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Chapter 11

Compressed Sensing

This chapter details an important class of inverse problems, which corresponds to using “random” forward
operators Φ. This is interesting from an applicative point of view since it allows to model a novel class of
imaging devices which can potentially have improved resolution with respect to traditional operators (e.g.
low-pass filters for usual cameras) when using in conjunction with sparse regularization technics. This is
also interesting from a theoretical point of view, since the mathematical analysis becomes much simpler than
with deterministic operators, and one can have good recovery and stability performances. Let us however
stress that the “physical” creation of hardware that fulfils the theoretical hypothesis, in particular in medical
imaging, is still largely open (put aside some restricted areas), although the theory gives many insightful
design guides to improve imaging devices.

The main references for this chapter are [10, 9, 15].

11.1 Motivation and Potential Applications

11.1.1 Single Pixel Camera

In order to illustrate the exposition, we will discuss the “single pixel camera” prototype developed at
Rice University [?], and which is illustrated by the figure 11.1 (left). It is an important research problem of
developing a new class of cameras allowing to obtain both the sampling and the compression of the image.
Instead of first sampling very finely (ie with very large Q) the analog signal f̃ to obtain a f ∈ RQ image
then compressing enormously (ie with M small) using (??), we would like to dispose directly of an economic
representation y ∈ RP of the image, with a budget P as close to M and such that one is able to “decompress”
y to obtain a good approximation of the image f0.

The “single-pixel” hardware performs the compressed sampling of an observed scene f̃0 (the letter “R”
in Figure 11.1), which is a continuous function indicating the amount of light f̃0(s) reaching each point
s ∈ R2 of the focal plane of the camera. To do this, the light is focused against a set of Q micro-mirrors
aligned on the focal plane. These micro-mirrors are not sensors. Unlike conventional sampling (described in
Section ??), they do not record any information, but they can each be positioned to reflect or absorb light.
To obtain the complete sampling/compression process, one very quickly changes P times the configurations
of the micro-mirrors. For p = 1, . . . , P , one sets Φp,q ∈ {0, 1}, depending on whether the micromirror at
position q has been placed in the absorbing (0) or reflective (value 1) position at step p of the acquisition.
The total light reflected at step p is then accumulated into a single sensor (hence the name “single pixel”,
in fact it is rather a “single sensor”), which achieves a linear sum of the reflected intensities to obtain the
recorded yp ∈ R value. In the end, if the light intensity arriving on the surface cq of the mirror indexed by

fq =
∫
cq
f̃0(s)ds is denoted (as in the ?? section) as q, the equation that links the discrete image f ∈ RQ
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Diagram of the device f f?, P/Q = 6

Figure 11.1: Left: diagram of the single-pixel acquisition method. Center: image f0 ∈ RQ “ideal” observed
in the focal plane of the micro-mirrors. Right: image f?0 = Ψx? reconstructed from observation y ∈ RP with
a compression factor P/Q = 6 using `1-type regularization.

“seen through the mirrors” to the P measures y ∈ RP is

∀ p = 1, . . . , P, yp ≈
∑
q

Φp,n

∫
cn

f̃0(s)ds = (Φf0)p,

(here ≈ accounts for some noise), which corresponds to the usual forward model of inverse problems

y = Φf0 + w ∈ RP

where w is the noise vector. It is important to note that the mirrors do not record anything, so in particular
the f0 discrete image is never calculated or recorded, since the device directly calculates the compressed
representation y from the analog signal f̃0. The term w models here the acquisition imperfections (measure-
ment noise). The compressed sampling therefore corresponds to the transition from the observed scene f̃0 to
the compressed vector y. The “decompression” corresponds to the resolution of an inverse problem, whose
goal is to find a good approximation of f0 (the discrete image “ideal” as seen by the micro-mirrors) from y.

11.1.2 Sparse Recovery

In order to reconstruct an approximation of the (unknown) image f0, following Section 9.2, we assume it

is sparse in some dictionary Ψ. Denoting A
def.
= ΨΦ ∈ RP×N , this leads us to consider the usual `1 regularized

poblem (9.10)

xλ ∈ argmin
x∈RN

1

2λ
||y −Ax||2 + ||x||1, (Pλ(y))

so that the reconstructed image is fλ = Ψxλ. We also sometimes consider the constraint problem

xε ∈ argmin
||Ax−y||6ε

||x||1, (Pε(y))

where, for the sake of simplicity, we set ε = ||w|| (which we assume is known). From a mathematical point
of view, these problem are equivalent in the sense that there exists a bijection between λ and ε which links
it solution. But in practice, this bijection is not explicitly known and depends on y.

