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Chapter 4

Denoising

Together with compression, denoising is the most important processing application, that is pervasive in
almost any signal or image processing pipeline. Indeed, data acquisition always comes with some kind of
noise, so modeling this noise and removing it efficiently is crucial.

4.1 Noise Modeling

4.1.1 Noise in Images

Image acquisition devices always produce some noise. Figure 4.1 shows images produced by different
hardware, where the regularity of the underlying signal and the statistics of the noise is very different.

Digital camera Confocal imaging SAR imaging

Figure 4.1: Example of noise in different imaging device.

One should thus model both the acquisition process and the statistics of the noise to fit the imaging
process. Then one should also model the regularity and geometry of the clean signal to choose a basis
adapted to its representation. This chapter describes how thresholding methods can be used to perform
denoising in some specific situations where the noise statistics are close to being Gaussian and the mixing
operator is a sum or can be approximated by a sum.

Since noise perturbs discrete measurements acquired by some hardware, in the following, we consider
only finite dimensional signal f ∈ CN .
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4.1.2 Image Formation

Figure 4.2 shows an idealized view of the image formation process, that mixes a clean image f0 with a
noise w to obtain noisy observations Y := f0 ⊕w, where ⊕ might for instance be a sum or a multiplication.
Note that Y is thus here modeled as a random vector.

Figure 4.2: Image formation with noise modeling and denoising pipepline.

Statistical modeling considers w as a random vector with known distribution, while numerical computa-
tions are usually done on a single realization of this random vector, still denoted as w.

Additive Noise. The simplest model for such image formation consists of assuming that it is an additive
perturbation of a clean signal f0

Y := f0 + w

where w is the noise residual. Statistical noise modeling assumes that w is a random vector, and in practice
one only observes a realization of this vector. This modeling thus implies that the image f to be processed
is also a random vector. Figure 4.3 and 4.4 show examples of noise addition to a clean signal and a clean
image.

f0 f

Figure 4.3: 1-D additive noise example.

The simplest noise model assumes that each entry wn of the noise is a Gaussian random variable of
variance σ2, and that the wn are independent, i.e. w ∼ N (0, IdN ). This is the white noise model.

Depending on the image acquisition device, one should consider different noise distributions, such as for
instance uniform noise wn ∈ [−a, a] or Impulse noise

P(wn = u) ∝ e−|u/σ|α where α < 2

In many situations, the noise perturbation is not additive, and for instance its intensity might depend on
the intensity of the signal. This is the case with Poisson and multiplicative noises considered in Section 4.4.
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f0 y ∼ Y = f0 + w

Figure 4.4: 2-D additive noise example.

4.1.3 Denoiser

A denoiser (also called estimator) is an estimation f̃ = D(Y ) (we use both notations in the following) of
f0 computed from the observation Y alone so that D is a deterministic function. It is thus also a random
vector that depends on the noise w. Since Y is a random vector of mean f0, the numerical denoising process
corresponds to the estimation of the mean of a random vector from a single realization. Figure 4.5 shows an
example of denoising.

The quality of a denoiser is measured using the average mean square risk Dw(||f0− f̃ ||2). where Dw is the
expectation (averaging) with respect to the noise w. Since f0 is unknown, this corresponds to a theoretical
measure of performance, that is bounded using a mathematical analysis. In the numerical experiments, one
observes a single realization y ∼ Y = f0 + w, and the performance is estimated from this single denoising
using the SNR SNR(D(y), f0), where

SNR(f, g) := −20 log10(||f − g||/||g||).

The SNR is expressed in “decibels”, denoted dB. This measure of performance requires the knowledge of the
clean signal f0, and should thus only be considered as an experimentation tool, that might not be available
in a real-life denoising scenario where clean data are not available. Furthermore, the use of an ℓ2 measure
of performance is questionable, and one should also observe the result to judge of the visual quality of the
denoising.

4.2 Linear Denoising using Filtering

4.2.1 Translation Invariant Estimators

A linear estimator D(Y ) = f̃ of f0 depends linearly on Y , so that D(f + g) = D(f)+D(g). A translation
invariant estimator commutes with translation, so that D(fτ ) = D(f)τ , where fτ (t) = f(t− τ) (we assume
periodic boundary conditions, say in 1-D or 2-D). Such a denoiser can always be written as a filtering

D(f) = f ⋆ h

where h ∈ RN is a (low pass) filter. In practice, since the noise has zero mean, it satisfies∑
n

hn = ĥ0 = 1

where ĥ is the discrete Fourier transform.
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f0 y D(y)

Figure 4.5: Left: clean image, center: noisy image, right: denoised image.

