
Mathematical Foundations of Data Sciences

Gabriel Peyré
CNRS & DMA

École Normale Supérieure
gabriel.peyre@ens.fr

https://mathematical-tours.github.io

www.numerical-tours.com

September 6, 2021

gabriel.peyre@ens.fr
https://mathematical-tours.github.io
www.numerical-tours.com

2

Presentation

This book draft presents an overview of important mathematical and numerical foundations for modern
data sciences. It covers in particulars the basics of signal and image processing (Fourier, Wavelets, and
their applications to denoising and compression), imaging sciences (inverse problems, sparsity, compressed
sensing) and machine learning (linear regression, logistic classification, deep learning). The focus is on
the mathematically-sounded exposition of the methodological tools (in particular linear operators, non-
linear approximation, convex optimization, optimal transport) and how they can be mapped to efficient
computational algorithms. These course notes are also intended to be the theoretical companion for the
Numerical Tours1 web site, which presents Matlab/Python/Julia/R detailed implementations of all the
concepts covered here.

1www.numerical-tours.com

3

www.numerical-tours.com

4

Contents

1 Shannon Theory 13
1.1 Analog vs. Discrete Signals . 13

1.1.1 Acquisition and Sampling . 13
1.1.2 Linear Translation Invariant Sampler . 14

1.2 Shannon Sampling Theorem . 15
1.3 Shannon Source Coding Theorem . 19

2 Fourier Transforms 25
2.1 Hilbert spaces and Fourier Transforms . 25

2.1.1 Hilbertian bases. 25
2.1.2 Fourier basis on R/2πZ. 26

2.2 Convolution on R and T . 27
2.2.1 Convolution . 27
2.2.2 Translation Invariant Operators . 28
2.2.3 Revisiting Poisson formula using distributions. 30

2.3 Finite Fourier Transform and Convolution . 31
2.3.1 Discrete Ortho-bases . 31
2.3.2 Discrete Fourier transform . 32
2.3.3 Fast Fourier transform . 32
2.3.4 Finite convolution . 33

2.4 Discretisation Issues . 34
2.4.1 Fourier approximation via spatial zero padding. 34
2.4.2 Fourier interpolation via spectral zero padding. 34

2.5 Fourier in Multiple Dimensions . 35
2.5.1 On Continuous Domains . 35
2.5.2 On Discrete Domains . 37
2.5.3 Shannon sampling theorem. 38
2.5.4 Convolution in higher dimension. 38

2.6 Application to ODEs and PDEs . 38
2.6.1 On Continuous Domains . 38
2.6.2 Finite Domain and Discretization . 39

2.7 A Bit of Group Theory . 39
2.7.1 Characters . 39
2.7.2 More General cases . 41

2.8 A Bit of Spectral Theory . 43
2.8.1 On a Surface or a Manifold . 43
2.8.2 Spherical Harmonics . 43
2.8.3 On a Graph . 43
2.8.4 Other things . 44

5

3 Wavelets 45

3.1 Multi-resolution Approximation Spaces . 45

3.2 Multi-resolution Details Spaces . 47

3.3 On Bounded Domains . 49

3.4 Fast Wavelet Transform . 49

3.4.1 Discretization . 49

3.4.2 Forward Fast Wavelet Transform (FWT) . 50

3.4.3 Inverse Fast Transform (iFWT) . 53

3.5 2-D Wavelets . 55

3.5.1 Anisotropic Wavelets . 55

3.5.2 Isotropic Wavelets . 55

3.6 Wavelet Design . 60

3.6.1 Low-pass Filter Constraints . 60

3.6.2 High-pass Filter Constraints . 62

3.6.3 Wavelet Design Constraints . 64

3.6.4 Daubechies Wavelets . 66

4 Linear and Non-linear Approximation 69

4.1 Approximation . 69

4.1.1 Approximation in an Ortho-basis . 69

4.1.2 Linear Approximation . 69

4.1.3 Non-linear Approximation . 70

4.2 Signal and Image Modeling . 71

4.2.1 Uniformly Smooth Signals and Images . 71

4.2.2 Piecewise Regular Signals and Images . 73

4.2.3 Bounded Variation Signals and Images . 73

4.2.4 Cartoon Images . 74

4.3 Efficient approximation . 74

4.3.1 Decay of Approximation Error . 74

4.3.2 Comparison of bases. 75

4.4 Fourier Linear Approximation of Smooth Functions . 76

4.4.1 1-D Fourier Approximation . 76

4.4.2 Sobolev Images . 79

4.5 Wavelet Approximation of Piecewise Smooth Functions . 79

4.5.1 Decay of Wavelet Coefficients . 79

4.5.2 1-D Piecewise Smooth Approximation . 80

4.5.3 2-D Piecewise Smooth Approximation . 82

4.6 Cartoon Images Approximation . 83

4.6.1 Wavelet Approximation of Cartoon Images . 83

4.6.2 Finite Element Approximation . 84

4.6.3 Curvelets Approximation . 85

5 Compression 89

5.1 Transform Coding . 89

5.1.1 Coding . 89

5.1.2 De-coding . 90

5.1.3 Support Coding . 90

5.2 Entropic Coding . 92

5.3 JPEG-2000 . 93

6

6 Denoising 97

6.1 Noise Modeling . 97

6.1.1 Noise in Images . 97

6.1.2 Image Formation . 98

6.1.3 Denoiser . 99

6.2 Linear Denoising using Filtering . 99

6.2.1 Translation Invariant Estimators . 99

6.2.2 Optimal Filter Selection . 100

6.2.3 Wiener Filter . 100

6.2.4 Denoising and Linear Approximation . 101

6.3 Non-linear Denoising using Thresholding . 104

6.3.1 Hard Thresholding . 104

6.3.2 Soft Thresholding . 105

6.3.3 Minimax Optimality of Thresholding . 106

6.3.4 Translation Invariant Thresholding Estimators . 108

6.3.5 Exotic Thresholdings . 110

6.3.6 Block Thresholding . 111

6.4 Data-dependant Noises . 113

6.4.1 Poisson Noise . 114

6.4.2 Multiplicative Noise . 117

7 Variational Priors and Regularization 121

7.1 Sobolev and Total Variation Priors . 121

7.1.1 Continuous Priors . 121

7.1.2 Discrete Priors . 121

7.2 PDE and Energy Minimization . 124

7.2.1 General Flows . 124

7.2.2 Heat Flow . 124

7.2.3 Total Variation Flows . 125

7.2.4 PDE Flows for Denoising . 127

7.3 Regularization for Denoising . 128

7.3.1 Regularization . 128

7.3.2 Sobolev Regularization . 129

7.3.3 TV Regularization . 130

8 Inverse Problems 133

8.1 Inverse Problems Regularization . 133

8.2 Theoretical Study of Quadratic Regularization . 135

8.2.1 Singular Value Decomposition . 135

8.2.2 Tikonov Regularization . 137

8.3 Quadratic Regularization . 140

8.3.1 Solving Linear System . 142

8.4 Non-Quadratic Regularization . 142

8.4.1 Total Variation Regularization . 142

8.4.2 Gradient Descent Method . 144

8.4.3 Examples of Gradient Computation . 144

8.5 Examples of Inverse Problems . 145

8.5.1 Deconvolution . 145

8.5.2 Inpainting . 145

8.5.3 Tomography Inversion . 146

7

9 Sparse Regularization 151
9.1 Sparsity Priors . 151

9.1.1 Ideal sparsity prior. 151
9.1.2 Convex relaxation . 151
9.1.3 Sparse Regularization and Thresholding . 152

9.2 Sparse Regularization of Inverse Problems . 154
9.3 Iterative Soft Thresholding Algorithm . 154

9.3.1 Noiseless Recovery as a Linear Program . 155
9.3.2 Projected Gradient Descent for `1. 155
9.3.3 Iterative Soft Thresholding and Forward Backward . 156

9.4 Example: Sparse Deconvolution . 157
9.4.1 Sparse Spikes Deconvolution . 157
9.4.2 Sparse Wavelets Deconvolution . 157
9.4.3 Sparse Inpainting . 158

10 Theory of Sparse Regularization 163
10.1 Existence and Uniqueness . 163

10.1.1 Existence . 163
10.1.2 Polytope Projection for the Constraint Problem . 163
10.1.3 Optimality Conditions . 165
10.1.4 Uniqueness . 166
10.1.5 Duality . 167