Here, it is important to remember that A is drawn from a random matrix ensemble. For an arbitrary
Ψ, it is hard to analyze this random distribution. If Ψ is orthogonal, and the distribution of the columns
of Φ are invariant by rotation (which is the case if the entries are i.i.d. Gaussian), then A has the same
distribution as Φ. In the following, we thus directly models the distribution of A and assumes it has some
nice property (typically it is close to being Gaussian i.i.d.).
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11.2 Dual Certificate Theory and Non-Uniform Guarantees

11.2.1 Random Projection of Polytopes

When there is no noise, w = 0 a way to tackle the problem is to use the caracterization of solutions
of (P0(Ax0)) = (P0(Ax0)) given in Section 10.1.2. According to Proposition 28, identifiable vectors with
sparsity ||x0||0 = s corresponds to s-dimensional faces of the `1 balls B1 which are mapped to face of the
projected polytope AB1. This leads to a combinatorial problems to count the number of face of random
polytope. Donoho and Tanner were able to perform a sharp analysis of this problem. They showed the
existence of two regimes, using two functions CA, CM so that, with high probability (i.e. a probability
converging exponentially fast to 1 with (n, p)) on the matrix A

All x0 so that ||x0||0 6 CA(P/N)P are identifiable.

Most x0 so that ||x0||0 6 CM (P/N)P are identifiable.

For instance, they show that CA(1/4) = 0.065 and CM (1/4) = 0.25. Figure 11.5 illustrates numeri-
cally these two phase transitions. This analysis can be shown to be sharp in high dimension, i.e. when
||x0||0 > CM (P/N)P , then x0 is not identifiable with high probability (this corresponds to a phase transition
phenomena). For large dimensions (N,P ), the scaling given by CM describe very well what one observe in
practice. For P = N/4 (compression of a factor 4), one retrieve in practice all vector with sparsity smaller
than P/N . The function CM can be computed numerically, and it can be shown to have a logarithmic grows
CM (r) ∼ log(r) for small r. This suggests that for high compression regime, one recovers with `1 minimiza-
tion almost all vector with a sparsity ||x0||0 proportional (up to log factor) to the number of measurements
P .

11.2.2 Random Matrices

The analysis of the performance `1 minimization to solve compressed sensing problem is made possible
because of the very precise understanding of the distribution of the singular values of certain random ensemble
let us illustrate this in the Gaussian case, which is the simplest, and is very illustrative.

An important part of the recovery proof relies on controlling the correlation matrix A∗IAI of selected
columns, and even more importantly, its inverse (AIAI)

−1. These random matrices are called Wishart
matrices and inverse Wishart matrices. Such a matrix B = AI is of size (P, s) and is also drawn from the
Gaussian ensemble. Fixing s and letting P → +∞, one has thanks to the low of large numbers B∗B → Ids
almost surely. This is however not a very realistic setting, since in general, one hope to have s almost equal,
up to log factor, to P .

Linear growth P = s/β. A quite extreme setting is when s grows proportionally to P , and impose
s/P = β. In this case, the eigenvalues of B∗B are, for large p, essentially contained in the interval [λ−, λ+]

where λ± = (1±√β)2, β
def.
= s/p, in the sense that the probability distribution of eigenvalues converges (in

the weak sense of measures) toward the Marcenko-Pastur law

∀ (u, v) ∈ R2
+, P(eig(B>B) ∈ [u, v])

p→+∞−→
∫ v

u

fβ(λ)dλ

where one fix the ratio β = s/P , and the Marcenko-Pastur law is

fβ(λ)
def.
=

1

2πβλ

√
(λ− λ−)+(λ+ − λ)1[λ−,λ+](λ).

Figure (11.3) illustrates this convergence.

