ĝ, f̂(ρ)
def.
=
∑

g∈G

f(g)ρ(g) ∈ Cnρ×nρ .

This corresponds to computing inner products with the aforementioned ortho-basis. It is an invertible linear
transform, whose invert is given next.

Proposition 10. One has

∀ g ∈ G, f(g) =
1

|G|
∑

ρ∈Ĝ

nρ tr(f̂(ρ)ρ(g
−1)).

Proof. The proof relies on the following formula, which states that for any g ∈ G

Ag
def.
=
∑

ρ∈Ĝ

nρ tr(ρ(g)) = δg

where δg = 0 for g ̸= IdG and δIdG
= 1. We will not prove this formula, and refer to the book of Diaconis p.13

for a proof, which is based on the decomposition of the character of the so-called standard representation
(which corresponds to permuting by the action of G the canonical basis of R|G|) on the set of characters,
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which are orthogonal. One then has

1

|G|
∑

ρ∈Ĝ

nρ tr(f̂(ρ)ρ(g
−1)) =

1

|G|
∑

ρ∈Ĝ

nρ tr(
∑

u

f(u)ρ(u)ρ(g−1))

=
∑

u

f(u)
1

|G|
∑

ρ∈Ĝ

nρ tr(ρ(ug
−1)) =

∑

u

f(u)Gug−1 = f(g).

One can define the convolution of two functions f, h : G→ C as

(f ⋆ h)(a)
def.
=
∑

bc=a

f(b)h(c)

(beware that it is not commutative anymore). The Fourier transform diagonalizes these convolution opera-
tors, as stated next.

Proposition 11. Denoting F(f) = f̂

F(f ⋆ h)(ρ) = f̂(ρ)× ĥ(ρ)

where × is the matrix multiplication.

Proof.

F(f ⋆ h)(ρ) =
∑

x

∑

y

f(y)h(y−1x)ρ(yy−1x) =
∑

x

∑

y

f(y)ρ(y)h(y−1x)ρ(y−1x) =
∑

y

f(y)ρ(y)
∑

z

h(z)ρ(z)

where we made the change of variable z = y−1x.

For certain groups, there exists fast Fourier transforms to compute f̂ , an example being the permutation
group, but the structure of these algorithms is much more involved than in the case G = Z/NZ.

This theory extends to compact groups by considering a discrete but infinite set of representations. A
typical example is to analyze signals defined on the rotation groups SO(3), on which one can compute
explicitly the representation using the basis of spherical harmonics detailed in Section 2.8.2 below. In this
case, one has a representation of dimension 2ℓ+ 1 for each frequency index ℓ.

2.8 A Bit of Spectral Theory

In order to define Fourier methods on general domains X, one can use the aforementioned group-theoretic
approach if X = G is a group, or also if a group acts transitively on X. An alternative way is to describe
the equivalent of Fourier basis functions as diagonalizing a specific differential operator (as we have seen in
Section 2.6 that it is in some sense a way to characterize the Fourier basis). Of particular interest is the
Laplacian, since it is the lowest order rotation-invariant differential operator, and that there exists natural
generalization on domains such as surfaces or graphs.

2.8.1 On a Surface or a Manifold

Figure 2.20: Computing
Laplacian on a surface

The presentation here is very informal. One can define the Laplacian of a
smooth function f : X → C defined on a “surface” X as

∀x ∈ X, (∆f)(x)
def.
= lim

ε→0

1

Vol(Bε(x))

∫

Bε(x)

f(x)dµ(x)− f(x).
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Here µ(x) is the area measure on X, Vol(B)
def.
=

∫
B
dµ(x), and Bε(x) =

{y ; dX(x, y) ⩽ ε} is the geodesic ball of radius ε at x, where dX is the geodesic
distance on X (length of the shortest path).

If the surface X is smooth, compact and connected, then it is possible to show
that ∆ is itself a compact operator with a negative spectrum 0 > λ1 > λ2 > . . .
and an orthogonal set of eigenvectors (φn)n⩾0 where φ1 = 1. Here the inner

product is ⟨f, g⟩X
def.
=
∫

X f(x)g(x)dµ(x) on L2(X). In the case of a flat torus

X = (R/Z)d, then writing x = (x1, . . . , xd),

∆f =

d∑

s=1

∂2f

∂2xs
.