10.2 Consistency and Sparsitency . 168
10.2.1 Bregman Divergence Rates for General Regularizations 168
10.2.2 Linear Rates in Norms for `1 Regularization . 170
10.2.3 Sparsistency for Low Noise . 171
10.2.4 Sparsistency for Arbitrary Noise . 174

10.3 Sparse Deconvolution Case Study . 174

11 Compressed Sensing 179
11.1 Motivation and Potential Applications . 179

11.1.1 Single Pixel Camera . 179
11.1.2 Sparse Recovery . 180

11.2 Dual Certificate Theory and Non-Uniform Guarantees . 181
11.2.1 Random Projection of Polytopes . 181
11.2.2 Random Matrices . 181
11.2.3 Dual Certificates . 183

11.3 RIP Theory for Uniform Guarantees . 186
11.3.1 Restricted Isometry Constants . 186
11.3.2 RIP implies dual certificates . 187
11.3.3 RIP implies stable recovery . 189
11.3.4 Fourier sampling RIP . 190

12 Basics of Machine Learning 193
12.1 Unsupervised Learning . 193

12.1.1 Dimensionality Reduction and PCA . 193
12.1.2 Clustering and k-means . 197

12.2 Empirical Risk Minimization . 198
12.2.1 Empirical Risk . 199
12.2.2 Prediction and Consistency . 199
12.2.3 Parametric Approaches and Regularization . 200
12.2.4 Testing Set and Cross-validation . 200

8

12.3 Supervised Learning: Regression . 200
12.3.1 Linear Regression . 201

12.4 Supervised Learning: Classification . 203
12.4.1 Nearest Neighbors Classification . 203
12.4.2 Two Classes Logistic Classification . 204
12.4.3 Multi-Classes Logistic Classification . 207

12.5 Kernel Methods . 208
12.5.1 Feature Map and Kernels . 209
12.5.2 Kernel Design . 210
12.5.3 General Case . 211

12.6 Probably approximately correct learning theory . 212
12.6.1 Non parametric setup and calibration . 213
12.6.2 PAC bounds . 214

13 Optimization & Machine Learning: Smooth Optimization 217
13.1 Motivation in Machine Learning . 217

13.1.1 Unconstraint optimization . 217
13.1.2 Regression . 218
13.1.3 Classification . 218

13.2 Basics of Convex Analysis . 218
13.2.1 Existence of Solutions . 218
13.2.2 Convexity . 219
13.2.3 Convex Sets . 220

13.3 Derivative and gradient . 220
13.3.1 Gradient . 220
13.3.2 First Order Conditions . 221
13.3.3 Least Squares . 222
13.3.4 Link with PCA . 223
13.3.5 Classification . 224
13.3.6 Chain Rule . 224

13.4 Gradient Descent Algorithm . 225
13.4.1 Steepest Descent Direction . 225
13.4.2 Gradient Descent . 226

13.5 Convergence Analysis . 227
13.5.1 Quadratic Case . 227
13.5.2 General Case . 230
13.5.3 Acceleration . 233

14 Optimization & Machine Learning: Advanced Topics 235
14.1 Regularization . 235

14.1.1 Penalized Least Squares . 235
14.1.2 Ridge Regression . 235
14.1.3 Lasso . 237
14.1.4 Iterative Soft Thresholding . 237

14.2 Stochastic Optimization . 238
14.2.1 Minimizing Sums and Expectation . 239
14.2.2 Batch Gradient Descent (BGD) . 239
14.2.3 Stochastic Gradient Descent (SGD) . 240
14.2.4 Stochastic Gradient Descent with Averaging (SGA) 242
14.2.5 Stochastic Averaged Gradient Descent (SAG) . 243

14.3 Automatic Differentiation . 243
14.3.1 Finite Differences and Symbolic Calculus . 244

9

14.3.2 Computational Graphs . 244
14.3.3 Forward Mode of Automatic Differentiation . 244
14.3.4 Reverse Mode of Automatic Differentiation . 247
14.3.5 Feed-forward Compositions . 248
14.3.6 Feed-forward Architecture . 248
14.3.7 Recurrent Architectures . 250

15 Shallow Learning 253
15.1 Recap on Supervised Learning . 253
15.2 Multi-layer Perceptron . 254
15.3 Training a MLP . 254
15.4 Controlling the Estimation Error . 255
15.5 Universality . 255
15.6 Approximation Rates . 257

15.6.1 Barron’s spaces . 257
15.6.2 Barron’s Theorem . 258
15.6.3 Integral representation over w . 260

16 Deep Learning 263
16.1 Deep Architectures . 263

16.1.1 Deep Network Structure . 263
16.1.2 Perceptron and Shallow Models . 264
16.1.3 Convolutional Neural Networks . 265
16.1.4 Advanced Architectures . 267
16.1.5 Scattering Transform . 267

17 Convex Analysis 269
17.1 Basics of Convex Analysis . 269

17.1.1 Convex Sets and Functions . 269
17.1.2 First Order Conditions . 270

17.2 Legendre-Fenchel Transform . 272
17.2.1 Legendre Transform . 273
17.2.2 Legendre transform and smoothness . 273

17.3 Convex Duality . 274
17.3.1 Lagrange Duality: Afine Constraint . 274
17.3.2 Lagrange Duality: General Case . 274
17.3.3 Fenchel-Rockafellar Duality . 276

18 Non-smooth Convex Optimization 279
18.1 Descent Methods . 279

18.1.1 Gradient Descent . 279
18.1.2 Sub-gradient Descent . 279
18.1.3 Projected Gradient Descent . 280

18.2 Interior Point Methods . 280
18.3 Proximal Algorithm . 282

18.3.1 Proximal Map . 282
18.3.2 Basic Properties . 283
18.3.3 Related Concepts . 283

18.4 Proximal Gradient Algorithms . 284
18.4.1 Proximal Point Algorithm . 284
18.4.2 Forward-Backward . 285

18.5 Primal-Dual Algorithms . 286

10

18.5.1 Forward-backward on the Dual . 286
18.5.2 Douglas-Rachford . 288
18.5.3 Alternating Direction Method of Multipliers . 289
18.5.4 Primal-Dual Splitting . 291

11

12

Chapter 1

Shannon Theory

Shannon theory of information, published in 1948/1949, is made of three parts:

1. Sampling: it studies condition under which sampling a continuous function to obtain a discrete vector
is invertible. The discrete real values representing the signal are then typically quantized to a finite
precision to obtain a set of symbols in a finite alphabet.

2. Source coding: it studies optimal ways to represent (code) such a set of symbols as a binary sequence.
It leverages the statistical distributions to obtain the most possible compact code.

3. Channel coding (not studied here): it studies how to add some redundancy to the coded sequence
in order to gain robustness to errors or attacks during transmission (flip of certain bits with some
probability). It is often named “error correcting codes theory”.

The main reference for this chapter is [21].

1.1 Analog vs. Discrete Signals

To develop numerical tools and analyze their performances, the mathematical modelling is usually done
over a continuous setting (so-called “analog signals”). Such continuous setting also aims at representing the
signal in the physical world, which are inputs to sensors hardwares such as microphone, digital cameras or
medical imaging devices. An analog signal is a 1-D function f0 ∈ L2([0, 1]) where [0, 1] denotes the domain
of acquisition, which might for instance be time. An analog image is a 2D function f0 ∈ L2([0, 1]2) where
the unit square [0, 1]2 is the image domain.

Although these notes are focussed on the processing of sounds and natural images, most of the methods
extend to multi-dimensional datasets, which are higher dimensional mappings

f0 : [0, 1]d → [0, 1]s

where d is the dimensionality of the input space (d = 1 for sound and d = 2 for images) whereas s is the
dimensionality of the feature space. For instance, gray scale images corresponds to (d = 2, s = 1), videos to
(d = 3, s = 1), color images to (d = 2, s = 3) where one has three channels (R,G,B). One can even consider
multi-spectral images where (d = 2, s � 3) that is made of a large number of channels for different light
wavelengths. Figures 1.1 and 1.2 show examples of such data.

1.1.1 Acquisition and Sampling

Signal acquisition is a low dimensional projection of the continuous signal performed by some hardware
device. This is for instance the case for a microphone that acquires 1D samples or a digital camera that

13

Figure 1.1: Examples of sounds (d = 1), image (d = 2) and videos (d = 3).

Figure 1.2: Example of color image s = 3 and multispectral image (s = 32).

acquires 2D pixel samples. The sampling operation thus corresponds to mapping from the set of continuous
functions to a discrete finite dimensional vector with N entries.

f0 ∈ L2([0, 1]d) 7→ f ∈ CN

Figure 1.3 shows examples of discretized signals.