Super-linear grows P = s log(. . .). In order to have a better concentration of the singular values of
A∗IAI around 1, one needs to have a slightly super-linear growth of P with s. In this setting one has that
A∗IAI . In order to derive non-asymptotic (i.e. with explicit constants) results, one can use a celebrated
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Figure 11.2: Illustration of the convergence toward the Marcenko-Pastur law.
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Figure 11.3: Display of the Marcenko-Pastur distribution fβ for various β.
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concentration inequality due to Talagrand, which assert that one has a fast concentration of this randomized
covariance A∗IAI toward its expectation Ids.

P

(
||A∗IAI − Ids||op > t+

√
s

P

)
6 e−

t2s
2 . (11.1)

11.2.3 Dual Certificates

In order to analyze recovery performance, one can looks not only for `2 stability (||xλ − x0|| ∼ ||w||) but
also that xλ has the same support as x0 when ||w|| is small. As detailed in Section 10.2.3, this requires to
ensure that the pre-certificate ηF defined in (10.24) is non-degenerated, i.e.

||ηF ||∞ 6 1 where ηF = A∗AI(A
∗
IAI)

−1 sign(x0,I). (11.2)

Figure 10.9 suggests that this should be the case if P is large enough with respect to ||x0||. This theorem
backup this observation.

Coherence-based analysis. We first perform a crude analysis using the so-called coherence of the matrix
A = (aj)

N
j=1 where the aj ∈ RP are the columns of A, which we assume to be normalized ||aj || = 1

µ
def.
= = max

i 6=j
|〈ai, aj〉| = ||A∗A− IdN ||∞ (11.3)

where ||C||∞ = maxi,j |Ci,j |. The coherence is 0 for an orthogonal matrix, and is always smaller than 1,
µ ∈ [0, 1]. The smaller the coherence, the better conditioned the inverse problem Ax = y is, and the more
likely is the certificate ηF to be non-degenerate, as shown by the following proposition.

Proposition 36. One has, denoting s = ||x0||0 = |I| where I = supp(x0), for µ < 1
s−1 ,

||ηF,Ic ||∞ 6
sµ

1− (s− 1)µ
and ||pF ||2 6

s

1− (s− 1)µ
. (11.4)

In particular, if s < 1
2

(
1 + 1

µ

)
, ||ηF,Ic ||∞ < 1 and one can thus apply the recovery Theorem 14.

Proof. We recall that the `∞ operator norm (see Remark 1) is

||B||∞ = max
i

∑
j

|Bi,j |.

We denote C = A∗A. One has

||A∗IcAI ||∞ = max
j∈Ic

∑
i∈I

Ci,j 6 sµ and ||Ids −A∗IAI ||∞ = max
j∈I

∑
i∈I,i6=j

Ci,j 6 (s− 1)µ

One also has

||(A∗IAI)−1||∞ = ||((Ids −A∗IAI)− Ids)
−1||∞ = ||

∑
k>0

(Ids −A∗IAI)k||∞

6
∑
k>0

||Ids −A∗IAI ||k∞ 6
∑
k>0

((s− 1)µ)k =
1

1− (s− 1)µ

which is legit because the matrix series indeed converge since (s− 1)µ < 1. Using these two bounds, one has

||ηF,Ic ||∞ = ||A∗IcAI(A∗IAI)−1 sign(x0,I)||∞ 6 ||A∗IcAI ||∞||(A∗IAI)−1||∞|| sign(x0,I)||∞ 6 (sµ)× 1

1− (s− 1)µ
×1.

173



One has
sµ

1− (s− 1)µ
⇐⇒ 2sµ < 1 + µ

which gives the last statement. One also has

||pF ||2 = 〈(A∗IAI)−1sI , sI〉 6 ||(A∗IAI)−1||∞||s||1 6
s

1− (s− 1)µ

Note that this proof actually shows that if s < 1
2

(
1 + 1

µ

)
, all certificate ηF are valid, for any sign pattern

sign(x0). This actually implies a much stronger stability in the sense that whatever the noise w (which might
not be small), the support of xλ is included (not necessarily equal) in the one of x0.

One can show that one always has

µ >

√
N − P
P (N − 1)

(11.5)

which is equivalent to 1/
√
P for N � P . For Gaussian matrix A ∈ RP×N , one has for large (N,P )→ +∞

µ ∼
√

log(PN)/P

which shows that Gaussian matrix are close to being optimal for the bound (11.5) if N � P . Applying
Proposition 36 thus shows that `1 regularization is able to recover with a stable support vector with less
than s ∼ O(

√
P ) (ignoring log terms) non-zero coefficients. In face, we will show now that it does much

better and recover a proportional number s ∼ O(P ). This is because the coherence bound (11.4) is very
pessimistic.

