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Chapter 4

Linear and Non-linear Approximation

This chapter studies the theory of signal and image approximation, and gives an application to lossy
compression. This theoritical analysis is performed for continuous functions f ∈ L2([0, 1]d) for d = 1, 2. This
analysis is important to studies the performance of compression, denoising, and super-resolution applications.

4.1 Approximation

4.1.1 Approximation in an Ortho-basis

We consider an orthogonal basis B = {ψm}m of L2([0, 1]d), with for instance d = 1 (signals) or d = 2
(images). We recall that the decomposition of a signal in an orthonormal basis

f =
∑

m∈Z

〈f, ψm〉ψm

gives back the original signal and thus produces no error. Processing algorithms modify the coefficients
〈f, ψm〉 and introduce some error.

The simplest processing computes an approximation by considering only a sub-set IM ⊂ Z of M coeffi-
cients and performing the reconstruction from this subset

fM
def.
=

∑

m∈IM
〈f, ψm〉ψm, where M = |IM |.

The reconstructed signal fM is the orthogonal projection of f onto the space

VM
def.
= Span {ψm ; m ∈ IM} .

Since VM might depend on f , this projection f 7→ fM might be non-linear.
Since the basis is orthogonal, the approximation error is

||f − fM ||2 =
∑

m/∈IM
|〈f, ψm〉|2.

The important question is now to choose the set IM , which might depend on the signal f itself.

4.1.2 Linear Approximation

Linear approximation is obtained by fixing once for all IM , and thus using the same set of coefficients
for all f . The mapping f 7→ fM is a linear orthogonal projection on VM , and it satisfies

(f + g)M = fM + gM
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For the Fourier basis, one usually selects the low-frequency atoms

IM = {−M/2 + 1, . . . ,M/2}.

For a 1-D wavelet basis, one usually selects the coarse wavelets

IM = {m = (j,m) ; j > j0}

where j0 is selected such that |IM | = M .

Original f Linear f `M Non-linear fnM

Figure 4.1: Linear versus non-linear wavelet approximation.

Figure 4.1, center, shows an example of such a linear approximation with wavelets. Linear approximation
tends to performs poorly near singularities, because they introduce some blurring.

4.1.3 Non-linear Approximation

A non-linear approximation is obtained by choosing IM depending on f . In particular, one would like to
choose IM to minimize the approximation error ||f − fM ||. Since the basis is orthogonal, this is achieved by
selecting the M largest coefficients in magnitude

IM = {M largest coefficients |〈f, ψm〉|}.

This can be equivalently obtained using a thresholding

IM = {m ; |〈f, ψm〉| > T}

where T depends on the number of coefficients M ,

M = # {m ; |〈f, ψm〉| > T} .

Computation of the threshold. There is a bijective 1:1 mapping between T and M obtained by ordering
the coefficient magnitudes |〈f, ψm〉| by decaying order,

T = dM where {dm}N−1
m=0 = {|〈f, ψm〉|}N−1

0 and dm > dm+1. (4.1)

Figure 4.2 shows this mapping between M and T .
The following proposition show that the decay of the ordered coefficients is linked to the non-linear

approximation decay.
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Proposition 16. One has

dm = O(m−
α+1
2 ) ⇐⇒ ||f − fM ||2 = O(M−α). (4.2)

Proof. One has

||f − fM ||2 =
∑

m>M

d2
m

and

d2
M 6

2

M

M∑

m=M/2+1

d2
m 6

2

M

∑

m>M/2

d2
m =

2

M
||f − fM/2||2.

Figure 4.2: Decay of the ordered coefficients and determination of the threshold for non-linear approxiation.

Hard thresholding. The non-linear approximation is re-written as

fM =
∑

|〈f, ψm〉|>T
〈f, ψm〉ψm =

∑

m

ST (〈f, ψm〉)ψm, (4.3)

where

ST (x) =

{
x if |x| > T
0 if |x| 6 T

(4.4)

is the hard thresholding, that is displayed in Figure 4.3.