1.1.2 Linear Translation Invariant Sampler

A translation invariant sampler performs the acquisition as an inner product between the continuous
signal and a constant impulse response h translated at the sample location

fn =

∫ S/2

−S/2
f0(x)h(n/N − x)dx = f0 ? h(n/N). (1.1)

The precise shape of h(x) depends on the sampling device, and is usually a smooth low pass function that
is maximal around x = 0. The size S of the sampler determines the precision of the sampling device, and is
usually of the order of 1/N to avoid blurring (if S is too large) or aliasing (if S is too small).

Section ?? details how to reverse the sampling operation in the case where the function is smooth.

14

Figure 1.3: Image and sound discretization.

1.2 Shannon Sampling Theorem

Reminders about Fourier transform. For f ∈ L1(R), its Fourier transform is defined as

∀ω ∈ R, f̂(ω)
def.
=

∫

R
f(x)e−ixωdx. (1.2)

One has ||f̂ ||2 = (2π)−1||f ||2, so that f 7→ f̂ can be extended by continuity to L2(R), which corresponds to

computing f̂ as a limit when T → +∞ of
∫ T
−T f(x)e−ixωdx. When f̂ ∈ L1(R), one can invert the Fourier

transform so that

f(x) =
1

2π

∫

R
f̂(ω)eixωdω, (1.3)

which shows in particular that f is continuous with vanishing limits at ±∞.
The Fourier transform F : f 7→ f̂ exchanges regularity and decay. For instance, if f ∈ Cp(R) with an

integrable Fourier transform, then F(f (p))(ω) = (iω)pf̂(ω) so that |f̂(ω)| = O(1/|ω|p). Conversely,
∫

R
(1 + |ω|)p|f̂(ω)|dω < +∞ =⇒ f ∈ Cp(R). (1.4)

For instance, if f̂(ω) = O(1/|ω|p+2), one obtains that f ∈ Cp(R).

Reminders about Fourier series. We denote T = R/2πZ the torus. A function f ∈ L2(T) is 2π-periodic,
and can be viewed as a function f ∈ L2([0, 2π]) (beware that this means that the boundary points are glued
together), and its Fourier coefficients are

∀n ∈ Z, f̂n
def.
=

1

2π

∫ 2π

0

f(x)e−ixndx.

This formula is equivalent to the computation of an inner-product f̂n = 〈f, en〉 for the inner-product 〈f, g〉 def.
=

1
2π

∫
T f(x)ḡ(x)dx. For this inner product, (en)n is orthonormal and is actually an Hilbert basis, meaning

that one reconstructs with the following converging series

f =
∑

n∈Z

〈f, en〉en (1.5)

15

which means ||f −∑N
n=−N 〈f, en〉en||L2(T) → 0 for N → +∞. The pointwise convergence of (1.5) at some

x ∈ T is ensured if for instance f is differentiable. The series is normally convergent (and hence uniform) if

for instance f if of class C2 on T sin ce in this case, f̂n = O(1/n2). If there is a step discontinuities, then
there is Gibbs oscillations preventing uniform convergence, but the series still converges to the half of the
left and right limit.

Poisson formula. The poisson formula connects the Fourier transform and the Fourier series to sampling
and periodization operators. For some function h(ω) defined on R (typically the goal is to apply this to

h = f̂), its periodization reads

hP (ω)
def.
=
∑

n

h(ω − 2πn). (1.6)

This formula makes sense if h ∈ L1(R), and in this case ||hP ||L1(T) 6 ||h||L1(R) (and there is equality for
positive functions). The Poisson formula, stated in Proposition 1 below, corresponds to proving that the
following diagram

f(x)
F−→ f̂(ω)

sampling ↓ ↓ periodization

(f(n))n
Fourier serie−→ ∑

n f(n)e−iωn

is actually commutative.

Proposition 1 (Poisson formula). Assume that f̂ has compact support and that |f(x)| 6 C(1 + |x|)−3 for
some C. Then one has

∀ω ∈ R,
∑

n

f(n)e−iωn = f̂P (ω). (1.7)

Proof. Since f̂ is compactly supported, f̂P is well defined (it involves only a finite sum) and since f has fast

decay, using (1.4), (f̂)P is C1. It is thus the sum of its Fourier series

(f̂)P (ω) =
∑

k

cke
ikω, (1.8)

where

ck =
1

2π

∫ 2π

0

(f̂)P (ω)e−ikωdω =
1

2π

∫ 2π

0

∑

n

f̂(ω − 2πn)e−ikωdω.

One has ∫ 2π

0

∑

n

|f̂(ω − 2πn)e−ikω|dω =

∫

R
|f̂ |

which is bounded because f̂ ∈ L1(R) (it has a compact support and is C1), so one can exchange the sum
and integral

ck =
∑

n

1

2π

∫ 2π

0

f̂(ω − 2πn)e−ikωdω =
1

2π

∫

R
f̂(ω)e−ikωdω = f(−k)

where we used the inverse Fourier transform formula (1.3), which is legit because f̂ ∈ L1(R).

Shannon theorem. Shannon sampling theorem state a sufficient condition ensuring that the sampling
operator f 7→ (f(ns))n is invertible for some sampling step size s > 0. It require that supp(f̂) ⊂ [−π/s, π/s],
which, thanks to formula (1.3), implies that f̂ is C∞ (in fact it is even analytic). This theorem was first
proved by Wittaker in 1915. It was re-proved and put in perspective in electrical engineering by Nyquist in
1928. It became famous after the paper of Shannon in 1949, which put forward its importance in numerical
communications. Figure 1.4 give some insight on how the proof works (left) and more importantly, on what
happens when the compact support hypothesis fails (in which case aliasing occurs, see also Figure 1.7).

16

Figure 1.4: Schematic view for the proof of Theorem 1.

Theorem 1. If |f(x)| 6 C(1 + |x|)−3 for some C and supp(f̂) ⊂ [−π/s, π/s], then one has

∀x ∈ R, f(x) =
∑

n

f(ns) sinc(x/s− n) where sinc(u) =
sin(πu)

πu
(1.9)

with uniform convergence.

Proof. The change of variable g
def.
= f(s·) results in ĝ = 1/sf̂(·/s), indeed, denoting z = sx

ĝ(ω) =

∫
f(sx)e−iωxdx =

1

s

∫
f(z)e−i(ω/s)zdz = f̂(ω/s)/s,

so that we can restrict our attention to s = 1. The compact support hypothesis implies f̂(ω) = 1[−π,π](ω)f̂P (ω).
Combining the inversion formula (1.3) with Poisson formula (1.8)

f(x) =
1

2π

∫ π

−π
f̂P (ω)eiωxdω =

1

2π

∫ π

−π

∑

n

f(n)eiω(x−n)dω.

Since f has fast decay,
∫ π
−π
∑
n |f(n)eiω(x−n)|dω =

∑
n |f(n)| < +∞, so that one can exchange summation

and integration and obtain

f(x) =
∑

n

f(n)
1

2π

∫ π

−π
eiω(x−n)dω =

∑

n

f(n) sinc(x− n).

Figure 1.5: sinc kernel

One issue with this reconstruction formula is that it uses a slowly decaying
and very oscillating sinc kernels. In practice, one rarely uses such a kernel for
interpolation, and one prefers smoother and more localized kernel. If supp(f̂) ⊂
[−π/s′, π/s′] with s′ > s (i.e. have a more compact spectrum), one can re-do
the proof of the theorem, and one gains some degree of freedom to design the
reconstruction kernel, which now can be chosen smoother in Fourier and hence
have exponential decay in time.

Spline interpolation are defined by considering ϕ0 = 1[−1/2,1/2] and ϕk =
ϕk−1?ϕ0 which is a piecewise polynomial of degree k and has bounded derivative
of order k (and is of class Ck−1) with compact support on [−(k+1)/2, (k+1)/2].

17

The reconstruction formula reads f ≈ f̃
def.
=
∑
n anϕ(· − n) where (an)n is computed from the (f(n))n by

solving a linear system (associated to the interpolation property f̃(n) = f(n)). It is only in the cases
k ∈ {0, 1} (piecewise constant and affine interpolations) that one has an = f(n). In practice, one typically
use the cubic spline interpolation, which corresponds to k = 3.

Associated code: test sampling.m

Figure 1.6: Cardinal splines as bases functions for interpolation.