Randomized analysis of the Fuchs certificate. We consider here a class of sufficiently “random”
matrices.

Definition 1 (sub-Gaussian random matrix). A random matrix
√
P A is said to be sub-Gaussian if its

entries are independent such that E(Ai,j) = 0 (zero mean) E(A2
i,j) = 1/P and

P(|
√
P Ai,j | > t) 6 βe−κt

2

.

Note that its entries does not needs to be identically distributed, but the sub-Gaussiannity parameter (β, κ)
should not depend on (i, j). Note also the presence of the normalization factor

√
P , which is here to ensure

E(||aj ||2) = 1 where aj are the columns of A.

Typical example of sub-Gaussian random matrix are Gaussian or Bernoulli matrices.

Theorem 15. For a given x0 ∈ RN , denoting s = ||x0||0, and assuming A is sub-Gaussian, then for for any
0 < ε < 1 provided that

P >
4c

1− δ s log(2N/ε) where δ2 def.
=

C

4c

(
7

log(2N/ε)
+

2

s

)
condition (11.2) holds with probability 1−ε, so that xλ has the same support and sign as x0 when (||w||, ||w||/λ)

is small enough. The constant C, c, C = 2
3c̃ where c̃

def.
= κ2

4β+2κ only depends on the sub-Gaussianity parameter

(β, κ) appearing (1), and for Gaussian or Benoulli matrices, c = 1/2.

For a Gaussian matrix, the scaling is that one should have P > (2 + δ)s log(N) with a high probability.
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Figure 11.4: Graphical display of how the maximum of N i.i.d. gaussians concentrates tightly just below
the

√
2 log(N) dashed curve.

Proof. We only give the main insight for the proof. Its crux relies on the fact that ||A∗IcpF ||∞ 6 1 reads

max
j /∈I
|〈aj , pF 〉| 6 1

where pF = A∗+I s0,I is independent from the vectors (aj)j /∈I it is correlated against. This allows one to check
this condition by first controlling ||pF || and then making as if pF was a fixed deterministic vector. Noticing

||pF ||2 = 〈AI(A∗IAI)−1s0,I , AI(A
∗
IAI)

−1s0,I〉 = 〈(A∗IAI)−1s0,I , s0,I〉,

the heuristic reasoning is that, following what we said in Section (11.2.2), if P grows slightly (logarithmically)
faster than s, A∗IAI is close to Ids (see Talagrand inequality (11.1)), so that

||pF ||2 ∼ ||s0,I ||2 = s (11.6)

For a fixed pF , one has that 〈aj , pF 〉 is Gaussian distributed with variance ||pF ||2/P , and we use the well
known fact (already encountered for denoising using thresholding) that the maximum of P − s such vectors
concentrates just below the universal threshold ||pF ||

√
2 log(N − s)/P . Using the estimate (11.6), one sees

that ||pF ||∞ 6 1 is implied by 2 log(N)s/P 6 1, which gives the sharp scaling P > 2 log(N)s.
In order to get robustness to noise, one needs to impose that ||A∗IcpF || < 1, which can be achieve by using

a slightly stronger scaling P > 2(1 + δ) log(N)s for a small δ.
One can actually make this reasoning very precise, because quite surprisingly, it turns out that Ps/||pF ||2

is actually distributed according to a χ2 variable with P − s+ 1 degrees of freedom (i.e. the sum of P − s+ 1
squares of Gaussian variables). Indeed, for s = 1, one immediately sees that P/||pF ||2 is χ2 with P degrees
of freedom. The general case is more involved, and the proof relies on the fact that the isotropy of the
distribution implies that p − P/||pF ||2 is the square of the distance between the first column of AI and
the linear space spanned by the other columns (hence P − s + 1 degrees of freedom). Since one has a
very good understanding of the clustering of such a χ2 variable around its means, one can thus show that
||pF || 6 (1− δ)√s with high precision for arbitrary small δ > 0.