Figure 4.6 shows an example of denoising using a low pass filter.
The filtering strength is usually controlled the width s of h. A typical example is the (discretized)

Gaussian filter

∀ −N/2 < i ⩽ N/2, hs,i =
1

Zs
exp

(
− i2

2s2

)
(4.1)

where Zs ensures that
∑
i hs,i = 1 (low pass). Figure 4.6 shows the effect of Gaussian filtering over the

spacial and Fourier domains.
Figure 4.7 shows the effect of low pass filtering on a signal and an image with an increasing filter width

s. Linear filtering introduces a blur and are thus only efficient to denoise smooth signals and image. For
signals and images with discontinuities, this blur deteriorates the signal. Removing a large amount of noise
necessitates to also smooth significantly edges and singularities.

4.2.2 Optimal Filter Selection and Bias-Variance Tradeoff

The selection of an optimal filter is a difficult task. Its choice depends both on the regularity of the
(unknown) data f0 and the noise level σ. A simpler option is to optimize the filter width s among a
parametric family of filters, such as for instance the Gaussian filters defined in (4.1).

The denoising error can be decomposed as

||f̃ − f0|| ⩽ ||hs ⋆ f0 − f0||+ ||hs ⋆ w||

The filter width s should be optimized to perform a tradeoff between removing enough noise (||hs ⋆ w||
decreases with s) and not smoothing too much the singularities ((||hs ⋆ f0 − f0|| increases with s).

Figure (4.8) shows the oracle SNR performance, defined in (??).
Figure 4.9 and 4.10 show the results of denoising using the optimal filter width s⋆ that minimizes the

SNR for a given noisy observation.
These optimal filtering appear quite noisy, and the optimal SNR choice is usually quite conservative.

Increasing the filter width introduces a strong blurring that deteriorates the SNR, although it might look
visually more pleasant.

4.2.3 Oracle denoiser

In order to select h, we will here “cheat” by assuming we have access to the ground trust f0. Recall we
consider the noise model Y = f0 + w, where w is a Gaussian white noise, i.e., wk ∼ N (0, σ2) and the wk
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f log(f̂)

f log(ĥ)

f ⋆ h log(f̂ · ĥ) = log(ĥ) + log(ĥ)

Figure 4.6: Denoising by filtering over the spacial (left) and Fourier (right) domains.

are i.i.d. Here f0 is the (a priori unknown) ground trust. We consider an orthogonal basis (ψk)k, which is
typically the Fourier basis. We consider a linear denoiser which is diagonal in this basis,

f̃ :=
∑
k

λk⟨Y, ψk⟩ψk. (4.2)

For the Fourier basis, this means f̃ = Y ⋆ h where h̃ = λ. Note that f̃ is a random vector. Here we will
“cheat” and assume access to f0 to select λ, but we we still impose that f̃ is a linear function of Y of the
above form, so the problem is non-trivial and still quite informative (we cannot just use f̃ = f0).

Denoting ck := ⟨f0, ψk⟩ (for the Fourier basis, c = f̂0), the expected risk of this denoiser is

Ew∥f̃ − f0∥2 =
∑
k

Ew
∣∣∣⟨f̃ − f0, ψk⟩

∣∣∣2 =
∑
k

Ew |λk (ck + ⟨w, ψk⟩)− ck|2 .

One then uses the fact that since (ψk)k is an orthonormal basis, ⟨w, ψk⟩ is also a Gaussian white noise of
variance σ2. By expanding the square and using E(⟨w, ψk⟩) = 0, we obtain

Ew∥f̃ − f0∥2 =
∑
k

|ck|2|λk − 1|2 + |λk|2σ2.

In practice, we do not know ck. But if we assume we know it (in practice, one can make some rough

assumptions about it), then the best possible denoising minimizes Ew
(
∥f̃ − f0∥2

)
with respect to λ, so that

it solves for each k
min
λk

(
|ck|2|λk − 1|2 + |λk|2σ2

)
.

The solution thus satisfies
|ck|2(λk − 1) + λkσ

2 = 0,
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Figure 4.7: Denoising using a filter of increasing width s.

i.e.,

λk =
|ck|2

|ck|2 + σ2
=

1

1 + σ2/|ck|2
.

If σ = 0, one has λ = 1 (identity mapping). Assuming |ck| is decaying, as σ increases, the coefficients are
more and more concentrated near 0.

4.2.4 Wiener Filter

Here we will “cheat” a bit less and assume also a random model for the signal f0 which we assume to
know. If one has a random model both for the noise w ∼ W and for the signal f0 ∼ F , one can derives an
optimal filters in average over both the noise and the signal realizations. One further assumes that W and
F are independent. We assume D has the form (4.2).