4.2 Signal and Image Modeling

A signal model is a constraint f ∈ Θ, where Θ ⊂ L2([0, 1]d) is a set of signals one is interested in. Figure
4.4 shows different class of models for images, that we describe in the following paragraph.

4.2.1 Uniformly Smooth Signals and Images

Signals with derivatives. The simplest model is made of uniformly smooth signals, that have bounded
derivatives

Θ =
{
f ∈ L2([0, 1]d) ; ||f ||Cα 6 C

}
, (4.5)

where C > 0 is a fixed constant, and where in 1-D

||f ||Cα def.
= max

k6α

∣∣∣
∣∣∣d
kf

dtk

∣∣∣
∣∣∣
∞
.

This extends to higher dimensional signals by considering partial derivatives along each direction.
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Figure 4.3: Hard thresholding.

Regular Bounded variations Cartoon Natural

Figure 4.4: Examples of different kinds of image models.

Sobolev smooth signals and images. A smooth Cα signals in (4.5) has derivatives with bounded energy,
so that

dαf

dtα
(t) = f (α)(t) ∈ L2([0, 1]).

Using the fact that
f̂ (α)
m = (2iπm)αf̂m

where f̂ is the Fourier coefficient defined in (2.2), except we are here on R/Z in place of R/2πZ,

f̂n
def.
=

∫ 1

0

e−2iπnxf(x)dx,

one defines a so-called Sobolev functional

||f ||2Sob(α) =
∑

m∈Z

|2πm|2α|〈f, em〉|2, (4.6)

that satisfies ||f ||Sob(α) = ||f (α)|| for smooth functions. This Sobolev functional is extended to signals that

have derivatives in the sense of distribution in L2([0, 1]).
This definition extends to distributions and signals f ∈ L2([0, 1]d) of arbitrary dimension d as

||f ||2Sob(α) =
∑

m∈Zd

(2π||m||)2α|〈f, em〉|2, (4.7)
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The Cα-Sobolev model

Θ =

{
f ∈ `2([0, 1]d) ; max

k6α
||f ||2Sob(k) 6 C

}
(4.8)

generalizes the Cα smooth image model (4.5).
Figure 4.5 shows images with an increasing Sobolev norm for α = 2.

Figure 4.5: Images with increasing Sobolev norm.

4.2.2 Piecewise Regular Signals and Images

Piecewise smooth signals. Piecewise smooth signals in 1-D are functions f ∈ L2([0, 1]) that are Cα

smooth outside a set of less than K pointwise discontinuities

Θ =
{
f ∈ L2([0, 1]) ; ∃ (ti)

K−1
i=0 , ||f(ti,ti+1)||Cα 6 C

}
(4.9)

where f(ti,ti+1) is the restriction of f to the open interval (ti, ti+1).

Piecewise smooth images. Piecewise smooth images are 2-D functions f ∈ L2([0, 1]2) that are Cα regular
outside a set of less than K curves that have a finite perimeter

Θ =
{
f ∈ L2([0, 1]2) ; ∃Γ = (γi)

K−1
i=0 , ||f ||Cα(Γc) 6 C1 and |γi| 6 C2

}
(4.10)

where |γi| is the length of the curve γi and where ||f ||Cα(Γc) is the maximum norm of the derivatives of f
outside the set of curves Γ.

Segmentation methods such as the one proposed by Mumford and Shah [4] implicitly assume such a
piecewise smooth image modem.