This theorem also explains what happens if f̂ is not supported in [−π/s, π/s]. This leads to aliasing,
and high frequency outside this interval leads to low frequency artifacts often referred to as “aliasing”. If
the input signal is not bandlimitted, it is thus very important to pre-filter it (smooth it) before sampling to
avoid this phenomena (of course this kills the high frequencies, which are lost), see Figure 1.7.

Figure 1.7: Aliasing in the simple case of a sine wave (beware however that this function does not have
compact support).

Quantization. Once the signal have been sampled to obtain a discrete vector, in order to store it and
transmit it, it is necessary to quantize the value to some finite precision. Section 5.1 presents transform
coding, which is an efficient family of compression schemes which operate the quantization over some trans-
formed domain (which correspond to applying a linear transform, usually orthogonal, to the sampled values).
This is useful to enhance the performance of the source coding scheme. It is however common to operate
directly the quantization over the sampled value.

Considering for instance a step size s = 1/N , one samples (un
def.
= f(n/N))Nn=1 ∈ RN to obtain a finite

dimensional data vector of length N . Note that dealing with finite data corresponds to restricting the
function f to some compact domain (here [0, 1]) and is contradictory with Shannon sampling theorem, since
a function f cannot have a compact support in both space and frequency (so perfect reconstruction never
holds when using finite storage).

Figure 1.8:

Choosing a quantization step T , quantization vn = QT (un) ∈ Z rounds to
the nearest multiple of T , i.e.

v = QT (u) ⇔ v − 1

2
6 u/T < v +

1

2
,

18

see Fig. ??. De-quantization is needed to restore a signal, and the best re-

construction (in average or in worse case) is defined by setting DT (v)
def.
= Tv.

Quantizing and then de-quantizing introduce an error bounded by T/2, since
|DT (QT (u)) − u| 6 T/2. Up to machine precision, quantization is the
only source of error (often called “lossy compression”) in Shannon’s standard
pipeline.

Figure 1.9: Quantizing an image using a decaying T = 1/K where K ∈ {2, 3, 4, 16} is the number of graylevels
and the original image is normalized so that 0 6 f0 < 1.

1.3 Shannon Source Coding Theorem

Uniform coding. We consider an alphabet (s1, . . . , sK) of K symbols. For instance, if one samples and
quantize a bounded signal 0 6 f0 < 1 using a step size 1/K, then one can consider sk = k to be integer
symbols. For text, these symbols include the letter plus extra punctuation symbols and blank. It is of course
possible to code a sequence of such symbols using a uniform code (e.g. using the base 2 expansion) with
dlog2(K)e bit per symbols. For instance if K = 4 and the symbols are {0, 1, 2, 3}, then the code words are
(c0 = 00, c1 = 01, c2 = 10, c3 = 11).

This uniform coding strategy is however extremely inefficient if the symbols are not uniformly distributed
(i.e. if some symbols are more frequent than other, which is likely to be the case). We aim at designing
better codes.

Prefix coding. A code ck = c(sk) associate to each symbol sk a code word ck ∈ {0, 1}N with a varying
length |ck| ∈ N∗. A prefix code ck = c(sk) is such that no word ck is the beginning of another word c′k. This
is equivalent to be able to embed the (ck)k as leaves of a binary tree T , with the code being output of a
traversal from root to leaves (with a convention that going to a left (resp. right) child output a 0 (resp. a
1). We denote c = Leaves(T) such prefix property.

19

Décodage non-ambiguë : aucun mot du code n’est le début d’un autre.

Code préfixe.

Décodage et arbres binaires

00101000100100011011101011110101110101101Code reçu :

0																																				1

00														01															10															11

000			001			010			011			100			101			110			111

3 0

1

2

000			001			010			011			100			101			110			111

0																																				1

00														01															10															11

Décodage: parcours de l’arbre.
00101000100100011011101011110101110101101 ! décode 0

0! 001, 1! 01, 2! 1, 3! 000

! Se représente sous forme d’un arbre binaire.Décodage non-ambiguë : aucun mot du code n’est le début d’un autre.

Code préfixe.

Décodage et arbres binaires

00101000100100011011101011110101110101101Code reçu :

0																																				1

00														01															10															11

000			001			010			011			100			101			110			111

3 0

1

2

000			001			010			011			100			101			110			111

0																																				1

00														01															10															11

Décodage: parcours de l’arbre.
00101000100100011011101011110101110101101 ! décode 0

0! 001, 1! 01, 2! 1, 3! 000

! Se représente sous forme d’un arbre binaire.

Figure 1.10: Left: complete tree of all codes of length 3; right: example of prefix code.

This tree-based representation is useful to decode a binary stream by simply performing tree traversal.
One follows the tree, from top to bottom, and outputs a symbol each time a leaf is reached (and then re-start
at the top).

Probabilistic modeling. We aim at designing the most possible compact code ck. We assume at our
disposal some probability distribution over this alphabet, which is just an histogram p = (p1, . . . , pK) ∈ RK+
in the simplex, i.e.

∑
k pk = 1. In practice, this probability is usually the empirical probability of appearance

of the symbols xk in the data to be coded.

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

0 11/e
0

pi log2(1/pi)

pi

Figure 1.11:

The entropy of such an histogram is

H(p)
def.
= −

∑

k

pk log2(pk)

with the convention 0 log2(0) = 0.

Denoting h(u) = −u log2(u), h′(u) ∝ − log(u) − 1, h′′(u) ∝ −1/u < 0 so
that H is strictly concave. The definition of the entropy extends to continuous
density f(x) for x on some measure space with reference measure dx (e.g.

Lebesgue on Rd) by setting H(f)
def.
= −

∫
f(x) log(f(x))dx.

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0! 001, 1! 01, 2! 1, 3! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0! 001, 1! 01, 2! 1, 3! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0! 001, 1! 01, 2! 1, 3! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

0 1 2 3
0

0.1

0.2

0.3

0.4

p0 p2 p3p1

2

25

2

25

9

25

12

25

H(p) = 0 H(p) = log2(2) = 1 H(p) = 1.62

Figure 1.12: Three examples of probability distributions with corresponding entropies.

Lemma 1. One has

0 = H(δi) 6 H(p) 6 H(1/K) = log2(K)

where δi is the Dirac histogram distribution at i.

Proof. First one notes that −u log2(u) > 0 for u ∈ [0, 1] (see figure above), so that H > 0. Then we show
the following inequality, for any histogram q

H(p) 6 −
∑

i

pi log(qi) ⇔
∑

i

pi log(qi/pi) > 0.

20

Figure 1.13: Linked extrema for the entropy.

This follows from log(u) 6 u− 1, since

∑

i

pi log(qi/pi) 6
∑

i

pi(qi/pi − 1) =
∑

i

qi −
∑

i

pi = 0.

Applying this inequality to qi = 1/K gives

H(p) 6 −
∑

i

pi log(1/K) = log(1/K).

Shannon theorem. Assuming that (pk)k is the empirical probability of appearance of the symbols xk in
the data to be coded, the average symbol length associated to some code c is

L(c)
def.
=
∑

k

pk|ck|.

The goal is to design the best possible c so that L(c) is as small as possible. Shannon theorem of entropic
coding, proved below, give both lower and upper bound for this question.

Theorem 2. (i) If c = Leaves(T) for some tree T , then

L(c) > H(p).

(ii) Conversely, there exists a code c with c = Leaves(T) such that

L(c) 6 H(p) + 1.

Before proving this theorem, we prove Kraft inequality, which describes the set of prefix codes using an
inequality.

Lemma 2 (Kraft inequality). (i) For a code c, if there exists a tree T such that c = Leaves(T) then

∑

k

2−|ck| 6 1. (1.10)

(ii) Conversely, if (`k)k are such that ∑

k

2−`k 6 1 (1.11)

then there exists a code c = Leaves(T) such that |ck| = `k.

21

Figure 1.14: Left: full binary tree obtained by completing the tree associated to the code (c1 = 0, c2 =
10, c3 = 110, c4 = 111). Right: packing sub-trees associated to code length to form the left part of the full
tree.

Proof. ⇒ We suppose c = Leaves(T). We denote m = maxk |ck| and consider the full binary tree. Bellow
each ck, one has a sub-tree of height m− |ck|, see Figure 2.1, left. This sub-tree has 2m−|ck| leaves. Since all
these sub-trees do not overlap, the total number of leaf do not exceed the total number of leaves 2m of the
full binary tree, hence ∑

k

2m−|ck| 6 2m,

hence (1.10).
⇐ Conversely, we assume (1.10) holds. Without loss of generality, we assume that |c1| > . . . > |cK |. We

start by putting a sub-tree of height 2m−|c1|. Since the second tree is smaller, one can put it immediately
aside, and continue this way, see Figure 2.1, right. Since

∑
k 2m−|ck| 6 2m, this ensure that we can stack

side-by-side all these sub-tree, and this defines a proper sub-tree of the full binary tree.