The optimal h thus minimizes

Ew,F ∥D(F + w)− F∥2

Since W and F are independent, the same computation as above caries over so that

Ew,F ∥D(F + w)− F∥2
∑
k

αk|λk − 1|2 + |λk|2σ2 where αk := EF |⟨F, ψk⟩|2

The optimal filter thus has coefficients

λk =
1

1 + σ2/αk
. (4.3)

With respect to the oracle filter of the previous section, the coefficient |ck|2 is replaced by the so-called power
spectrum of the distribution αk > 0. This Filter is known as the Wiener filter.

When (ψk)k is the discrete Fourier basis, then this reads

αk = EF |F̂k|2 = EFF(F ⋆ F (−·))k = F(E(F ⋆ F (−·))) = η̂(F )
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Figure 4.8: Curves of SNR as a function of the filtering width in 1-D (left) and 2-D (right).

Figure 4.9: Noisy image (left) and denoising (right) using the optimal filter width.

where F(g) = ĝ is the Fourier transform where F (−·) = (F−k) is the reversed signal, which has Fourier
transform F̂ ∗ (complex conjugate). Here η(F ) ∈ RN is the auto-correlation of the random vector F ,

η(F )i := E(F ⋆ F (−·))i = E(
∑
k

FiFi+j).

It measures the average correlation between pairs of coordinates separated by j.
We have assumed here that D is diagonal in ψm, having form (4.2). Alternatively, one can prove that if

F is stationary, i.e. its laws is translation invariance, i.e. the law of F (· − τ) is equal to the law of F , then
the Wiener filter (4.3) for the Fourier basis is optimal among all possible linear denoiser.

In practice, one can try to approximate αk by |ŷk|2 where y is a single realization, but unfortunately, one
can be shown that this estimation is very bad, especially for large frequencies k, which typically needs to be
truncated. This is called “empirical Wiener”.

4.2.5 Denoising and Linear Approximation

In order to study linear (and also non-linear, see the section below) denoising without assuming a random
signal model, one should use approximation theory as studied in Chapter ??. We thus consider an ortho-basis
B = (ψm)m of RN , and consider a simple denoising obtained by keeping only the M first term elements of
the approximation of the noisy observation in B

D(f) = f̃
def.
=

M∑
m=1

⟨f, ψm⟩ψm. (4.4)
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Figure 4.10: Noisy image (left) and denoising (right) using the optimal filter width.

This is a linear projection on the space spanned by (ψm)Mm=1. This denoising scheme is thus parameterized
by some integer M > 0, increasing M increases the denoising strength. For instance, when B is the discrete
Fourier basis, this corresponds to an ideal low-pass filter against a (discretized) Dirichlet kernel. This
corresponds to a special case of the linear denoiser considered in (4.2) where the coefficients λm are binary
λm ∈ {0, 1}. This simplification is still quite expressive (in particular, it can be shown that in the setup
considered in (3), this type of filter is still almost optimal) while not necessitating a strong knowledge on
the ground trust f0 (in particular, we do not assume it is drawn from a random distribution F ).

Note also that we do here all the proof in finite dimension N , but all this construction and proof does
not depend on N , so it works in infinite dimension (see below for more comments on this).

Theorem 3. We assume that f0 ∈ RN has a linear approximation error decay that satisfies

∀M, ||f0 − f lin0,M ||2 ⩽ CM−2β where f lin0,M
def.
=

M∑
m=1

⟨f0, ψm⟩ψm

for some constant C. Then the linear denoising error using (4.4) satisfies

D(||f0 − f̃ ||2) ⩽ 2C
1

2β+1σ2− 1
β+1/2 ,

when choosing

M = C
1

2β+1σ− 2
2β+1 . (4.5)

Proof. One has, thanks to the ortho-normality of (ψm)m

D(||f0 − f̃ ||2) = D(
∑
m

⟨f0 − f̃ , ψm⟩2) = D(

M∑
m=1

⟨f0 − f, ψm⟩2 +
∑
m>M

⟨f0, ψm⟩2)

= D

(
M∑
m=1

⟨w, ψm⟩2
)

+
∑
m>M

⟨f0, ψm⟩2 =Mσ2 + ||f0 − f lin0,M ||2

⩽Mσ2 + CM−2β .

Here we use the fundamental fact that (⟨w, ψm⟩)m is also N (0, σ2IdN ). Choosing M such that Mσ2 =

CM−2β , i.e. M = C
1

2β+1σ− 2
2β+1 leads to

D(||f0 − f̃ ||2) = 2CM−2β = 2CC− 2β
2β+1σ

4β
2β+1 = 2C

1
2β+1σ2− 1

β+1/2 .
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There are several important remark regarding this simple but important result:

Thanks to the decay of the linear approximation error, the denoising error D(||f0 − f̃ ||2) is bounded
independently of the sampling size N , although the input noise level D(||w||2) = Nσ2 growth with N .