4.2.3 Bounded Variation Signals and Images

Signals with edges are obtained by considering functions with bounded variations

Θ =
{
f ∈ L2(Rd) ; ||f ||∞ 6 C1 and ||f ||TV 6 C2

}
. (4.11)

For d = 1 and d = 2, this model generalizes the model of piecewise smooth signals (4.9) and images (4.10).
The total variation of a smooth function is

∫
||∇f(x)||dx

where

∇f(x) =

(
∂f

∂xi

)d−1

i=0

∈ Rd
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is the gradient vector at x. The total variation is extended to discontinuous images, that might for instance
exhibit jumps across singular curves (the edges of the image). In particular, the total variation of a piecewise
smooth image is the sum of the lengths of its level sets

||f ||TV =

∫ ∞

−∞
|Lt(f)|dt < +∞ where Lt(f) = {x ; f(x) = t} , (4.12)

and where |Lt(f)| is the length of Lt(f). For a set Ω ⊂ R2 with finite perimeter |∂Ω|, then

||1Ω||TV = |∂Ω|.

The model of bounded variation was introduced in image processing by Rudin, Osher and Fatemi [6].

4.2.4 Cartoon Images

The bounded variation image model (4.11) does not constrain the smoothness of the level set curves
Lt(f). Geometrical images have smooth contour curves, which should be taken into account to improve the
result of processing methods.

The model of Cα cartoon images is composed of 2-D functions that are Cα regular outside a set of less
that K regular edge curves γi

Θ =
{
f ∈ L2([0, 1]2) ; ∃Γ = (γi)

K−1
i=0 , ||f ||Cα(Γc) 6 C1 and ||γi||Cα 6 C2

}
(4.13)

where each γi is a arc-length parameterization of the curve γi : [0, A] 7→ [0, 1]2. Figure 4.6 shows cartoon
images with increasing total variation ||f ||TV.

∫
|∇f |

Figure 4.6: Cartoon image with increasing total variation.

Typical images might also be slightly blurred by optical diffraction, so that one might consider a blurred
cartoon image model

Θ̃ =
{
f̃ = f ? h ∈ L2([0, 1]2) ; f ∈ Θ and h ∈ H

}
(4.14)

where Θ is the model of sharp (unblurred) images (4.13) and H is a set of constraints on the blurring kernel,
for instance h > 0 should be smooth, localized in space and frequency. This unknown blurring makes difficult
brute force approaches that detects the edges location Γ and then process the regular parts in [0, 1]2\Γ.

Figure 4.7 shows examples of images in Θ and Θ̃.

4.3 Efficient approximation

4.3.1 Decay of Approximation Error

To perform an efficient processing of signals or images in Θ, the goal is to design an orthogonal basis
such that the non-linear approximation error ||f − fM || decays as fast as possible to 0 when M increases.
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Figure 4.7: Examples of cartoon images: sharp discontinuities (left and center) and smooth discontinuities
(right).

Polynomial error decay. This error decay measured using a power law

∀ f ∈ Θ, ∀M, ||f − fM ||2 6 CfM
−α (4.15)

where α is independent of f and should be as large as possible. The parameter α depends on the basis and
on Θ. It is a class-complexity parameter that describes the overall complexity of signals in Θ with respect
to the orthogonal basis one considers for approximation. The parameter Cf depends on f and describes the
complexity of the signal f within its class Θ.

Relevance for compression, denoising and inverse problems. Monitoring the decay of approxima-
tion error is not only interesting from a mathematical point of view. Section ?? shows that the compression
error is close to the non-linear approximation error. Bases that are efficient for approximation are thus also
efficient for compression.

Chapter ?? shows that a similar conclusion holds for non-linear denoising with thresholding. Efficient
denoisers are obtained by performing a non-linear approximation of the noisy image in a well chosen basis.
The average denoising error with respect to a random noise is closely related to the approximation error.

Chapter ?? shows that ill-posed inverse problems such as super-resolution of missing information can
be solved by taking advantage of the compressibility of the signal or the image in a well chosen basis. A
basis that is efficient for approximation of the high resolution signal is needed to recover efficiently missing
information. The performance of these schemes is difficult to analyze, and the basis atoms must also be far
enough from the kernel of the operator that removes information.

Comparison of signals. For a fixed basis (for instance wavelets), the decay of ||f − fM || allows one to
compare the complexity of different images. Figure 4.9 shows that natural images with complicated geometric
structures and textures are more difficult to approximate using wavelets.