Shannon theorem. First, we consider the following optimization problem

min
`=(`k)k

{
f(`)

def.
=
∑

k

`kpk ; g(`)
def.
=
∑

k

2−`k 6 1

}
. (1.12)

We fist show that at an optimal `?, the constraint is saturated, i.g. g(`?) = 1. Indeed, if g(`?) = 2−u < 1,

with u > 0, we define `′k
def.
= `?k−u, which satisfies g(`′) = 1 and also f(`′) =

∑
k(`k−u)pk < f(`?), which is a

contradiction. So we can restrict in (1.12) the constraint to g(`) = 1 and apply the linked extrema theorem,
which shows that necessarily, there exists λ ∈ R with ∇f(`?) = ∇g(`?), i.e. (pk)k = −λ ln(2)(2−`

?
k)k. Since

1 =
∑

k

pk = −λ ln(2)
∑

k

2−`k = −λ ln(2)

we deduce that `?k = − log(pk).
(i) If c = Leave(T), the by Kraft inequality (1.10), necessarily `k = |ck| satisfy the constraints of (1.12),

and thus H(p) = f(`?) 6 f(`) = L(`).

(ii) We define `k
def.
= d− log2(pk)e ∈ N∗. Then

∑
k 2−`k 6

∑
k 2log2(pk) = 1, so that these lengths

satisfy (1.11). Thanks to Proposition 2 (ii), there thus exists a prefix code c with |ck| = d− log2(pk)e.
Furthermore

L(c) =
∑

k

pkd− log2(pk)e 6
∑

k

pk(− log2(pk) + 1) = H(p) + 1.

22

Note that this proof is constructing, i.e. it gives an algorithm that construct an almost optimal c, and
this code is often called the Shannon-Fano code. It is usually a good code, although it is not necessarily the
optimal code with the smallest L(c). Such an optimal code can easily be computed in almost linear time
(only sorting of the probability is needed, so it is K(log(K))) by Huffman’s dynamic programming algorithm
(invented in 1952). The proof of correctness of this algorithm is however a bit tedious. Figure 1.15 shows
an example of application of this algorithm.

Associated code: coding/test text.m

In practice, such an entropic coding, although optimal, is not very efficient when one of the symbol has
a large probability pk. This is because then 2−pk � 1 but one cannot allocate a fractional number of bit.
This is why L(c) can be as large as H(p) + 1. A simple workaround is to artificially increase the size of
the alphabet from K to Kr by grouping together sets of r consecutive symbols, and thus reducing the gap
to H(p) + 1/r. Constructing the code and coding however becomes very slow for large r. The standard
way to achieve this without explicitly doing the grouping is by using arithmetic coding, invented in 1976,
which using interval arithmetic to allocate fractional number of bits and leveraging the fact that one usually
code large sequence, thus approaching to arbitrary precision Shannon bound H(p) as the length of the data
increases.

Figure 1.15: Huffman coding algorithm in action.

Note that while we give some statistical and probabilistic interpretation of entropy (measure of uncer-
tainty) and of Shannon theorem, this theory is fully deterministic and give a bound for the actual length
NL(c) of coding some sequence of length N if the probability p are the empirical probability of the sequence.

If one choose a different probability q and use it to code the sequence, one necessarily obtain a worse
average coding length, and this is reflected by the positivity of the so-called relative entropy (beware that it
is a convex function while the entropy is concave), which is often called the Kulback-Leibler divergence

KL(p|q) = −
∑

k

pk log qk −H(p) =
∑

k

pk log
pk
qk

> 0.

This KL divergence is similar to a distance in the sense that KL(p|q) = 0 if and only if p = q (note however
that KL is not symmetric and does not satisfies the triangular inequality). It also has the remarkable property
that it is jointly convex in (p, q). It is of paramount importance to compare probability distributions and
measures, and form the basis of the fields of information theory and information geometry.

Doing better. One can wonder if it is possible to go below the entropy bound. By the virtue of Shannon
theorem, it is not possible if only can only code in sequential order the symbols themselves. From a statistical
perspective, it is as if the symbols where considered to be independent. If there is some redundancy in the
sequence of symbol (for instance if they are discretization of a smooth function, so that to consecutive
symbols are likely to be equal), it is possible to re-transform (in a bijective way) the sequence to make them
“more independent”. A simple illustration of this idea is given in Figure 1.16, where one computes successive
difference of a 1D sequence of symbols (beware to also retain the initial symbol to be able to do the decoding.

Another, more systematic way to leverage such temporal redundancy is by performing run-length-coding,
which operate by grouping together sequence of similar symbols and thus coding first a symbol and then
the length of the associated group (which is coded entropically). If the sequence is generated by a Markov
chain, this method can be shown to asymptotically reach the Shannon bound where now the entropy is the

23

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1

+ ++

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� ��� �

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1

0 1 2 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 0 -1 0 1 -1

+

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

Comment faire mieux?

! Les pixels ne sont pas indépendants les uns des autres !

Retransformation des symboles , diminuer l’entropie.

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

bijectivité

0

01

010

1

00

011

0100 010

0101 01011

010100 010101

0

�1

�2

�3
3

2

1

Long. moy. = 1.16 bits.Long. moy. = 1.67 bits.

Image 256⇥ 256 pixels:

16.3 ko 13.7 ko 9.5 ko

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3

H(p) = 1.54

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

H(p) = 0.61

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

H(p) ≈ 1.54, L(c) ≈ 1.67 H(p) ≈ 0.61, L(c) ≈ 1.16 Coding Tree

Figure 1.16: Top: retransformation by successive differences. Bottom: comparison of histograms of pixel
values and differences, and a code tree for these differences.

entropy associated to the distribution of the Markov chain on infinite sequences (which can be computed as
the limit of the entropy for finite sequences).

24

Chapter 2

Fourier Transforms

The main references for this chapter is [21]. The Fourier transforms offers a perfect blend of analysis
(solution of PDEs, approximation of functions), algebra (characters of groups, representation theory) and
computer science (the FFT). It is the basics of signal processing because it allows to compute efficiently
and study theoretically convolution operator, which are the shift-invariant operators. This chapter offers a
glimpse of all these different facets.

2.1 Hilbert spaces and Fourier Transforms

2.1.1 Hilbertian bases.

A large class of method in data sciences (including for instance most signal processing tasks, but also data
pre-processing for machine learning) operate by first projecting the input data on some basis. A particularly
simple instance of this is when the basis is orthogonal, since in this case one has a simple reconstruction
formula and conservation of energy, which is crucial to do a theoretical analysis. We explain this in a general
Hilbert space, which can be for instance H = L2([0, 1]d) when dealing with continuous signal, or H = RN

for discrete signal.
An (complex) Hilbert space (H, 〈·, ·〉) is complete, where 〈·, ·〉 is an hermitian inner product (i.e. 〈f, g〉 is

the conjugate of 〈g, f〉). If it is separable, it can be equipped with an Hilbertian orthogonal basis (ϕn)n∈N,
which means that one can expand any f ∈ H as

f =
∑

n

〈f, ϕn〉ϕn

where the convergence is in the sense of ||f ||2 def.
= 〈f, f〉, i.e. ||f −∑N

n=0〈f, ϕn〉ϕn|| → 0 as N → +∞. One
also have the conservation of energy

||f ||2 =
∑

n

〈f, ϕn〉2.

A way to construct such an ortho-basis is using Gram-Schmidt orthogonalization procedure. From some
family (ϕ̄n)n, one defines ϕ0 = ϕ̄0/||ϕ̄0||, ϕn = ϕ̃n/||ϕ̃n|| where ϕ̃n is computed as ϕ̃n = ϕ̄n−

∑
i<n aiϕi, and

by orthogonality ai = 〈ϕ̄n, ϕi〉.
On L2([−1, 1]) equipped with the usual inner product, orthogonalization of monomials defines the Leg-

endre polynomials, so that

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) =
1

2
(3x2 − 1), etc.