If the signal is well approximated linearly, i.e. if β is large, then the denoising error decays fast when the
noise level σ drops to zero. The upper bound approaches the optimal rate σ2 by taking β large enough.

This theory is finite dimensional, i.e. this computation makes only sense when introducing some discretiza-
tion step N . This is natural because random noise vectors of finite energy are necessarily finite dimensional.

For the choice (4.5) to be realizable, one should however have M ⩽ N , i.e. N ⩾ C
1

2β+1σ− 2
2β+1 . Thus N

should increase when the noise diminish for the denoising effect to kick-in.

Section ?? bounds the linear approximation error for infinite dimensional signal and image model. This
theory can be applied provided that the discretization error is smaller than the denoising error, i.e. once
again, one should use N large enough.

A typical setup where this denoising theorem can be applied is for the Sobolev signal and image model
detailed in Section ??. In the discrete setting, where the sampling size N is intended to grow (specially if
σ diminishes), one can similarly consider a “Sobolev-like” model, and similarely as for Proposition ??, this
model implies a decay of the linear approximation error.

Proposition 13. Assuming that
N∑
m=1

m2α|⟨f0, ψm⟩|2 ⩽ C (4.6)

then
∀M, ||f0 − f lin0,M ||2 ⩽ CM−2α

Proof.

C ⩾
N∑
m=1

m2α|⟨f0, ψm⟩|2 ⩾
∑
m>M

m2α|⟨f0, ψm⟩|2 ⩾M2α
∑
m>M

|⟨f0, ψm⟩|2 ⩾M2α||f0 − f lin0,M ||2.

If ψm is the discrete Fourier basis defined in (2.8), then this discrete Sobolev model (4.6) is equivalent
to the continuous Sobolev model of Section ??, up to a discretization error which tends to 0 as N increase.
Choosing N large enough shows that smooth signals and image are thus efficiently denoised by a simple
linear projection on the first M element of the Fourier basis.

4.3 Non-linear Denoising using Thresholding

4.3.1 Hard Thresholding

We consider an orthogonal basis {ψm}m of CN , for instance a discrete wavelet basis. The noisy coefficients
satisfy

⟨f, ψm⟩ = ⟨f0, ψm⟩+ ⟨w, ψm⟩. (4.7)

Since a Gaussian white noise is invariant under an orthogonal transformation, ⟨w, ψm⟩ is also a Gaussian
white noise of variance σ2. If the basis {ψm}m is efficient to represent f0, then most of the coefficients
⟨f0, ψm⟩ are close to zero, and one observes a large set of small noisy coefficients, as shown on Figure 4.11.
This idea of using thresholding estimator for denoising was first systematically explored by Donoho and
Jonhstone [1].

A thresholding estimator removes these small amplitude coefficients using a non-linear hard thresholding

f̃ =
∑

|⟨f, ψm⟩|>T

⟨f, ψm⟩ψm =
∑
m

ST (⟨f, ψm⟩)ψm.
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f ⟨f, ψωj,n⟩ ST (⟨f, ψωj,n⟩) f̃

Figure 4.11: Denoising using thresholding of wavelet coefficients.

where ST is defined in (??). This corresponds to the computation of the bestM -term approximation f̃ = fM
of the noisy function f . Figure 4.11 shows that if T is well chose, this non-linear estimator is able to remove
most of the noise while maintaining sharp features, which was not the case with linear filtering estimatiors.

4.3.2 Soft Thresholding

We recall that the hard thresholding operator is defined as

ST (x) = S0
T (x) =

{
x if |x| > T,
0 if |x| ⩽ T.

(4.8)

This thresholding performs a binary decision that might introduces artifacts. A less aggressive nonlinearity
is the soft thresholding

S1
T (x) = max(1− T/|x|, 0)x. (4.9)

Figure 4.12 shows the 1-D curves of these 1-D non-linear mapping.

Figure 4.12: Hard and soft thresholding functions.

For q = 0 and q = 1, these thresholding defines two different estimators

f̃q =
∑
m

SqT (⟨f, ψm⟩)ψm (4.10)
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Figure 4.13: Curves of SNR with respect to T/σ for hard and soft thresholding.

Coarse scale management. The soft thresholded S1
T introduces a bias since it diminishes the value

of large coefficients. For wavelet transforms, it tends to introduces unwanted low-frequencies artifacts by
modifying coarse scale coefficients. If the coarse scale is 2j0 , one thus prefers not to threshold the coarse
approximation coefficients and use, for instance in 1-D,

f̃1 =
∑

0⩽n<2−j0

⟨f, φj0,n⟩φj0,n +

0∑
j=j0

∑
0⩽n<2−j

S1
T (⟨f, ψj0,n⟩)ψj0,n.