For (N, s)→ +∞, one has δ → 0, so that informally, the scaling is

P > 2s log(2N/ε). (11.7)

This theorem states a non-uniform recovery guarantee, in the sense that one first choose a vector x0, then
draws the matrix A, and the recovery results holds with high probability. This should be contrasted with
the RIP theory developed in Section 11.3 which provides stronger uniform guarantees.
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THE GEOMETRY OF PHASE TRANSITIONS IN CONVEX OPTIMIZATION 7
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FIGURE 2.2: Phase transitions for linear inverse problems. [left] Recovery of sparse vectors. The empirical
probability that the `1 minimization problem (2.6) identifies a sparse vector x0 2 R100 given random linear
measurements z0 = Ax0. [right] Recovery of low-rank matrices. The empirical probability that the S1
minimization problem (2.7) identifies a low-rank matrix X0 2 R30£30 given random linear measurements
z0 =A (X0). In each panel, the colormap indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the empirical phase transition.

fixed dimensions. This calculation gives the exact (asymptotic) location of the phase transition for the S1

minimization problem (2.7) with random measurements.
To underscore these achievements, we have performed some computer experiments to compare the

theoretical and empirical phase transitions. Figure 2.2[left] shows the performance of (2.6) for identifying
a sparse vector in R100; Figure 2.2[right] shows the performance of (2.7) for identifying a low-rank matrix
in R30£30. In each case, the colormap indicates the empirical probability of success over the randomness in
the measurement operator. The empirical 5%, 50%, and 95% success isoclines are determined from the
data. We also draft the theoretical phase transition curve, promised by Theorem II, where the number m of
measurements equals the statistical dimension of the appropriate descent cone, which we compute using the
formulas from Sections 4.5 and 4.6. See Appendix A for the experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(

p
d) values of m, as promised.

Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well. See the discussion after Theorem 7.1 for more information.

2.4. Demixing problems. In a demixing problem [MT12], we observe a superposition of two structured
vectors, and we aim to extract the two constituents from the mixture. More precisely, suppose that we measure
a vector z0 2Rd of the form

z0 = x0 +U y0 (2.8)
where x0, y0 2 Rd are unknown and U 2 Rd£d is a known orthogonal matrix. If we wish to identify the pair
(x0, y0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

To solve the demixing problem (2.8), we describe a convex programming technique proposed in [MT12].
Suppose that f and g are proper convex functions on Rd that promote the structures we expect to find in x0
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Figure 11.5: Phase transitions. For the figure on the right shows probability as function of sparsity that
certain criteria hold true, blue: w-ERC, black: ERC, green |ηF | 6 1, red: identifiability.

11.3 RIP Theory for Uniform Guarantees

11.3.1 Restricted Isometry Constants

The Restricted Isometry constant δs of a matrix A ∈ RP×N is defined as

∀ z ∈ RN , ||z||0 6 s =⇒ (1− δs)||z||2 6 ||Az||2 6 (1 + δs)||z||2, (11.8)

and one usually chose the smallest δs so that these relation hold.
A related concept is the (s, s′) restricted orthogonality constant θs,s′ , which is such that for all (x, x′)

with ||x||0 6 s, ||x′||0 6 s′ and disjoint support , one has

|〈Ax, Ax′〉| 6 θs,s′ ||x||||x′||
The following lemma shows that RI and RO constants are tightly related.

Lemma 5. One has
θs,s′ 6 δs+s′ 6 θs,s′ + max(δs, δs′).

Proof. We prove the first inequality (which is the most important). We prove that if z and z′ have disjoints
supports and ||z|| 6 s and ||z′||0 6 s,

|〈Az, Az′〉| 6 δ2s||z||||z′||.
Using the RIP (11.8) since z± z′ has support of size s+ s′ and the fact that ||z± z′||2 = ||z||2 + ||z′||2, one has

(1− δs+s′)
(
||z||2 + ||z′||2

)
6 ||Az ±Az′||2 6 (1 + δs+s′)

(
||z||2 + ||z′||2

)
.

One thus has using the parallelogram equality

|〈Az, Az′〉| = 1

4
|||Az +Az′||2 − ||Az −Az′||2| 6 δs+s′ ||z||||z′||.

The following theorem states that for a sub-Gaussian random matrix, these RIP constants grow slowly
with s. Let us stress that, although this is an abuse of notation, here we assume that A is a random matrix,
and not a deterministic one as previously considered.