Since the approximation error often decays in a power-low fashion (4.15), the curves are displayed in a
log-log plot, so that

log(||f − fM ||2) = cst− α log(M)

and hence one should expect an affine curve with slope −α. Due to discretization issue, this is only the case
for value of M � N , since the error quickly drops to zero for M ≈ N .

4.3.2 Comparison of bases.

For a given image f , one can compare different ortho-bases using the decay of ||f−fM ||. Figure 4.11 shows
the efficiency of several bases to approximate a fixed natural image with contours and textures. The Fourier
basis described in Section ?? is highly innefficient because of periodic boundary artifact and the global
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Smooth Cartoon Natural #1 Natural #2

Figure 4.8: Several different test images.
lo

g
1
0
(||f

−
f M

||)

log10(M/N)

Figure 4.9: Comparison of approximation error decay in wavelets for different images shown in Figure 4.8.

support of its atoms that fail to capture contours. The cosine basis uses symmetric boundary conditions and
thus removes the boundary artifacts, but it still not able to resolve efficiently localized features. The local
DCT basis corresponds to the union of local cosine bases defined on small square patches. It is more efficient
since its atoms have a local support. However, it gives bad approximation for a small number M of kept
coefficients, because of blocking artifacts. The isotropic wavelet basis detailed in Section ?? gives the best
approximation results because its is both composed of localized atoms and does not have a block structure
but rather a multiresolution structure.

Figure 4.12 summarizes the different type of approximation decays for various class of data, which are
detailed in the following section.

4.4 Fourier Linear Approximation of Smooth Functions

The smooth signal and image model (4.5) assumed that the analog function have bounded α continuous
derivatives. A function f with a large α has more smoothness, and is thus simpler to approximate. Figure
4.5 shows images with increasing smoothness.

4.4.1 1-D Fourier Approximation

A 1-D signal f ∈ L2([0, 1]) is associated to a 1-periodic function f(t+ 1) = f(t) defined for t ∈ R.
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Fourier Cosine Local DCT Wavelets
SNR=17.1dB SNR=17.5dB SNR=18.4dB SNR=19.3dB

Figure 4.10: Comparison of approximation errors for different bases using the same number M = N/50 of
coefficients.

lo
g
1
0
(||f

−
f M

||)

log10(M/N)

Figure 4.11: Comparison of approximation error decay for different bases.

Low pass approximation. We consider a linear Fourier approximation, that only retains low frequencies

f lin
M =

M/2∑

m=−M/2

〈f, em〉em

where we use the 1-D Fourier atoms

∀n ∈ Z, em(t)
def.
= e2iπmt.

We note that fM actually requires M + 1 Fourier atoms.
Figure 4.13 shows examples of such linear approximation for an increasing value of M . Since the original

function f is singular (no derivative), this produces a large error and one observe ringing artifacts near
singularities.

This low pass approximation corresponds to a filtering, since

fM =

M/2∑

m=−M/2

〈f, em〉em = f ? hM where ĥM
def.
= 1[−M/2,M/2].

67



Figure 4.12: Summary of linear and non-linear approximation rates ||f − fM ||2 for different classes of 1-D
signals and images.
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Figure 4.13: Fourier approximation of a signal.

Here, hM is the so-called Dirichlet kernel (see also the chapter on Fourier).
The following proposition shows that this approximation decays fast for Cα signals.

Proposition 17. One has for f ∈ Cα(R/Z)

||f − f linM ||2 = O(M−2α+1).

Proof. Using integration by part, one shows that for a Cα function f in the smooth signal model (4.5),

F(f (`))m = (2imπ)`f̂m, so that one has using Cauchy-Schwartz

|〈f, em〉| 6 |2πm|−α||f (α)||2.

This implies

||f − f lin
M ||2 =

∑

|m|>M/2

|〈f, em〉|2 6 ||f (α)||22
∑

|m|>M/2

|2πm|−2α = O(M−2α+1).

