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Chapter 16

Convex Analysis

The main references for this chapter are [5, 1]. This chapters uses different notations than the previous
one, and we denote f(x) a typical function to minimized with respect to the variable x. We discus here some
important concepts from convex analysis for non-smooth optimization.

16.1 Basics of Convex Analysis

We consider minimization problems of the form

min
x∈H

f(x) (16.1)

over the finite dimension (Hilbertian) space H def.
= RN , with the canonical inner product 〈·, ·〉. Most of the

results of this chapter extends to possibly infinite dimensional Hilbert space.

Here f : H −→ R̄
def.
= R∪ {+∞} is a convex function. Note that we allow here f to take the value +∞ to

integrate constraints in the objective, and the constraint set is thus the “domain” of the function

dom(f)
def.
= {x ; f(x) < +∞} .

A useful notation is the indicator function of a set C ⊂ H

ιC(x)
def.
=

{
0 if x ∈ C,
+∞ otherwise.

16.1.1 Convex Sets and Functions

A convex set Ω ⊂ H is such that

∀ (x, y, t) ∈ H2 × [0, 1], (1− t)x+ ty ∈ Ω.

A convex function is such that

∀ (x, y, t) ∈ H2 × [0, 1], f((1− t)x+ ty) 6 (1− t)f(x) + tf(y) (16.2)

and this is equivalent to its epigraph {(x, r) ∈ H × R ; r > f(x)} being a convex set. Note that here we use
6 as a comparison over R̄. The function f is strictly convex if equality in (16.2) only holds for t ∈ {0, 1}. A
set Ω being convex is equivalent to ιC being a convex function.

In the remaining part of this chapter, we consider convex function f which are proper, i.e. such that
dom(f) 6= ∅, and that should be lower-semi-continuous (lsc), i.e. such that for all x ∈ H,

lim inf
y→x

f(y) > f(x).

It is equivalent to epi(f) being a closed convex set. We denote Γ0(H) the set of proper convex lsc functions.
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Figure 16.1: Convexity and strict convexity for function and sets.

16.1.2 First Order Conditions

Existence of minimizers. Before looking at first optimality conditions, one has to check that there exists
minimizers, which is implied by the l.s.c. property and coercivity.

Proposition 50. If f is l.s.c. and coercive (i.e. f(x) → +∞ as x → +∞), then there exists a minimizer
x? of f .

Proof. Since f is coercive, it is bounded from below, one can consider a minimizing sequence (xn)n such
that f(xn) → min f . Since f is l.s.c., this implies that the sub-level set of f are closed, and coercivity
imply they are bounded, hence compact. One can thus extract from (xn)n a converging sub-sequence
(xn(p))p, xn(p) → x?. Lower semi-continuity implies that min f = limp f(xn(p)) > f(x?), and hence x? is a
minimizer.

This existence proof is often called the “direct method of calculus of variation”. Note that if the function
f is in Γ0(H), then the set of minimizer argmin f is a closed convex set, and all local minimizers (i.e.
minimizer of the function restricted to an open ball) are global one. If it is furthermore strictly convex, then
there is a single minimizer.

Sub-differential. The sub-differential at x of such a f is defined as

∂f(x)
def.
= {u ∈ H∗ ; ∀y, f(y) > f(x) + 〈u, y − x〉} .

We denote here H∗ = RN the set of “dual” vector. Although in finite dimensional Euclidean space, this
distinction is not needed, it helps to distinguish primal from dual vectors, and recall that the duality pairing
implicitly used depends on the choice of an inner product. The sub-differential ∂f(x) is thus the set of
“slopes” u of tangent affine planes f(x) + 〈u, z − x〉 that fits below the graph of f .

Figure 16.2: The subdiffer-
ential

Note that f being differentiable at x is equivalent to the sub-differential
being reduced to a singleton (equal to the gradient vector)

∂f(x) = {∇f(x)}.

Informally, the “size” of ∂f(x) controls how smooth f is at x.
Note that one can have ∂f(x) = ∅, for instance if x /∈ dom(f). Note

also that one can still have x ∈ dom(f) and ∂f(x) = ∅, for instance take
f(x) = −

√
1− x2 + ι[−1,1](x) at x = ±1.