Empirical choice of the threshold. Figure 4.13 shows the evolution of the SNR with respect to the
threshold T for these two estimators, for a natural image f0. For the hard thresholding, the best result is
obtained around T ≈ 3σ, while for the soft thresholding, the optimal choice is around T ≈ 3σ/2. These
results also shows that numerically, for thresholding in orthogonal bases, soft thresholding is slightly superior
than hard thresholding on natural signals and images.

Although these are experimental conclusions, these results are robust across various natural signals and
images, and should be considered as good default parameters.

4.3.3 Minimax Optimality of Thresholding

Sparse coefficients estimation. To analyze the performance of the estimator, and gives an estimate for
the value of T , we first assumes that the coefficients

a0,m = ⟨f0, ψm⟩ ∈ RN

are sparse, meaning that most of the a0,m are zero, so that its ℓ0 norm

||a0||0 = # {m ; a0,m ̸= 0}

is small. As shown in (4.7), noisy coefficients

⟨f, ψm⟩ = am = a0,m + zm
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20.9dB 21.8dB

Figure 4.14: Comparison of hard (left) and soft (right) thresholding.

are perturbed with an additive Gaussian white noise of variance σ2. Figure 4.15 shows an example of such
a noisy sparse signal.

Figure 4.15: Left: sparse signal a, right: noisy signal.

Universal threshold value. If

min
m:a0,m ̸=0

|a0,m|

is large enough, then ||f0 − f̃ || = ||a0 − ST (a)|| is minimum for

T ≈ τN = max
0⩽m<N

|zm|.

τN is a random variable that depends on N . One can show that its mean is σ
√
2 log(N), and that as N

increases, its variance tends to zero and τN is highly concentrated close to its mean. Figure 4.16 shows that
this is indeed the case numerically.

Asymptotic optimality. Donoho and Jonhstone [1]Â have shown that the universal threshold T =
σ
√

2 log(N) is a good theoretical choice for the denoising of signals that are well approximated non-linearly
in {ψm}m. The obtain denoising error decay rate with σ can also be shown to be in some sense optimal.

Theorem 4. We assume that f0 ∈ RN has a non-linear approximation error decay that satisfies

∀M, ||f0 − fnlin0,M ||2 ⩽ CM−2β where fnlin0,M
def.
=

M∑
r=1

⟨f0, ψmr
⟩ψmr
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Figure 4.16: Empirical estimation of the mean of Zn (top) and standard deviation of Zn (bottom)

for some constant C, where here (⟨f0, ψmr ⟩)r are the coefficient sorted by decaying magnitude. Then the
non-linear denoising error using (4.4) satisfies

D(||f0 − f̃q||2) ⩽ C ′ ln(N)σ2− 1
β+1/2 ,

for some constant C ′, when choosing T =
√

2 ln(N), where f̃q is defined in (4.10) for q ∈ {0, 1}.

This universal threshold choice T =
√
2 ln(N) is however very conservative since it is guaranteed to

remove almost all the noise. In practice, as shown in Figure 4.14, better results are obtained on natural
signals and images by using T ≈ 3σ and T ≈ 3σ/2 for hard and soft thresholdings.

4.3.4 Translation Invariant Thresholding Estimators

Translation invariance. Let f 7→ f̃ = D(f) by a denoising method, and fτ (x) = f(x− τ) be a translated
signal or image for τ ∈ Rd, (d = 1 or d = 2). The denoising is said to be translation invariant at precision
∆ if

∀ τ ∈ ∆, D(f) = D(fτ )−τ

where ∆ is a lattice of Rd. The denser ∆ is, the more translation invariant the method is. This corresponds
to the fact that D computes with the translation operator.

Imposing translation invariance for a fine enough set ∆ is a natural constraint, since intuitively the denoising
results should not depend on the location of features in the signal or image. Otherwise, some locations might
be favored by the denoising process, which might result in visually unpleasant denoising artifacts.

For denoising by thresholding

D(f) =
∑
m

ST (⟨f, ψm⟩)ψm.
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then translation invariance is equivalent to asking that the basis {ψm}m is translation invariant at precision
∆,

∀m, ∀ τ ∈ ∆, ∃m, ∃λ ∈ C, (ψm′)τ = λψm

where |λ| = 1.
The Fourier basis is fully translation invariant for ∆ = Rd over [0, 1]d with periodic boundary conditions

and the discrete Fourier basis is translation invariant for all interger translations ∆ = {0, . . . , N0−1}d where
N = N0 is the number of points in 1-D, and N = N0 ×N0 is the number of pixels in 2-D.

Unfortunately, an orthogonal wavelet basis

{ψm = ψj,n}j,n

is not translation invariant both in the continuous setting or in the discrete setting. For instance, in 1-D,

(ψj′,n′)τ /∈ {ψj,n} for τ = 2j/2.