We show next that a slightly modified proof gives a better decay (assuming f (α) is in L2(R/Z)) and that
this conclusion is valid for a larger class of Sobolev functions.
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Proposition 18. For signal f in the Sobolev model (4.8), i.e. f (α) ∈ L2(R), one has

||f − f linM ||2 6 C||f (α)||2M−2α. (4.16)

Proof. One has

||f (α)||2 =
∑

m

|2πm|2α|〈f, em〉|2 >
∑

|m|>M/2

|2πm|2α|〈f, em〉|2 (4.17)

> (πM)2α
∑

m>M/2

|〈f, em〉|2 > (πM)2α||f − f lin
M ||2. (4.18)

One can also shows that this asymptotic error decay is optimal, and that the non-linear approximation
error in Fourier also decays like O(M−2α).

For a signal in the piecewise smooth model (4.9), such as the one shows in Figure 4.13, one only has a
slow decay of the linear and non-linear approximation error

||f − fM ||2 6 CfM
−1 (4.19)

and Fourier atoms are not anymore optimal for approximation. A typical example is f = 1[a, b] the indicator

of a step, for which |f̂m| ∼ 1/m, and thus ||f−fM ||2 ∼
∑
|m|>M 1/|m|2 ∼ 1/M for both linear and non-linear

approximations.

4.4.2 Sobolev Images

This analysis caries over to images and higher dimensional datasets by considering a Sobolev functional
(4.7) for d > 1.

The linear and non-linear approximation of an α-regular Sobolev image then satisfy

||f − fM ||2 6 C||fα||2M−α.

For d-dimensional data f : [0, 1]d → R, one would have an error decay of O(M−2α/d).
For an image in the piecewise smooth model (4.10), the linear and non-linear error decays are slow,

||f − fM ||2 6 CfM
−1/2, (4.20)

and Fourier atoms are not anymore optimal for approximation.

4.5 Wavelet Approximation of Piecewise Smooth Functions

Wavelet approximation improve significantly over Fourier approximation to capture singularities. This
is due to the localized support of wavelets.

4.5.1 Decay of Wavelet Coefficients

To efficiently approximate regular parts of signals and images, one uses wavelet with a large enough
number p of vanishing moments

∀ k < p,

∫
ψ(x)xkdx = 0.

This number p should be larger than the regularity α of the signal outside singularities (for instance jumps
or kinks).

To quantify the approximation error decay for piecewise smooth signals (4.9) and images (4.10), one
needs to treat differently wavelets that are in regular and singular areas. Figure 4.15 shows for a signal and
an image the localization of singular and regular parts.
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Figure 4.14: Linear (top row) and non-linear (bottom row) Fourier approximation.

Proposition 19. If f is Cα on supp(ψj,n), with p > α, one has

|〈f, ψj,n〉| 6 Cf ||ψ||12j(α+d/2). (4.21)

In general, one always has for bounded f

|〈f, ψj,n〉| 6 ||f ||∞||ψ||12j
d
2 .

Proof. If f is Cα on supp(ψj,n), with p > α, then one can perform a Taylor expansion of f around the point
2jn

f(x) = P (x− 2jn) +R(x− 2jn) = P (2jt) +R(2jt)

where deg(P ) < α and
|R(x)| 6 Cf ||x||α.

One then bounds the wavelet coefficient

〈f, ψj,n〉 =
1

2j
d
2

∫
f(x)ψ

(
x− 2jn

2j

)
dx = 2j

d
2

∫
R(2jt)ψ(t)dt

where we have performed the change of variable t = x−2jn
2j . This shows that (4.21) holds. Property (19) is

straightforward.

4.5.2 1-D Piecewise Smooth Approximation

For 1-D signal in the piecewise regular model (4.9), large wavelets coefficients 〈f, ψj,n〉 are clustered
around the singularities of the signal. We call S ⊂ [0, 1] the finite set of singular points.