Theorem 16. If A is a sub-Gaussian random matrix, then provided

P > Cδ−2s log(eN/s) (11.9)

it satisfies δs 6 δ with probability 1 − 2e−δ
2 m

2C , where C only depends on the sub-Gaussianity parameters
appearing in (1).
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We do not prove this Theorem, and simply give the main intuition. The proof of this theorem relies on re-
sults regarding the distribution of the singular values of Gaussian matrices. Indeed, the RIP condition (11.8)
is equivalent to having the bound eig(A∗IAI) ⊂ [1− δs, 1 + δs] for all Gaussian matrices AI extracted from A.
In the Gaussian case (actually this holds for any random matrix with i.i.d. entries and unit covariance), one
has a very good understanding of the distribution of the singular values of covariance matrices B∗B ∈ Rs×s

of a Gaussian matrix B of size (P, s), B ∼ randn(P, s)/
√
P , as detailed in Section 11.2.2. In particular,

using Talagrand concentration inequality (11.1), one obtains the desired controls over the δs constants. The
intuition is that, if we assume that s/P = β is constant and P is large, then one has that the eigenvalue of
A∗IAI , and for instance its smaller one should be of the order of 2

√
s/P−s/P , so that δs should be a function

of s/P , and hence P should scale proportionally to the s. The log term comes from the exponential number
of such matrix to control, and one need to use a non-asymptotic lower bound in place of the Marcenko-Pastur
asymptotic law.

11.3.2 RIP implies dual certificates

The following theorem ensures that having small enough restricted isometry constant implies the existence
of a valid dual certificates. This means that one can apply Theorem 13, which in turn ensures that one has
a stable recovery of sparse signals.

Theorem 17. If δs + θs,s + θs,2s < 1, then for any x0 with ||x0|| 6 s, there exists η ∈ D0(Ax0, x0), i.e.
η ∈ Im(A∗) ∩ ∂||x0||1. More precisely, one has, denoting I = supp(x0), ηI = sign(x0,I) and

||ηIc ||∞ 6
θs,s

1− δs − δs,2s
< 1 and ||p|| 6 δs,s

1− δs − θs,2s

√
s√

1− δs
.

Note that thanks to Lemma 5, condition

δs + θs,s + θs,2s 6 δs + δ2s + δ3s 6 3δ3s

so that condition δs + θs,s + θs,2s < 1 is implied by δ3s < 1/3. It is furthermore possible to refine the proof
of this theorem to obtain alternative (often much sharper) sufficient condition such as δ2d 6

√
2− 1. These

sufficient conditions involving RI constants are often called “Restricted Isometry Properties” (RIP). As we
will illustrate next, however, the constant involved on the sufficient sparsity to guarantee that such uniform
RIP conditions holds are large, of the order of a few hundred.

To prove this theorem, it is not enough to directly consider the pre-certificate ηF defined in (11.2).
Indeed, using such a certificate leads to slightly suboptimal log-factors in the asymptotic. The proof strategy,
developed by Candes and Tao (in “Decoding with Linear Programming”) consists in iteratively “improving”

177



this certificate by removing a vector interpolating the largest s entries outside I. In order to study ηF and to
perform the improvement, it is crucial the behavior of least square solution of interpolation problems using
random matrices.

Lemma 6. We assume δs < 1. Let c ∈ Rn with ||c||0 6 s and supp(c) = J . Let η = A∗p be the least square
solution of ηJ = A∗Jp = cJ , i.e.

p
def.
= A∗,+J cJ = AJ(A∗JAJ)−1cJ

(note that AJ is full rank because δs < 1). Then, denoting K ⊂ Jc the s′ largest entries in magnitude of
ηJc , one has

||η(J∪K)c ||∞ 6
θs,s′ ||c||

(1− δs)
√
s

and ||ηK || 6
θs,s′ ||c||
1− δs

and ||p|| 6 ||c||√
1− δs

Proof. Since |J | 6 s, one has that λmin(A∗JAJ) > 1− δs and hence

||(AJA∗J)−1|| 6 1

1− δs
One has

||p||2 = 〈AJ(A∗JAJ)−1cJ , AJ(A∗JAJ)−1cJ〉 = 〈(A∗JAJ)−1cJ , cj〉 6
||c||2

1− δs
.