On L2(R) equipped with a Gaussian measure ex
2

dx, this leads to functions of the form Pn(x)e−x
2

where Pn
are Hermite polynomials, P0(x) = 1, P1(x) = x, P2(x) = x2 − 1. Intuitively, orthogonality forces ϕn to have
n “oscillations”, e.g. orthogonal polynomials have exactly n zeros.

25

Another example is provided by the Shannon interpolation theorem, which states that (sinc(x− n))n is

an orthogonal basis of
{
f ; supp(f̂) ⊂ [−π, π]

}
and the reconstruction formula is f =

∑
n f(n) sinc(x − n)

so that fn = 〈f, sinc(x − n)〉. The convergence is in L2 but it is actually also pointwise as shown in the
proof of the previous chapter.

Another way (that we do not detail here) to construct orthogonal bases is to consider the eigenvectors of
some symmetric operator. We will show below that Fourier bases can be obtained this way, by considering
translation-invariant operators (convolutions).

2.1.2 Fourier basis on R/2πZ.

There is a flurry of different Fourier basis depending on the space on which it is defined. To get an
orthogonal basis, it is important to consider compact spaces (otherwise one obtain a notion of Fourier
transform, which is not a decomposition on a basis).

On L2(T) where T = R/2πZ, equipped with 〈f, g〉 def.
= 1

2π

∫
T f(x)ḡ(x)dx, one can use the Fourier basis

ϕn(x)
def.
= einx for n ∈ Z. (2.1)

One thus has

f =
∑

n

f̂ne
in· where f̂n

def.
=

1

2π

∫ 2π

0

f(x)e−inxdx, (2.2)

in L2(T) sense. Pointwise convergence is delicate, see Section 1.2.
Figure 2.1, left, shows examples of the real part of Fourier atoms.

Figure 2.1: Left: 1D Fourier (real part), right: wavelet bases.

We recall that for f ∈ L1(R), its Fourier transform is defined as

∀ω ∈ R, f̂(ω)
def.
=

∫

R
f(x)e−ixωdx.

and this is extended to L2(R) by density.
The connexion between the Fourier transform on R and the Fourier coefficients on T is given by the

following diagram

f(x)
F−→ f̂(ω)

sampling ↓ ↓ periodization

(f(n))n
Fourier serie−→ ∑

n f(n)e−iωn

.

26

Its commutativity sates ∑

n

f(n)e−iωn =
∑

n

f̂(ω − 2πn) (2.3)

and this is in fact the celebrated Poisson formula (Proposition 1).

Discrete

Infinite Periodic

f [n], n ∈ Z f [n], 0 ! n < N

Periodization

Continuousf0(t), t ∈ R f0(t), t ∈ [0, 1]

f0(t) !→
∑

n f0(t + n)

S
am

p
li
n
g

f̂0(ω) !→ {f̂0(k)}k

Discrete

Infinite

Periodic

Continuous

Sampling

f̂ [k], 0 ! k < N

f̂0(ω),ω ∈ R f̂0[k], k ∈ Z F
ou

ri
er

tr
an

sf
or

m

Is
om

et
ry

f
!→

f̂

f̂(ω),ω ∈ [0, 2π]

P
er

io
d
iz

at
io

n

f̂
(ω

)
=
∑ k

f̂ 0
(N

(ω
+

2k
π
))

f
[n

]
=

f 0
(n

/N
)

Figure 2.2: The four different settings for Fourier analysis, and the sampling-periodization relationship.

2.2 Convolution on R and T

2.2.1 Convolution

Figure 2.3: Convolution on
R.

On X = R or T, one defines

f ? g(x) =

∫

X
f(t)g(x− t)dt. (2.4)

Young’s inequality shows that this quantity is well defined if (f, g) ∈ Lp(X) ×
Lq(X)

1

p
+

1

q
= 1 +

1

r
=⇒ f ? g ∈ Lr(X) and ||f ? g||Lr(X) 6 ||f ||Lp(X)||g||Lq(X).

(2.5)
This shows that if f ∈ L1(X), then one has the map g ∈ Lp(X) 7→ f ?g ∈ Lp(X)
is a continuous map on Lp(X). Furthermore, when r = ∞, f ? g ∈ C0(X) is a
continuous function (which shows some regularizing effect). Note that for X = T, p < q =⇒ Lq(T) ⊂
Lp(T), so that L∞(X) is the smallest space.

Convolution is mostly used in order to regularize functions. For instance, if f ∈ L1(X) and g ∈ C1(X)
is bounded, then f ? g is differentiable and (f ? g)′ = f ? g′. This is used to produce smooth approximate

27

x− x+x 1
2

1
2

f

f

∗1[− 1
2 ,

1
2]

Figure 2.4: Signal filtering with a box filter (running average).

identity (ρε = 1
ερ(·/ε))ε with convergence f ? ρε → f in Lp(X) for 1 6 p < +∞ of smooth approximations

(and convergence in L∞(X) if f is uniformly continuous). This is also used for denoising applications in
signal and image processing.

Figure 2.6: Commutative
diagram of convolution-
Fourier.

For (f, g) ∈ L1(X)2 (so on X = T, also in any Lp(X)), one has

F(f ? g) = f̂ � ĝ (2.6)

which means that F is a morphism of algebra. For instance if X = R, its range
is included in the algebra of continuous functions with vanishing limits in ±∞.

As shown in Figure 2.7
Note also that the convolution is used extensively in probability and statis-

tics, because if we denote fX the probability density (with respect to Lebesgue
or any measure) of some random vector X, then if X and Y are independent
random variable, then fX+Y = fX ? fY .

Associated code: fourier/test denoising.m and fourier/test fft2.m

2.2.2 Translation Invariant Operators

Figure 2.8: Commutative
diagram for translation in-
variance.

Translation invariant operators (which commutes with translation) are fun-
damental because in most situations, input (signal, image, etc) should be pro-
cessed without spatial preference. The following propositions shows that any
translation invariant1 (i.e. which commutes with translations) operator is ac-
tually a “convolution” against a distribution with bounded Fourier transform.
The proof and conclusion (regularity of the convolution kernel) vary depending
on the topology on the input and output spaces. We first study the case of
convolution mapping to continuous functions.

Proposition 2. We define Tτf = f(· − τ). A bounded linear operator H :
(L2(X), || · ||2) → (C0(X), || · ||∞) is such that for all τ , H ◦ Tτ = Tτ ◦H if and
only if

∀ f ∈ L2(T), H(f) = f ? g

1One should rather actually say “translation equivariant”.

28

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 2.5: Filtering an irregular signal with a Gaussian filter of increasing filter size σ.

Figure 2.7: Cardinal splines are defined by successive convolutions;

with g ∈ L2(X).

The heuristic proof using distributions is that f(x) = (f ? δ)(x) =
∫
f(t)δ(x− t)dt and thus by linearity

Hf = H(

∫
f(t)δ(·−t)dt) =

∫
f(t)H(δ(·−t))dt =

∫
f(t)H(Ttδ)dt

∫
f(t)Tt(H(δ))dt

∫
f(t)H(δ)(·−t)dt = f?H(δ).

Proof. Thanks to (2.5) (and the remark in the case r = ∞), T : f 7→ f ? g with g ∈ L2(X) is indeed a
continuous operator from L2(X) to C0(X). Furthermore

(H ◦ Tτ)(f) =

∫

X
f((· − τ)− y)g(y)dτ = (f ? g)(· − τ) = Tτ (Hf),

so that such an H is translation-invariant.
Conversely, we define ` : f 7→ H(f)(0) ∈ R, which is legit since H(f) ∈ C0(X). Since H is continuous,

there exists C such that ||Hf ||∞ 6 C||f ||2, and hence |`(f)| 6 C||f ||2, so that f is a continuous linear form
on the Hilbert space L2(X). Hence, according to Fréchet-Riesz theorem, there exists h ∈ L2(X) such that
`(f) = 〈f, h〉. Hence, ∀x ∈ X,

H(f)(x) = T−x(Hf)(0) = H(T−xf)(0) = `(T−xf) = 〈T−xf, h〉 =

∫

X
f(y + x)h(y)dy = f ? h̄(x).

where g
def.
= h̄ = h(−·) ∈ L2(X).

29

We now study, on T, the case of convolution which can output non-continuous functions. In this case,
the kernel can be a “distribution”, so the convolution is defined over the Fourier domain.

Proposition 3. A bounded linear operator H : L2(T) → L2(T) is such that for all τ , H ◦ Tτ = Tτ ◦ H if
and only if

∀ f ∈ L2(T), F(H(f)) = f̂ � c

where c ∈ `∞(Z) (a bounded sequence).