Theorem 5. f is in the piecewise smooth signal model (4.9), the non-linear approximation error in wavelet
obeys

||f − fM ||2 = O(M−2α). (4.22)

Proof. The proof is split in several parts.
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f(x)

Figure 4.15: Singular par of signals (left) and image (right).

Step 1. Coefficient segmentation. The singular support at scale 2j is the set of coefficients correspond-
ing to wavelets that are crossing a singularity

Cj = {n ; supp(ψj,n) ∩ S 6= ∅} (4.23)

It has a constant size because of the dyadic translation of wavelets

|Cj | 6 K|S| = constant.

Using (4.21) for d = 1, the decay of regular coefficients is bounded as

∀n ∈ Ccj , |〈f, ψj,n〉| 6 C2j(α+1/2).

Using (19) for d = 1, the decay of singular coefficients is bounded as

∀n ∈ Cj , |〈f, ψj,n〉| 6 C2j/2.

Once a fixed threshold T is fixed to compute the non-linear approximation, one defines cut-off scales for
regular and singular coefficients that depend on T

2j1 = (T/C)
1

α+1/2 and 2j2 = (T/C)2.

Figure 4.16 shows a schematic segmentation of the set of wavelet coefficients into regular and singular parts,
and also using the cut-off scales.

Step 2. Counting the error. These cut-off scales allow us to define a hand-crafted approximation signal

f̃M =
∑

j>j2

∑

n∈Cj
〈f, ψj,n〉ψj,n +

∑

j>j1

∑

n∈Ccj

〈f, ψj,n〉ψj,n. (4.24)

The approximation error generated by this M -term approximation f̃M is larger than the best M -term
approximation error, and hence

||f − fM ||2 6 ||f − f̃M ||2 6
∑

j<j2,n∈Cj
|〈f, ψj,n〉|2 +

∑

j<j1,n∈Ccj

|〈f, ψj,n〉|2 (4.25)

6
∑

j<j2

(K|S|)× C22j +
∑

j<j1

2−j × C22j(2α+1) (4.26)

= O(2j2 + 22αj1) = O(T 2 + T
2α

α+1/2 ) = O(T
2α

α+1/2 ). (4.27)
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x1 x2

S = {x1, x2}
f(x)

j1

j2

Large coefficient

|〈f, ψjn〉| < T
Small coefficient

Figure 4.16: Segmentation of the wavelet coefficients into regular and singular parts.

Step 3. Counting the number of measurements. The number of coefficients needed to build the
approximating signal f̃M is

M 6
∑

j>j2

|Cj |+
∑

j>j1

|Ccj | 6
∑

j>j2

K|S|+
∑

j>j1

2−j (4.28)

= O(| log(T )|+ T
−1

α+1/2 ) = O(T
−1

α+1/2 ). (4.29)

Step 3. Putting everything together. Putting equations (4.25) and (4.28) together gives the desired
result.

This theorem improves significantly over the O(M−1) decay of Fourier approximation (4.19). Further-
more, this decay is the same as the error decay of uniformly smooth signal (4.16). In 1-D, wavelet ap-
proximations do not “see” the singularities. The error decay (4.22) can be shown to be asymptotically
optimal.

Figure 4.17 shows examples of wavelet approximation of singular signals.

4.5.3 2-D Piecewise Smooth Approximation

We now give the equivalent of Theorem 5 but for 2-D functions.

Theorem 6. f is in the piecewise smooth signal model (4.10), the non-linear approximation error in wavelet
obeys

||f − fM ||2 = O(M−1). (4.30)

Proof. For an image in the piecewise smooth model (4.10), we define the singular support Cj as in (4.23).
The major difference with the 1-D setting, is that for 2-D images, the size of the singular support grows
when the scale 2j goes to zero

|Cωj | 6 2−jK|S|,
where |S| is the perimeter of the singular curves S, and ω ∈ {V,H,D} is the wavelet orientation. Using
(4.21) for d = 2, the decay of regular coefficients is bounded as

∀n ∈ (Cωj )c,
∣∣〈f, ψωj,n〉

∣∣ 6 C2j(α+1).