Let L be any set with L ∩ J = ∅ and |L| 6 s′. One has

||ηL||2 = |〈ηL, ηL〉| = |〈AJ(A∗JAJ)−1cJ , ALηL〉| 6 θs,s′ ||(A∗JAJ)−1cJ ||||ηL|| 6
θs,s′

1− δs
||cJ ||||ηL||.

so that this gives

||ηL|| 6
θs,s′

1− δs
||cJ ||. (11.10)

Let us denote K̄ = {k ∈ Jc ; |ηk| > T} where T
def.
=

θs,s′

(1−δs)
√
s′
||cJ ||. One necessarily has |K̄| 6 s′, otherwise

one would have, taking K ⊂ K̄ the s′ largest entries (in fact any s′ entries)

||ηK || >
√
s′T 2 =

θs,s′

1− δs
||cJ ||

which contradicts (11.10). This shows that the entries in ηJc after the rank s′ are smaller than T .

We can now prove the Theorem 17.

Proof. We denote I0 = supp(x0). We first consider η1 = ηF , p1 = pF , and we use (6) with cI = σI
def.
=

sign(x0,I), J = I, s′ = s, to control this first pre-certificate. This lemma defines a second set I1 (denoted K
in the lemma) which are the s largest entries of η1,Ic1

, with

I0 ∩ I1 = ∅, |I1| 6 s, η1,I0 = sI , ||η1,(I0∪I1)c ||∞ 6
θs,s

1− δs
, ||ηI1 || 6

θs,s
√
s

1− δs
, ||p1|| 6

√
s√

1− δs
.

Now we proceed recursively. Having defined the vectors (η1 = A∗p1, . . . , ηn = A∗pn) with associated sets
(I1, . . . , In), we define ηn+1 = A∗pn+1 and In+1 by applying (6) to J = I0 ∪ In with c = (0I0 , ηn,In) (and
thus (2s, s) in place of (s, s′)), which hence satisfy

In+1 ∩ (I0 ∪ In) = ∅, |In+1| 6 s, ηn+1,I0∪In = (0I0 , ηn,In), and

||ηn+1,(I0∪In∪In+1)c ||∞ 6
θs,s

1− δs
Qn, ||ηn+1,In+1 || 6

θs,s
√
s

1− δs
Qn, (11.11)
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where we denoted Q
def.
=

θs,2s
1−δs , and we have

||pn+1|| 6
||ηn,In ||√

1− δs
6

1√
1− δs

θs,s
√
s

1− δs
Qn−1.

Since δs + θs,s < 1, one has that Q < 1, and thus setting

p =

+∞∑
n=1

(−1)n−1pn and η = A∗p

defines a convergent series. By construction, since η1,I = σ and ηn,I = 0 for n > 1, one has ηI = σI , thus

this vector interpolates the sign vector σ. Now consider j ∈ Ic and define Ej
def.
= {n > 1 ; j ∈ In} = {n1 6

n2 6 n3 6 . . .}. Since In ∩ In+1 = ∅, necessary nk+1 > nk + 2 (j cannot belong to two consecutive In).
Furthermore, if n ∈ Ej ⇔ j ∈ In, then by construction

ηn,j = ηn+1,j

so that these two consecutive terms cancels out in the sum defining η [ToDo: make a drawing], which in
turn can thus be written in the form

η =
∑
n∈H

(−1)n−1ηn.

The index set H is composed of n /∈ Ej such that n − 1 /∈ Ej (because otherwise one could cancel ηn from
the sum). So this means that for n ∈ H, one has j /∈ (I0 ∪ In ∪ In+1), thus applying the property (11.11),
one has

∀n ∈ H, |ηj,n| 6
θs,s

1− δs
Qn−1,

so that

|ηj | 6
∑
n∈H
|ηj,n| 6

+∞∑
n=1

θs,s
1− δs

Qn−1 =
θs,s

1− δs
1

1− θs,2s(1− δs)−1
=

θs,s
1− δs − θs,2s

.

Note that one also has the bound

||p|| 6
∑
n

||pn|| 6
∑
n

1√
1− δs

θs,s
√
s

1− δs
Qn−1 =

δs,s
1− δs − θs,2s

√
s√

1− δs
.

11.3.3 RIP implies stable recovery

Putting together Theorems 16 and ??, and using the general inverse prolem stability theorem ??, one
obtains the following recovery guarantee.