Cycle spinning. A simple way to turn a denoiser ∆ into a translation invariant denoiser is to average the
result of translated images

Dinv(f) =
1

|∆|
∑
τ∈∆

D(fτ )−τ . (4.11)

One easily check that
∀ τ ∈ ∆, Dinv(f) = Dinv(fτ )−τ

To obtain a translation invariance up to the pixel precision for a data of N samples, one should use a set of
|∆| = N translation vectors. To obtain a pixel precision invariance for wavelets, this will result in O(N2)
operations.

Figure 4.17 shows the result of applying cycle spinning to an orthogonal hard thresholding denois-
ing using wavelets, where we have used the following translation of the continuous wavelet basis ∆ =
{0, 1/N, 2/N, 3/N}2, which corresponds to discrete translation by {0, 1, 2, 3}2 on the discretized image. The
complexity of the denoising scheme is thus 16 wavelet transforms. The translation invariance brings a very
large SNR improvement, and significantly reduces the oscillating artifacts of orthogonal thresholding. This
is because this artifacts pop-out at random locations when τ changes, so that the averaging process reduces
significantly these artifacts.

Figure 4.18 shows that translation invariant hard thresholding does a slightly better job than translation
invariant soft thresholding. The situation is thus reversed with respect to thresholding in an orthogonal
wavelet basis.

Translation invariant wavelet frame. An equivalent way to define a translation invariant denoiser is
to replace the orthogonal basis B = {ψm} by a redundant family of translated vectors

Binv = {(ψm)τ}m,τ∈∆. (4.12)

One should be careful about the fact that Binv is not any more an orthogonal basis, but it still enjoy a
conservation of energy formula

||f ||2 =
1

|∆|
∑

m,τ∈∆

|⟨f, (ψm)τ ⟩|2 and f =
1

|∆|
∑

m,τ∈∆

⟨f, (ψm)τ ⟩(ψm)τ .

This kind of redundant family are called tight frames.
One can then define a translation invariant thresholding denoising

Dinv(f) =
1

|∆|
∑

m,τ∈∆

ST (⟨f, (ψm)τ ⟩)(ψm)τ . (4.13)
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21.8dB 23.4dB

Figure 4.17: Comparison of wavelet orthogonal soft thresholding (left) and translation invariant wavelet hard
thresholding (right).

This denoising is the same as the cycle spinning denoising defined in (4.11).

The frame Binv might contain up to |∆||B| basis element. For a discrete basis of signal with N samples,
and a translation lattice of |∆| = N vectors, it corresponds to up to N2 elements in Binv. Hopefully, for a
hierarchical basis such as a discrete orthogonal wavelet basis, one might have

(ψm)τ = (ψm′)τ ′ for m ̸= m′ and τ ̸= τ ′,

so that the number of elements in Binv might be much smaller than N2. For instance, for an orthogonal
wavelet basis, one has

(ψj,n)k2j = ψj,n+k,

so that the number of basis elements is |Binv| = N log2(N) for a 2-D basis, and 3N log2(N) for a 2-D basis.
The fast translation invariant wavelet transform, also called “a trou” wavelet transform, computes all the
inner products ⟨f, (ψm)τ ⟩ in O(N log2(N)) operations. Implementing formula (4.13) is thus much faster
than applying the cycle spinning (4.11) equivalent formulation.

Translation invariant wavelet coefficients are usually grouped by scales in log2(N) (for d = 1) or by
scales and orientations 3 log2(N) (for d = 2) sets of coefficients. For instance, for a 2-D translation invariant
transform, one consider

∀n ∈ {0, . . . , 2jN0 − 1}2, ∀ k ∈ {0, . . . , 2−j}2, dωj [2
−jn+ k] = ⟨f, (ψj,n)k2j ⟩

where ω ∈ {V,H,D} is the orientation. Each set dωj has N coefficients and is a band-pass filtered version of
the original image f , as shown on Figure 4.19.

Figure 4.20 shows how these set of coefficients are hard thresholded by the translation invariant estimator.

4.3.5 Exotic Thresholdings

It is possible to devise many thresholding nonlinearities that interpolate between the hard and soft
thresholder. We present here two examples, but many more exist in the literature. Depending on the
statistical distribution of the wavelet coefficients of the coefficients of f in the basis, these thresholders might
produce slightly better results.
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Figure 4.18: Curve of SNR with respect to T/σ for translation invariant thresholding.

Semi-soft thresholding. One can define a family of intermediate thresholder that depends on a parameter
µ > 1

SθT (x) = g 1
1−θ

(x) where gµ(x) =


0 if |x| < T
x if |x| > µT

sign(x) |x|−Tµ−1 otherwise.