Using (19) for d = 2, the decay of singular coefficients is bounded as

∀n ∈ Cωj ,
∣∣〈f, ψωj,n〉

∣∣ 6 C2j .
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Figure 4.17: 1-D wavelet approximation.

After fixing T , the cut-off scales are defined as

2j1 = (T/C)
1

α+1 and 2j2 = T/C.

We define similarly to (4.24) a hand-made approximation. Similarly to (4.25), we bound the approximation
error as

||f − fM ||2 6 ||f − f̃M ||2 = O(2j2 + 22αj1) = O(T + T
2α
α+1 ) = O(T )

and the number of coefficients as

M = O(T−1 + T
−1
α+1 ) = O(T−1).

This leads to the announced decay of the non-linear wavelet approximation error.

This improves significantly over the O(M−1/2) decay of Fourier approximation (4.20). This result is
however deceiving, since it does not take advantage of the Cα regularity of the image outside the edge
curves.

This error decay is still valid for the more general model of images with bounded variations (4.11). One
can shows that wavelets are asymptotically optimal to approximate images with bounded variations.

Figure 4.18 shows wavelet approximations of a bounded variation image.

4.6 Cartoon Images Approximation

The square support of wavelet makes them inefficient to approximate geometric images (4.13), whose
edges are more regular than the level set of bounded variation images (4.11), which are only assumed to be
of finite length.

4.6.1 Wavelet Approximation of Cartoon Images

Result (4.30) shows that wavelet approximation of images in the cartoon models (4.13) decays at least
like O(M−1). One can show that simple cartoon images like f = 1Ω where Ω is a disk reach this low decay
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Figure 4.18: 2-D wavelet approximation.

speed. This is because the square support of wavelets forbid them to take advantage of the regularity of
edge curves. The approximation error for the smoothed cartoon model (4.14) is also slow if the width of the
blurring kernel is small with respect to the number M of coefficients.

Figure 4.19 shows that many large coefficients are located near edge curves, and retaining only a small
number leads to a bad approximation with visually unpleasant artifacts.

f {〈f, ψωj,n〉} fM

Figure 4.19: Wavelet approximation of a cartoon image.

4.6.2 Finite Element Approximation

To improve over the wavelet approximation, one can design an adapted triangulation that is highly
anisotropic near edges. Figure 4.20 shows an example of such a triangulation.

A triangulation is obtain by sampling M points over the image domain [0, 1]2 and then connecting them
using triangles. One then defines a piecewise linear interpolation f̃M over these triangles.

As shown in Figure 4.21, an efficient approximation of a C2-cartoon image (4.13) for α = 2 is obtained
by seeding ≈ M/2 approximately equilateral triangles of width ≈ M−1/2 in the areas where the image is
regular. Near the edges, using the C2 regularity of the singular curve, one can seed ≈ M/2 anisotropic
triangles of length M−1 and width ≈M−1/2. One can show that such an adaptive triangulation leads to an
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Figure 4.20: Left: cartoon image, right: adaptive triangulation.

M−1/2

M−1/2

Figure 4.21: Aspect ratio of triangle away from edges (left) and near an edge (right).

approximation error

||f − fM ||2 = O(M−2), (4.31)

which improves over the wavelet approximation error decay (4.30).

This scheme is however difficult to implement in practice, since the edge curves are not known and
difficult to find. This is in particular the case for smooth cartoon images when the smoothing kernel h is
unknown.

There is currrently no known algorithm that can automatically produces the error decay (4.31). One
thus has to use heuristics and greedy algorithm to find the location of the sampling points and computes
the triangles. Figure (4.22) shows an example of compression using such a greedy seeding algorithm, that
works well in practice.

4.6.3 Curvelets Approximation

Instead of using an adaptive approximation scheme such as finite elements, one can replace the wavelet
basis by a set of oriented anisotropic atoms. The curvelet frame was proposed by Candès and Donoho for
this purpose [1].