Proof. We denote ϕn
def.
= ein·. One has

H(ϕn) = einτH(Tτ (ϕn)) = einτTτ (H(ϕn)).

Thus, for all n,

〈H(ϕn), ϕm〉 = einτ 〈Tτ ◦H(ϕn), ϕm〉 = einτ 〈H(ϕn), T−τ (ϕm)〉 = ei(n−m)τ 〈H(ϕn), ϕm〉

So for n 6= m, 〈H(ϕn), ϕm〉 = 0, and we define cn
def.
= 〈H(ϕn), ϕn〉. Since H is continuous, ||Hf ||L2(T) 6

C||f ||L2(T) for some constant C, and thus by Cauchy-Schwartz

|cn| = |〈H(ϕn), ϕn〉| 6 ||H(ϕn)||||ϕn|| 6 C

because ||ϕn|| = 1, so that c ∈ `∞(Z). By continuity, recalling that by definition f̂n
def.
= 〈f, ϕn〉,

H(f) = lim
N
H(

N∑

n=−N
f̂nϕn) = lim

N

N∑

n=−N
f̂nH(ϕn) = lim

N

N∑

n=−N
cnf̂nϕn =

∑

n∈Z

cnf̂nϕn

so that in particular one has the desired result.

This theorem thus states that translation invariant operators are those which are “diagonal” in the Fourier
ortho-basis.

2.2.3 Revisiting Poisson formula using distributions.

Informally, the Fourier series ∑

n

f(n)e−iωn

can be thought as the Fourier transform F(Π1 � f) of the discrete distribution

Π1 � f =
∑

n

f(n)δn where Πs =
∑

n

δsn

for s ∈ R, where δa is the Dirac mass at location a ∈ R, i.e. the distribution such that
∫
fd(da) = f(a) for

any continuous f . Indeed, one can multiply a distribution by a continuous function, and the definition of
the Fourier transform of a distribution µ is a distributions F(µ) such that that

∀ g ∈ S(R),

∫

R
g(x)dF(µ) =

∫

R
F∗(g)dµ, where F∗(g)

def.
=

∫

R
g(x)eix·dx,

where S(R) are smooth and rapidly decaying (Schwartz class) functions.

30

Figure 2.9: Sine wave be-
ing summed in the Poisson
formula.

The Poisson formula (2.3) can thus be interpreted as

F(Π1 � f) =
∑

n

f̂(· − 2πn) =

∫

R
f̂(· − ω)dΠ2π(ω) = f̂ ?Π2π

Since F−1 = 1
2πS ◦ F where S(f) = f(−·), one has, applying this operator on

both sides

Π1�f =
1

2π
S◦F(f̂?Π2π) = S(

1

2π
F(f̂)�Π̂2π) = S(

1

2π
F(f̂))�S(Π̂2π) = Π̂2π�f.

This can be interpreted as the relation

Π̂2π = Π1 =⇒ Π̂1 = 2πΠ2π.

To intuitively understand this relation, one can compute a finite Fourier series

N∑

n=−N
e−inω =

sin((N + 1/2)x)

sin(x/2)

which is a smooth function which grows unbounded with N → +∞ as N → +∞.

2.3 Finite Fourier Transform and Convolution

2.3.1 Discrete Ortho-bases

Discrete signals are finite dimensional vector f ∈ CN where N is the number of samples and where each
fn is the value of the signal at a 1D or 2D location. For a 2-D images f ∈ CN ' CN0×N0 , N = N0 × N0,
where N0 is the number of pixels along each direction.

Discrete signals and images are processed using a discrete inner product that mimics the continuous L2

inner product

〈f, g〉 =

N−1∑

n=0

fnḡn.

One thus defines a distance between discretized vectors as

||f − g||2 =

N−1∑

n=0

|fn − gn|2.

Exactly as in the continuous case, a discrete orthogonal basis {ψm}06m<N of CN , satisfies

〈ψm, ψm′〉 = δm−m′ . (2.7)

The decomposition of a signal in such an ortho-basis is written

f =

N−1∑

m=0

〈f, ψm〉ψm.

It satisfies a conservation of energy

||f ||2 =

N−1∑

n=0

|fn|2 =

N−1∑

m=0

|〈f, ψm〉|2

Computing the set of all inner product {〈f, ψm〉}06m<N is done in a brute force way in O(N2) operations.
This is not feasible for large datasets where N is of the order of millions. When designing an ortho-
basis, one should keep this limitation in mind and enforce some structure in the basis elements so that the
decomposition can be computed with fast algorithm. This is the case for the Fourier and wavelet bases, that
enjoy respectively O(N log(N)) and O(N) algorithms.

31

2.3.2 Discrete Fourier transform

We denote f = (fn)N−1
n=0 ∈ RN , but we insists that such vector should really be understood as being

indexed by n ∈ Z/NZ, which is a finite commutative group for the addition. This corresponds to using
periodic boundary conditions.

The discrete Fourier transform is defined as

∀ k = 0, . . . , N − 1, f̂k
def.
=

N−1∑

n=0

fne
− 2iπ

N kn = 〈f, ϕk〉 where ϕk
def.
= (e

2iπ
N kn)N−1

n=0 ∈ CN (2.8)

where the canonical inner product on CN is 〈u, v〉 =
∑N
n=1 unv̄n for (u, v) ∈ (CN)2. This definition can

intuitively be motivated by sampling the Fourier basis x 7→ eikx on R/2πZ at equi-spaced points (2π
N n)N−1

n=0 .
The following proposition shows that this corresponds to a decomposition in an ortho-basis.

Proposition 4. One has

〈ϕk, ϕ`〉 =

{
N if k = `,
0 otherwise.

In particular, this implies

∀n = 0, . . . , N − 1, fn =
1

N

∑

k

f̂ke
2iπ
N kn. (2.9)

Proof. One has, if k 6= `

〈ϕk, ϕ`〉 =
∑

n

e
2iπ
N (k−`)n =

1− e 2iπ
N (k−`)N

1− e 2iπ
N (k−`) = 0

which is the sum of a geometric serie (equivalently, sum of equi-spaced points on a circle). The inversion
formula is simply f =

∑
k〈f, ϕk〉 ϕk

||ϕk||2 .

2.3.3 Fast Fourier transform

Assuming N = 2N ′, one has

f̂2k =

N ′−1∑

n=0

(fn + fn+N/2)e−
2iπ
N′ kn

f̂2k+1 =

N ′−1∑

n=0

e−
2iπ
N′ n(fn − fn+N/2)e−

2iπ
N′ kn.

For the second line, we used the computation

e−
2iπ
N (2k+1)(n+N/2) = e−

2iπ
N (2kn+kN+n+N/2) = −e− 2iπ

N′ ne−
2iπ
N′ kn.

Denoting FN (f) = f̂ the discrete Fourier transform on RN , and introducing the notation fe = (fn +

fn+N/2)n ∈ RN
′
, fo = (fn − fn+N/2)n ∈ RN

′
and αN = (e−

2iπ
N′ n)n ∈ RN

′
, one has the following recursion

formula
FN (f) = IN (FN/2(fe),FN/2(fo � αN))

where IN is the “interleaving” operator, defined by IN (a, b)
def.
= (a1, b1, a2, b2, . . . , aN ′ , bN ′). There iterations

define the so-called Fast Fourier Transform algorithm, which works here when N is a power of 2. These
iterations can be extended to arbitrary number N , but a workaround is to simply pad with 0 (or use more
complicated extensions) to have vector with size that are power of 2.

This algorithm can also be interpreted as a factorization of the Fourier matrix into O(log(N)) product
of matrices.

32

Figure 2.10: Diagram of one step of the FFT.

Denoting C(N) the numerical complexity (number of elementary operations) associated to the compu-

tation of f̂ , one thus has
C(N) = 2C(N/2) +NK (2.10)

where KN is the complexity of N complex additions and N/2 multiplications. Making the change of variable

`
def.
= log2(N) and T (`)

def.
=

C(N)

N

i.e. C(N) = 2`T (`), the relation (2.10) becomes

2`T (`) = 2× 2`−1T (`− 1) + 2`K =⇒ T (`) = T (`− 1) +K =⇒ T (`) = T (0) +K`

and using the fact that T (0) = C(1)/1 = 0, one obtains

C(N) = KN log2(N).

This complexity should be contrasted with the complexity O(N2) of directly computing the N coeffi-
cients (2.8), each involving a sum of size N .