Theorem 18. If A is a sub-Gaussian random matrix, then there exists constants (C,C ′) such that provided

P > Cs log(N/s) (11.12)

with probability 1− 2e−C
′P on the draw of A, one has that for every s-sparse signal x0,

||xλ − x0|| = O(||w||)

where xλ is the unique solution of (9.10) with measurements y = Ax0 + w when choosing λ ∼ ||w||.
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It is possible to extend this theorem when x0 is not exactly s-sparse but only approximately. Defining x0,s

the best s-term approximation, the easiest way to go is to write y = Ax0,s + w̃ where w̃ = w +A(x0 − x0,s)
and applying the previous result to obtain

||xλ − x0,s|| = O(||w||+ ||A||||x0 − x0,s||).

It is possible to obtain better scaling in term of the non-linear approximation error ||x0 − x0,s|| by doing a
more careful proof.

This theorem provides a uniform recovery guarantee, in the sense that it means

P(∀ s− sparse x0, x
? = x0) goes fast to 1 when P → +∞.

In contrast, theorem 15 proves a weaker non-uniform guarantee, in the sense that it means

∀ s− sparse x0,P(x? = x0) goes fast to 1 when P → +∞.

The recovery performance analysis based on RIP constants proves a better scaling in term of log-factors.
This is because the analysis using ηF does not only imply stable recovery, it also provides stability of the
support (sparsistency). Note however that the constants involved in the RIP analysis are very large (of the
order of a few hundreds, as highlighted by Figure 11.6, left, and by Figure 11.5, right), while the constant
appearing in (11.7) are small and known to be sharp.

Also, one can show that having small enough RIP constant implies the existence of a valid dual certificate
(but this certificate is not necessarily ηF ).

11.3.4 Fourier sampling RIP

A practical issue is that doing hardware implementing random operators A is very difficult, specially
if this operator is “fully” random, i.e. if its entries are i.i.d. A more practical option is to use structured
sampling operator, which are in some sense “less random”. A possibility is to consider a random sub-sampling
of orthogonal projection of the signal in some ortho-basis Ξ = (ξω)Nω=1 of RN , so that

Ax
def.
= (〈x, ξω〉)ω∈Ω ∈ RP (11.13)

where Ω ⊂ {1, . . . , N} is drawn uniformly at random among all sets of size P . The following theorem ensure
that such an operator satisfies the RIP properties for large s (proportional to P up to log factors) is the
atomes ϕω are “spread enough”, i.e. have a small magnitude, as measured by

ρ(Ξ)
def.
=
√
N max

16ω6N
||ξω||∞.

Theorem 19 (Rudelson-Vershinyn). For any 0 < c < 1, there exists C, such that provided that

P > Cρ(Ξ)2s log(N)4 (11.14)

with high probability on Ω, then A defined as in (11.13) satisfies δ2s 6 c.

One always has 1 6 ρ(Ξ)2 6 N . The worse case is ξω to be Sirac atoms (i.e. Ξ = IdN ), having
ρ(Ξ)2 = N , in which case P needs to be as large as N . In sharp contrast, optimal sampling bases are

for instance Fourier atoms ξω = (e
2iπ
N ωn)Nn=1 ∈ CN , for which ρ(Ξ) = 1 (it is also possible to consider a

Hadamard basis for instance). In this case, up to log-factors, the scaling (11.14) is similar to the one for
sub-Gaussian matrices (11.12).

Theorem 19 deals with cases where the data x0 to recover is sparse in the Dirac basis. If the data f0 is
sparse in another basis Ψ = (ψm)Nm=1, one can do a change of variable x = Ψ∗f (x being the coefficients
of f in the basis Ψ), in which case ρ(Ξ) appearing in (11.14) should be replaced by the mutual coherence
between the sampling and the sparsity bases

ρ(Ψ∗Ξ)
def.
=
√
N max

16ω,m6N
|〈ψm, ξω〉|.
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Good recovery performances are thus reached by (sampling,sparsity) pairs which are incoherent. The
(Fourier,Dirac) pair is maximally incoherent. In contrast, Wavelet and Fourier are highly coherent. There
exists explicit construction of “noiselets” bases which are almost maximally incoherent with wavelets. Note
however that in contrast to Gaussian matrices, these structured measurement matrices are not universal, in
the sense that there compressed sensing recovery performances depend on the sparsity basis Ψ which is used.
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