Curvelets. The curvelet construction starts from a curvelet function c that is oriented along the horizontal
direction, and perform stretching

c2j (x1, x2) ≈ 2−3j/4c(2−j/2x1, 2
−jx2),
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Adpated triangulation f̃M JPEG-2000

Figure 4.22: Comparison of adaptive triangulation and JPEG-2000, with the same number of bits.

translation and rotation

cθ2j ,u(x1, x2) = c2j (Rθ(x− u))

where Rθ is the rotation of angle θ.

The atoms cθ2j ,u is located near u, with an orientation θ, and has an aspect ratio “width ≈ length2”, which
is the same aspect used to build an adaptive finite element approximation. This aspect ratio is essential to
capture the anisotropic regularity near edges for images in the cartoon model (4.13) for α = 2.

Figure 4.23: Left: a curvelet cm, right: its Fourier transform localization.

Figure 4.24 shows the spacial and frequency localization of curvelets.

Parameter discretization. To build an image representation, one need to sample the u and θ parameter.
To maintain a stable representation, the sub-sampling of the angles depends on the scale

∀ 0 6 k < 2−dj/2e+2, θ
(j)
k = kπ2dj/2e−1
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and the spacial grid depends on the scale and on the angles

∀m = (m1,m2) ∈ Z2, u(j,θ)
m = Rθ(2

j/2m1, 2
jm2).

Figure 4.24 shows this sampling pattern.

Figure 4.24: Sampling pattern for the curvelet positions.

Curvelet tight frame. This sampling leads to a stable redundant family

Cj,m,k(x) = cθ2j ,u(x) where θ = θ
(j)
k and u = u(j,θ)

m ,

that obeys a conservation of energy

||f ||2 =
∑

j∈Z

2−dj/2e+2∑

k=0

∑

m∈Z2

|〈f, Cj,m,k〉|2

and a reconstruction formula

f =
∑

j∈Z

2−dj/2e+2∑

k=0

∑

m∈Z2

〈f, Cj,m,k〉Cj,m,k

that extends the properties of orthogonal basis (tight frame), although the representation is redundant (the
atoms are not orthogonal).

A numerical implementation of this tight frame also defines a discrete tight frame for image of N pixels,
that is made of ≈ 5N atoms [2].

Curvelet approximation. A non-linear M -term approximation in curvelets is defined as

fM =
∑

|〈f, Cj,m,k〉|>T
〈f, Cj,m,k〉Cj,m,k

where T is a threshold that depends on M . One should note that fM is not necessarily the best M -term
curvelet approximation since the curvelet frame is not orthogonal.
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Figure 4.25: Comparison of the principle of wavelets (left) and curvelet (right) approximations of a cartoon
image.

For position u
(j,θ)
m that are far away from an edges, the vanishing moments of the curvelets create a small

coefficient 〈f, Cj,m,k〉. If u
(j,θ)
m is close to an edge curve whose tangent has direction θ̃, then the coefficient

〈f, Cj,m,k〉 decays very fast to zero when |θ − θ̃| increases. Figure 4.25 shows the principle of this curvelet
approximation, and compares it with directional wavelets that have a square support.

Using these two properties together with the sparse sampling of the curvelet in space and orientation
leads to the following approximation error decay

||f − fM ||2 = O(log3(M)M−2)

for image in the cartoon model (4.13) for α = 2. This is close to the decay of adaptive triangulations (4.31),
but this time one computes fM with a fast O(N log(N)) algorithm for an image of N pixels.

In practice, the redundancy of the curvelet frame makes it not suitable for image compression. Its
efficiency is however useful for denoising purpose, where it can improve over wavelet to denoise geometric
images and textures, see Figure 4.26. The result is obtained by using a thresholding denoiser as detailed in
Section ??.

Noisy f Wavelet f̃ Curvelets f̃

Figure 4.26: Comparison of wavelets (translation invariant) and curvelet denoising.
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