One thus recovers the hard thresholding as S0
T and the soft thresholding as S1

T . Figure 4.21 display an
example of such a non-linearity.

Figure 4.22 shows that a well chosen value of µ might actually improves over both hard and soft thresh-
olders. The improvement is however hardly noticeable visually.

Stein thresholding. The Stein thresholding is defined using a quadratic attenuation of large coefficients

SStein
T (x) = max

(
1− T 2

|x|2
, 0

)
x.

This should be compared with the linear attenuation of the soft thresholding

S1
T (x) = max

(
1− T

|x|
, 0

)
x.

The advantage of the Stein thresholder with respect to the soft thresholding is that

|SStein
T (x)− x| → 0 whereas |S1

T (x)− x| → T,

where x→ ±∞. This means that Stein thresholding does not suffer from the bias of soft thresholding.
For translation invariant thresholding, Stein and hard thresholding perform similarly on natural images.

4.3.6 Block Thresholding

The non-linear thresholding method presented in the previous section are diagonal estimators, since they
operate a coefficient-by-coefficient attenuation

f̃ =
∑
m

AqT (⟨f, ψm⟩)⟨f, ψm⟩ψm
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f j = −8, ω = H j = −8, ω = V j = −8, ω = D

j = −7, ω = H j = −7, ω = V j = −7, ω = D

Figure 4.19: Translation invariant wavelet coefficients.

where

AqT (x) =

 max(1− x2/T 2, 0) for q = Stein
max(1− |x|/T, 0) for q = 1 (soft)
1|x|>T for q = 0 (hard)

Block thresholding takes advantage of the statistical dependancy of wavelet coefficients, by computing the
attenuation factor on block of coefficients. This is especially efficient for natural images, where edges and
geometric features create clusters of high magnitude coefficients. Block decisions also help to remove artifacts
due to isolated noisy large coefficients in regular areas.

The set of coefficients is divided into disjoint blocks, and for instance for 2-D wavelet coefficients

{(j, n, ω)}j,n,ω =
⋃
k

Bk,

where each Bk is a square of s× s coefficients, where the block size s is a parameter of the method. Figure
4.24 shows an example of such a block.

The block energy is defined as

Bk =
1

s2

∑
m∈Bk

|⟨f, ψm⟩|2,

and the block thresholding

f̃ =
∑
m

Sblock,q
T (⟨f, ψm⟩)ψm

makes use of the same attenuation for all coefficients within a block

∀m ∈ Bk, Sblock,q
T (⟨f, ψm⟩) = AqT (Ek)⟨f, ψm⟩.

for q ∈ {0, 1, stein}. Figure 4.24 shows the effect of this block attenuation, and the corresponding denoising
result.
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Figure 4.20: Left: translation invariant wavelet coefficients, for j = −8, ω = H, right: tresholded coefficients.

Figure 4.21: Left: semi-soft thresholder, right: Stein thresholder.

Figure 4.25, left, compares the three block thresholding obtained for q ∈ {0, 1, stein}. Numerically, on
natural images, Stein block thresholding gives the best results. Figure 4.25, right, compares the block size
for the Stein block thresholder. Numerically, for a broad range of images, a value of s = 4 works well.

Figure 4.26 shows a visual comparison of the denoising results. Block stein thresholding of orthogonal
wavelet coefficients gives a result nearly as good as a translation invariant wavelet hard thresholding, with
a faster algorithm. The block thresholding strategy can also be applied to wavelet coefficients in translation
invariant tight frame, which produces the best results among all denoisers detailed in this book.

Code ?? implement this block thresholding.
One should be aware that more advanced denoisers use complicated statistical models that improves over

the methods proposed in this book, see for instance [4].

4.4 Data-dependant Noises

For many imaging devices, the variance of the noise that perturbs f0,n depends on the value of f0,n.
This is a major departure from the additive noise formation model considered so far. We present here two
popular examples of such non-additive models.
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Figure 4.22: Left: image of SNR with respect to the parameters µ and T/σ, right: curve of SNR with respect
to µ using the best T/σ for each µ.

Figure 4.23: SNR curves with respect to T/σ for Stein threhsolding.

4.4.1 Poisson Noise

Many imaging devices sample an image through a photons counting operation. This is for instance the
case in digital camera, confocal microscopy, TEP and SPECT tomography.

Poisson model. The uncertainty of the measurements for a quantized unknown image f0,n ∈ N is then
modeled using a Poisson noise distribution

fn ∼ P(λ) where λ = f0,n ∈ N,

and where the Poisson distribution P(λ) is defined as

P(fn = k) =
λke−λ

k!

and thus varies from pixel to pixel. Figure 4.27 shows examples of Poisson distributions.
One has

D(fn) = λ = f0,n and Var(fn) = λ = f0,n
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Figure 4.24: Left: wavelet coefficients, center: block thresholded coefficients, right: denoised image.