Similarly to (2.15) (which was for an unbounded domain), then one can choose for this eigenfunctions φn

the Fourier basis (2.1) and λn = −||n||2

2.8.2 Spherical Harmonics

Figure 2.21: Spherical co-
ordinates.

Of particular interest is the special case of the previous construction on the
(d − 1)-dimensional sphere Sd−1 =

{
x ∈ Rd ; ||x||Rd = 1

}
. In this case, there

exists a closed form expression for the eigenvectors of the Laplacian. In the
3-D case d = 3, they are indexed by n = (ℓ,m)

∀ ℓ ∈ N, ∀m = −ℓ, . . . , ℓ, φℓ,m(θ, φ) = eimφPm
ℓ (cos(θ))

and then the eigenvalue of the Laplacian is λℓ,m = −ℓ(ℓ + 1). Here Pm
ℓ

are associated Legendre polynomials, and we used spherical coordinates x =
(cos(φ), sin(φ) sin(θ), sin(φ) cos(θ)) ∈ S3 for (θ, φ) ∈ [0, π]× [0, 2π]. The index
ℓ is analogous to the amplitude of Fourier frequencies in 2-D. For a fixed ℓ,
the space Vℓ = span(φℓ,m) is an eigenspace of ∆, and is also invariant under
rotation.

2.8.3 On a Graph

We assume X is a graph of N vertices, simply indexed {1, . . . , N}. Its
“geometry” is described by a connectivity matrix of weights W = (wi,j)i∼j

where we denote i ∼ j to indicate that (i, j) is an edge of the graph for (i, j) ∈
X2. We assume that this weight matrix and the connectivity is symmetric, wi,j = wj,i.

Figure 2.22:
Weighted graph.

The graph Laplacian ∆ : RN → RN is computing the difference between the average
of values around a point and the value at this point

∀ f ∈ RN , (∆f)i
def.
=
∑

j∼i

wi,jfj − (
∑

j∼i

wi,j)fi =⇒ ∆ =W −D

where D
def.
= diagi(

∑
j∼i wi,j). In particular, note ∆1 = 0

For instance, if X = Z/NZ with the graph i ∼ i−1 and i ∼ i+1 (modulo N), then
∆ is the finite difference Laplacian operator ∆ = D2 defined in (2.17). This extends
to any dimension by tensorization.

Proposition 12. Denoting G : f ∈ RN 7→ (
√
wi,j(fi − fj))i<j the graph-gradient

operator, one verifies that

−∆ = G⊤G =⇒ ∀ f ∈ RN , ⟨∆f, f⟩RN = −⟨Gf, Gf⟩RP .

where P is the number of (ordered) edges E = {(i, j) ; i ∼ j, i < j}.
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Proof. One has

||Gf ||2 =
∑

(i,j)∈E

wi,j |fi − fj |2 =
∑

i<j

wi,jf
2
i +

∑

i<j

wi,jf
2
j − 2

∑

i<j

wi,jfifj

=
∑

i<j

wi,jf
2
i +

∑

i>j

wi,jf
2
i −

∑

i,j

wi,jfifj =
∑

j

f2i
∑

i,j

wi,j −
∑

i

fi
∑

j

wi,jfj

= ⟨Df, f⟩ − ⟨Lf, f⟩ = −⟨Lf, f⟩.

This proposition shows that ∆ is a negative semi-definite operator, which thus diagonalizes in an ortho-
basis (φn)

N
n=1, with φ1 = 1, with eigenvalues 0 ⩾ λ1 ⩾ λN . If X is connected, one can show that λ1 < 0. In

the case of a regular graph associated with a uniform grid, one retrieves the discrete Fourier basis (2.8).
More details and application of Laplacians on graphs can be found in Chapter ??, see in particular

Section ??.

2.8.4 Other things

Multiplication of polynomials (Code text polymult.m). Fourier transform for finite-field valued func-
tions.
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