Since ∂f(x) ⊂ H∗ is an intersection of half space, it is a closed convex set.
The operator ∂f : H 7→ 2H

∗
is thus “set-valued”, and we often denote this as

∂f : H ↪→ H∗.
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Figure 16.3: Subdifferential of the absolute value and a piecewise affine convex function.

Remark 9 (Maximally monotone operator). The operator ∂f is particular instance of so-called monotone
operator, since one can check that U = ∂f satisfies

∀ (u, v) ∈ U(x)× U(y), 〈y − x, v − u〉 > 0.

In the 1-D setting, being monotone is the same as being an increasing map. Sub-differential can also be
shown to be maximally monotone, in the sense that such an operator is not striclty included in the graph
of another monotone operator. Note that there exists monotone maps which are not subdifferential, for
instance (x, y) 7→ (−y, x). Much of the theory of convex analysis and convex optimization can be extended
to deal with arbitrary maximally monotone-maps in place of subdifferential, but we will not pursue this here.

A prototypical example is the absolute value f(x) = | · |, and writing conveniently ∂f(x) = ∂| · |(x), one
verifies that

∂| · |(x) =

 −1 if x < 0,
+1 if x > 0,
[−1, 1] if x = 0.

First Order Conditions. The subdifferential is crucial for this simple but extremely important proposi-
tion.

Proposition 51. x? is a minimizer of f is and only if 0 ∈ ∂f(x?).

Proof. One has

x? ∈ argmin f ⇔ (∀y, f(x?) 6 f(y) + 〈0, x? − y〉) ⇔ 0 ∈ ∂f(x?).

Sub-differential calculus. There is a large set of calculus rules that allows to simplify the computation
of sub-differentials. For decomposable function f(x1, . . . , xK) =

∑K
k=1 fk(xk), the sub-differential is the

product of the sub-differentials

∂f(x1, . . . , xK) = ∂f1(x1)× . . .× ∂fK(xK).

This can be used to compute the sub-differential of the `1 norm ||x||1 =
∑N
k=1 |xk|

∂|| · ||1(x) =

N∏
k=1

∂| · |(xk)
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which is thus an hyper rectangle. This means that, denoting I = supp(x), one has u ∈ ∂|| · ||1(x) is equivalent
to

uI = sign(xI) and ||uIc ||∞ 6 1.

A tricky problem is to compute the sub-differential of the sum of two functions. If one of the two function
is continuous at x (i.e. it has a finite value), then

∂(f + g)(x) = ∂f(x)⊕ ∂g(x) = {u+ v ; (u, v) ∈ ∂f(x)× ∂g(x)}

where ⊕ thus denotes the Minkowski sum. For instance, if f is differentiable at x, then

∂(f + g)(x) = ∇f(x) + ∂g(x) = {∇f(x) + v ; v ∈ ∂g(x)} .

Positive linear scaling is simple to handle

∀λ ∈ R+, ∂(λf)(x) = λ(∂f(x)).

The chain rule for sub-differential is difficult since in general composition does not work so-well with
convexity. The only simple case is composition with linear functions, which preserves convexity. Denoting
A ∈ RP×N and f ∈ Γ0(RP ), one has that f ◦A ∈ Γ0(RN ) and

∂(f ◦A)(x) = A∗(∂f)(Ax)
def.
= {A∗u ; u ∈ ∂f(Ax)} .

Normal cone. The sud-differential of an indicator function is a convex cone, the so-called normal cone to
the constraint

∀x ∈ C, ∂ιC(x) = NC(x)
def.
= {v ; ∀ z ∈ C, 〈z − x, v〉 6 0} .

Note that for x /∈ C, ∂ιC(x) = ∅. For an affine space C = a + V where V ⊂ H is a linear space, then
NC(x) = V⊥ is the usual orthogonal for linear spaces. If x ∈ int(C) is in the interior of C, then NC(x) = {0}.
In some sense, the more non-regular the boundary of C is at x, the larger is the normal cone.