Figure 4.25: Curve of SNR with respect to T/σ (left) and comparison of SNR for different block size (right).

so that the denoising corresponds to estimating the mean of a random vector from a single observation, but
the variance now depends on the pixel intensity. This shows that the noise level increase with the intensity
of the pixel (more photons are coming to the sensor) but the relative variation (fn− f0,n)/f0,n tends to zero
in expectation when f0,n increases.

Figure 4.28 shows examples of a clean image f0 quantized using different values of λmax and perturbed
with the Poisson noise model.

Variance stabilization. Applying thresholding estimator

D(f) =
∑
m

SqT (⟨f, ψm⟩)ψm

to f might give poor results since the noise level fluctuates from point to point, and thus a single threshold
T might not be able to capture these variations. A simple way to improve the thresholding results is to first
apply a variance stabilization non-linearity φ : R → R to the image, so that φ(f) is as close as possible to
an additive Gaussian white noise model

φ(f) ≈ φ(f0) + w (4.14)

where wn ∼ N (0, σ) is a Gaussian white noise of fixed variance σ2.
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SNR=23.4dB 22.8dB 23.8dB

Figure 4.26: Left: translation invariant wavelet hard thresholding, center: block orthogonal Stein threshold-
ing, right: block translation invariant Stein thresholding.

Figure 4.27: Poisson distributions for various λ.

Perfect stabilization is impossible, so that (4.14) only approximately holds for a limited intensity range
of f0,n. Two popular variation stabilization functions for Poisson noise are the Anscombe mapping

φ(x) = 2
√
x+ 3/8

and the mapping of Freeman and Tukey

φ(x) =
√
x+ 1 +

√
x.

Figure 4.29 shows the effect of these variance stabilizations on the variance of φ(f).
A variance stabilized denoiser is defined as

∆stab,q(f) = φ−1(
∑
m

SqT (⟨φ(f), ψm⟩)ψm)

where φ−1 is the inverse mapping of φ.
Figure 4.30 shows that for moderate intensity range, variance stabilization improves over non-stabilized

denoising.
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λmax = 5 λmax = 50 λmax = 50 λmax = 100

Figure 4.28: Noisy image with Poisson noise model, for various λmax = maxn f0,n.
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Figure 4.29: Comparison of variariance stabilization: display of Var(φ(fn)) as a function of f0,n.

4.4.2 Multiplicative Noise

Multiplicative image formation. A multiplicative noise model assumes that

fn = f0,nwn

where w is a realization of a random vector with D(w) = 1. Once again, the noise level depends on the pixel
value

D(fn) = f0,n and Var(fn) = f20,nσ
2 where σ2 = Var(w).

Such a mutiplicative noise is a good model for SAR satellite imaging, where f is obtained by averaging S
images

∀ 0 ⩽ s < K, f (s)n = f0,nw
(s)
n + r(s)n

where r(s) is a Gaussian white noise, and w
(s)
n is distributed according to a one-sided exponential distribution

P(w(s)
n = x) ∝ e−x Ix>0.

For K large enough, averaging the images cancels the additive noise and one obtains

fn =
1

K

K∑
s=1

f (s)n ≈ f0,nwn

where w is distributed according to a Gamma distribution

w ∼ Γ(σ = K− 1
2 , µ = 1) where P(w = x) ∝ xK−1e−Kx,
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Figure 4.30: Left: noisy image, center: denoising without variance stabilization, right: denoising after
variance stabilization.

Figure 4.31: Noisy images with multiplicative noise, with varying σ.

One should note that increasing the value of K reduces the overall noise level.
Figure ?? shows an example of such image formation for a varying number K = 1/σ2 of averaged images.
A simple variance stabilization transform is

φ(x) = log(x)− c

where

c = E(log(w)) = ψ(K)− log(K) where ψ(x) = Γ′(x)/Γ(x)

and where Γ is the Gamma function that generalizes the factorial function to non-integer. One thus has

φ(f)n = φ(f0)n + zn,

where zn = log(w)− c is a zero-mean additive noise.

0 0.5 1 1.5 2 2.5 −1.5 −1 −0.5 0 0.5 1 1.5

Figure 4.32: Histogram of multiplicative noise before (left) and after (right) stabilization.
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Figure 4.32 shows the effect of this variance stabilization on the repartition of w and z.
Figure 4.33 shows that for moderate noise level σ, variance stabilization improves over non-stabilized

denoising.

Figure 4.33: Left: noisy image, center: denoising without variance stabilization, right: denoising after
variance stabilization.
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