Figure 16.4: Normal cones

The normal cone is a way to express first order condition for constrained
problem

min
x∈C

f(x)

which reads, if f is continuous

0 ∈ ∂f(x)+∂ιC(x) ⇔ ∃ξ ∈ ∂f(x),−ξ ∈ NC(x) ⇔ ∂f(x)∩(−NC(x)) 6= ∅.

If f is differentiable, it reads −∇f(x) ∈ NC(x).

16.2 Convex Duality

Duality is associated to a particular formulation of the optimization problem, so that for instance making
change of variables results in a different duality.

16.2.1 Lagrange Duality

We consider a minimization of the form

p? = min
x∈RN

{f(x) ; Ax = y and g(x) 6 0} (16.3)

for a continuous convex functions f : H → 0, a matrix A ∈ RP×N and a function g : H → RQ such that
each of its coordinates gi : H → R are continuous and convex. Note that it is always the case that equality
in convex program corresponds to affine ones. One can always write a convex minimization problem with
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positivity constraints in the form (16.3), although there exists infinite way of doing so (each one giving a
different duality formula).

Here we have assumed for simplicity that f is continuous, i.e. dom(f) = RN . The following exposition
can be generalized to dom(f) being arbitrary, but this is more technical. For the sake of simplicity, we thus
assume all the constraint defining the domain are encoded in Ax = y and g(x) 6 0

Note that it is possible to generalized the previous Lagrange duality results by replacing “x > 0” by
“X � 0” where X is a matrix (and in fact even more generally using convex cones).

We use the following fact

sup
u∈RP

〈r, u〉 =

{
0 if r = 0,
+∞ if r 6= 0,

and sup
v∈RQ

+

〈s, v〉 =

{
0 if s 6 0,
+∞ otherwise,

to encode the constraints r = Ax− y = 0 and s = g(x) 6 0.
One can represent the constraints appearing in (16.3) conveniently using a maximization over so-called

Lagrange multipliers

p? = inf
x

max
u∈RP ,v∈RQ

+

L(x, u, v)
def.
= f(x) + 〈Ax− y, u〉+ 〈g(x), v〉.

It is tempting to inverse the inf and the sup, and study

d? = sup
(u,v)∈RP×RQ

+

F (u, v)
def.
= inf

x
f(x) + 〈Ax− y, u〉+ 〈g(x), v〉. (16.4)

One remarks that F is a concave function (as being the minimum of linear forms), and this “dual” problem
is thus a maximization of a concave function.

The following proposition is the so-called weak duality, which assert that values of the dual problems
always lower bounds values of the primal one

Proposition 52. One always has, for all (u, v) ∈ RP × RQ+,

F (u, v) 6 p? =⇒ d? 6 p?.

Proof. Since g(x) 6 0 and v > 0, one has 〈g(x), v〉 6 0, and since Ax = y, one has 〈Ax− y, u〉 = 0, so that

L(x, u, v) 6 f(x) =⇒ F (u, v) = inf
x
L(x, u, v) 6 inf

x
f(x) = p?.

The following fundamental theorem, more difficult to prove, gives a sufficient condition (so-called quali-
fication of the constraints) such that one actually has equality.

Theorem 26. If

∃x0 ∈ RN , Ax0 = y and g(x0) < 0, (16.5)

then p? = d?. Furthermore, x? and (u?, v?) are solutions of respectively (16.3) and (16.4) if and only if

Ax? = y, g(x?) 6 0, u? > 0 (16.6)

0 ∈ ∂f(x?) +A∗u? +
∑
i

v?i ∂gi(x
?) (16.7)

∀ i, u?i gi(x
?) = 0 (16.8)

The existence of such an x0 is called “constraint qualification”, and as written here, this corresponds to
the so-called “Slater” qualification condition (many other weaker sufficient conditions exist).
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Condition (16.6) is simply the primal and dual constraints. Condition (16.7) is the first order condition
for the minimization of L(x, u, v) over x. Condition (16.8) is the first order condition for the maximization
of L(x, u, v) over (u, v). These three conditions are often referred to as “Karush-Kuhn-Tucker” (KKT)
conditions, and under a constraint qualification condition, they are necessary and sufficient condition for
optimality.

The last condition u?i gi(x
?) = 0 (so called “complementary slackness”) states that if gi(x

?) < 0 (the
constraints is not saturated) then ui = 0, and also that if ui > 0 then gi(x

?) = 0.
Note that it is possible to weaken the hypotheses of this theorem, for the linear constraints of the form

gi(x) = 〈x, hi〉 − ci 6 0, by replacing the gi(x0) < 0 by the weaker condition 〈x0, hi〉 6 ci.
One can generalize this theorem to the setting where dom(f) is not equal to RN (i.e. it is not continuous,

and thus integrates extra constraint beside the 6). In this case, one has to add the extra constraint x0 ∈
relint(dom(f)).

Theorem 26 generalizes the necessary conditions provided by Lagrange multipliers for equality constrained
optimization. The setting is both more complex because one can deal with inequalities that might be
saturated (so this introduce positivity constraints on the multipliers v) but also simpler because of convexity
(which thus gives also necessary conditions).

As a simple example, we now derive the dual for a simple linear projection problem. A more complicated
computation is carried over in Section 10.1.5 for the Lasso. We consider

p? = min
Ax=y

1

2
||x− z||2 = min

x
max
u

1

2
||x− z||2 + 〈Ax− y, u〉 = max

u
F (u) = min

x

1

2
||x− z||2 + 〈Ax− y, u〉,

where we used the fact that strong duality holds because only linear constraints are involved. For each u,
the optimal x satisfies x− z +A∗u, i.e. x = z −A∗u, so that

F (u) =
1

2
||A∗u||2 + 〈A(z −A∗u)− y, u〉 = −1

2
||A∗u||2 + 〈u, Az − y〉.

Weak duality states p? > F (u) for any u, and p? = F (u?) where the optimal u? satisfies AA∗u = Az − y. If
y ∈ Im(A), then such a u? exists and can be chosen as u? = u = (AA∗)−1(Az − y), and the (unique) primal
solution reads

x? = ProjA·=y(z)(Id−A+A)z −A+y. (16.9)

16.2.2 Legendre-Fenchel Transform

In order to simplify and accelerate computation involving Lagrange duality, it is very convenient to
introduce a particular transformation of convex functions the Legendre-Fenchel transform. In some sense,
it is the canonical “isomorphisms” (pairing) between convex functions. In spirit, is plays a similar role for
convex function as the Fourier transform for signal or images.

For f ∈ Γ0(H), we define its Legendre-Fenchel transform as

f∗(u)
def.
= sup

x
〈x, u〉 − f(x). (16.10)

Being the maximum of affine functional, one obtains that f∗ is itself a convex function, and that in fact
f? ∈ Γ0(H∗). One can prove the following fundamental bi-duality result.

Theorem 27. One has
∀ f ∈ Γ0(H), (f∗)∗ = f.

In fact, f∗ is convex even in the case where f is not, and f∗∗ is the convex envelop of f (i.e. the largest
convex function smaller than f). [ToDo: drawing]

One has the following basic property relating the sub-differentials of f and f∗.

Proposition 53. One has ∂f∗ = (∂f)−1, where the inverse of a set valued map is defined in (??), and

∀ (x, y), 〈x, y〉 6 f(x) + f∗(y) and 〈x, y〉 = f(x) + f∗(y) ⇔ x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x).
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Proposition 54. For 1/p+ 1/q = 1,

(ι||·||p61)∗ = || · ||q and (|| · ||q)∗ = ι||·||p61

Let us now give some example of Legendre transform.

Proposition 55. For f(x) = 1
2 〈Ax, x〉 − 〈b, x〉 with A inversible, then f∗(u) = 1

2 〈A
−1u, u〉 − 1

2 〈A
−1b, b〉.

In particular, for f = || · ||2/2, then f∗ = f . One has[ToDo: check]

f(· − z)∗ = f + 〈z, ·〉, (f + 〈z, ·〉)∗ = f(· − z), (λf)∗ = λf∗(·/λ).

Proof. One has f∗(u) = 〈Ax?, x?〉 − 〈b, x?〉 where x? solves

u = Ax? − b =⇒ x? = A−1u+A−1b.

Hence

f∗(u) =
1

2
〈AA−1(u+ b), A−1(u+ b)〉 − 〈b, A−1(u+ b)〉 =

1

2
〈A−1u, u〉 − 1

2
〈A−1b, b〉

Legendre transform and smoothness. While the Fourier transform is a pairing between smoothness
and decay (see Section ??), the Legendre-Fenchel is really a pairing between smoothness and strong convexity.
This can be intuitively seen by the fact that the Legendre-Fenchel inverts the sub-differentials (??) and hence
when the functions involved are C2, it inverse the Hessians

∂2f(x) = (∂2f∗(y))−1 at y = ∇f(x).

This relation between Hessian can be seen as implying the exchange of strong convexity and uniform bound
on the Hessian, as detailed in Proposition 43.

Proposition 56. One has

∇f is L-Lipschitz ⇐⇒ ∇f∗ is µ-strongly convex.

This results suggests a way to smooth any function f . Instead of doing a convolution, one can use the
infimal convolution

(f ⊗ g)(x)
def.
= sup

y+y′=x
f(y) + g(y′).

One can check that if (f, g) are convex, so is f ⊗ g, and that the Legendre transform actually exchanges sum
and inf-convolution

(f + g)∗ = f ⊗ g and (f ⊗ g)∗ = f + g.

The Moreau-Yosida regularization of f is corresponds to a µ-strict-convexification of f∗, i.e.

fµ
def.
= f ⊗ (

1

2µ
|| · ||2) = (f∗ +

µ

2
|| · ||2)∗. (16.11)

Since f∗ + µ
2 || · ||

2 is at least µ-strongly convex, then fµ as a 1/µ-Lipchitz gradient.
As an example, the Moreau-Yosida regularization of the absolute value reads

(| · |µ)(x) =

{ 1
2µx

2 if |x| 6 µ,

|x| − µ
2 if |x| > µ.

This should be compared with the regularization
√
x2 + µ2 (which is above the curve) that we used previ-

ously. [ToDo: add drawing]
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16.2.3 Fenchel-Rockafellar Duality

Very often the Lagrange dual can be expressed using the conjugate of the function f . We give here a
particularly important example, which is often called Fenchel-Rockafellar Duality.

We consider the following structured minimization problem

p? = inf
x
f(x) + g(Ax). (16.12)

Re-writing it as
inf
y=Ax

f(x) + g(y),

we can form the primal-dual problem

inf
(x,y)

sup
u
f(x) + g(y) + 〈Ax− y, u〉. (16.13)

If sufficient condition on the domain of (f, g) holds (such as those stated in Theorem ??), one one can
exchange the min and the max and obtains the dual problem

d? = sup
u

min
(x,y)

f(x) + g(y) + 〈Ax− y, u〉 (16.14)

= sup
u

(
min
x
〈x, A∗u〉+ f(x)

)
+

(
min
y
− 〈y, u〉+ g(y)

)
(16.15)

which leads to the celebrated Fenchel-Rockafellar, which we summarize together with qualification sufficient
condition ensuring strong duality.

Theorem 28 (Fenchel-Rockafellar). If

0 ∈ relint(dom(g))−A relint(dom(f)) (16.16)

the one has the following strong duality

inf
x
f(x) + g(Ax) = inf

x
sup
u
L(x, u) = sup

u
inf
x
L(x, u) = sup

u
− f∗(−A∗u)− g∗(u) (16.17)

where L(x, u)
def.
= f(x) + 〈Ax, u〉 − g∗(u).

Furthermore one has that (x?, u?) is a pair of optimal primal-dual solutions if and only if

−A∗u? ∈ ∂f(x?) and Ax? ∈ ∂g∗(u?). (16.18)

Condition (16.16) is the constraint qualification ensuring that one can inverse the inf and the sup
in (16.17). It can be recovered from Slater’s qualification condition (16.5) when deriving the dual prob-
lem as in (16.14). The primal-dual relations (16.18) are the first order condition along the x and the u
variables in minimization and maximization of L. They are sometimes summarised in “matrix” form

0 ∈
(
∂f A∗

−A ∂g∗

)(
x?

u?

)
.
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