2.3.4 Finite convolution

For (f, g) ∈ (RN)2, one defines f ? g ∈ RN as

∀n = 0, . . . , N − 1, (f ? g)n
def.
=

N−1∑

k=0

fkgn−k =
∑

k+`=n

fkg` (2.11)

where one should be careful that here + and − should be understood modulo N (vectors should be seen as
being defined on the group Z/NZ, or equivalently, one uses periodic boundary conditions). This defines an

commutative algebra structure (RN ,+, ?), with neutral element the “Dirac” δ0
def.
= (1, 0, . . . , 0)> ∈ RN . The

following proposition shows that F : f 7→ f̂ is an algebra bijective isometry (up to a scaling by
√
N of the

norm) mapping to (RN ,+,�) with neutral element 1N = (1, . . . , 1) ∈ RN .

Proposition 5. One has F(f ? g) = f̂ � ĝ.

Proof. We denote T : g 7→ f ? g. One has

(Tϕ`)n =
∑

k

fke
2iπ
N `(n−k) = e

2iπ
N `nf̂`.

This shows that (ϕ`)` are the N eigenvectors of T with associated eigenvalues f̂`. So T is diagonalizable in

this basis. Denoting F = (e−
2iπ
N kn)k,n the matrix of the Fourier transform, the Fourier inversion formula (2.9)

33

reads F−1 = 1
N F

∗ where F ∗ = F̄> is the adjoint matrix (trans-conjugate). The diagonalization of T now
reads

T = F−1 diag(f̂)F = =⇒ F(Tg) = diag(f̂)Fg =⇒ F(f ? g) = diag(f̂)ĝ.

This proposition shows that one can compute in O(N log(N)) operation via the formula

f ? g = F−1(f̂ � ĝ).

This is very advantageous with respect to the naive implementation of formula (2.11), in the case where
f and g have large support. In case where |Supp(g)| = P is small, then direct implementation is O(PN)
which might be advantageous. An example is g = [1, 1, 0, . . . , 0, 1]/3, the moving average, where

(f ? g)n =
fn−1 + fn + fn+1

3

needs 3N operations.
WARNING: this is wrong, one needs also to carie reminders in the multiplication. An example of

application of the FFT is the multiplication of large polynomial, and thus of large integers (viewing the
expansion in a certain basis as a polynomial). Indeed

(

A∑

i=0

aiXi)(

B∑

j=0

biX
j) =

A+B∑

k=0

(
∑

i+j=k

aibj)X
k

One can write
∑
i+j=k aibj = (ā ? b̄)k when one defines ā, b̄ ∈ RA+B by zero padding.

2.4 Discretisation Issues

Beside computing convolutions, another major application of the FFT is to approximate the Fourier
transform and its inverse, thus leading to a computationally efficient spectral interpolation method.

2.4.1 Fourier approximation via spatial zero padding.

It is possible to view the discrete finite Fourier transform (2.8) as a first order approximation to compute
Fourier coefficients, or rather actually samples from the Fourier transform (1.2). Supposing that f is a
smooth enough function is supported on [0, 1], we consider the discrete Fourier transform of the vector

fQ
def.
= (f(n/N))Q−1

n=0 ∈ RQ where Q > N induced a padding by 0 (since f(n/N) = 0 for n > N)

∀ k ∈ J−Q
2
,
Q

2
K,

1

N
f̂Qk =

1

N

N−1∑

n=0

f
(n
N

)
e−

2iπ
Q nk ≈

∫ 1

0

f(x)e−
2kiπ
T xdx = f̂

(
2kπ

T

)
where T

def.
=

Q

N
.

The approximation is first order accurate, i.e. O(1/N) for a C1 function f .

2.4.2 Fourier interpolation via spectral zero padding.

One can reverse the roles of space and frequency in the previous construction. If one has at its disposal
N uniform discrete samples fN = (fNn)N−1

n=0 , one can compute its discrete Fourier transform F(fN) = f̂N

(in O(N log(N)) operations with the FFT),

f̂Nk
def.
=

N−1∑

n=0

fNn e
− 2iπ

N nk,

34

Figure 2.11: Fourier transform approximation by zero-padding in the spatial domain.

and then zero-pad it to obtain a vector of length Q. For simplicity, we assume N = 2N ′ + 1 is odd,
and this computation can be also done (but is more involved) with even size. Indexing the frequencies as
−N ′ 6 k 6 N ′ The padding vector is of the form,

f̃Q
def.
= (0, . . . , 0, f̂N , 0, . . . , 0) ∈ RQ

WARNING: there is most likely an error in the following derivation, should be rewritten. One can
then compute the (with a normalization constant Q/N) inverse discrete Fourier transform of size Q (in
O(Q log(Q)) operations with the FFT) to obtain

Q

N
F−1(f̃Q)` =

Q

N
× 1

N

N ′∑

k=−N ′
f̂Nk e

2iπ
Q `k =

1

N

N ′∑

k=−N ′

N−1∑

n=0

fNn e
2iπ
N nke

2iπ
Q `k

=

N−1∑

n=0

fNn
1

N

N ′∑

k=−N ′
e2iπ(− n

N + `
Q)k =

N−1∑

n=0

fNn

sin
[
πN

(
`
Q − n

N

)]

N sin
[
π
(
`
Q − n

N

)]

=

N−1∑

n=0

fNn sincN

(
`

T
− n

)
where T

def.
=

Q

N
and sincN (u)

def.
=

sin(πu)

N sin(πu/N)
.

Here we use the following summation rule for geometric series for ρ = eiω, a = −b, ω = 2π
(
− n
N + `

Q

)
,

b∑

i=a

ρi =
ρa−

1
2 − ρb+ 1

2

ρ−
1
2 − ρ 1

2

=
sin((b+ 1

2)ω)

sin(ω/2)
.

This zero-padding method leads to a discrete version of the Shannon interpolation formula (1.9), which
allows to comput the interpolation on a grid of size Q are cost O(Q log(Q)). Increasing N increases the
accuracy of the formula, since sincN → sinc as N → +∞.

2.5 Fourier in Multiple Dimensions

The Fourier transform is extended from 1-D to arbitrary finite dimension d > 1 by tensor product.

2.5.1 On Continuous Domains

Figure 2.13: 2-D sine wave.

On Rd. The crux of the power of Fourier transform in arbitrary dimension is
that a product of elementary 1-D sine waves is still a sine wave

d∏

`=1

eix`ω` = ei〈x, ω〉

35

Figure 2.12: Interpolation by zero-padding in the frequency domain.

moving orthogonally to the wave vector ω = (ω`)
d
`=1 ∈ Rd. Here 〈x, ω〉 =∑

` x`ω` is the canonical inner product on Rd.
The definition of the Fourier transform and its inverse are

∀ω ∈ Rd, f̂(ω)
def.
=

∫

Rd
f(x)e−i〈x, ω〉dx,

∀x ∈ Rd, f(x) =
1

(2π)d

∫

Rd
f(x)ei〈x, ω〉dω,

under hypotheses of integrability matching exactly those in 1-D.

Figure 2.14: 2D Fourier orthogonal bases.

On (R/2πZ)d. Given an Hilbertian basis (ϕn1
)n1∈N of L2(X), one construct an Hilbertian basis of L2(Xd)

by tensorization

∀n = (n1, . . . , nd) ∈ Nd, ∀x ∈ Xd, ϕn(x) = ϕn1(x1) . . . ϕnd(xd). (2.12)

Orthogonality is simple to check, and one can also prove convergence for sum of the form
∑
||n||∞6N 〈f, ϕn〉ϕn →

f in L2(Xd).

Figure 2.15: The 2-
dimensional torus
T2 = (R/2πZ)2

For the multi-dimensional torus (R/2πZ)d, using the Fourier basis (2.1),
this leads to consider the basis

∀n ∈ Rd, ϕn(x) = ei〈x, n〉

which is indeed an Hilbertian orthonormal basis for the inner product 〈f, g〉 def.
=

1
(2π)d

∫
Td f(x)ḡ(x)dx. This defines the Fourier transform and the reconstruction

36

formula on L2(Td)

f̂n
def.
=

1

(2π)d

∫

Td
f(x)e−i〈x, n〉dx and f =

∑

n∈Zd

f̂ne
i〈x, n〉.

2.5.2 On Discrete Domains

Figure 2.16: Discrete 2-D
torus.

Discrete Fourier Transform. On d-dimensional discrete domain of the
form

n = (n1, . . . , nd) ∈ Yd
def.
= J1, N1K× . . .× J1, NdK

(we denote Ja, bK def.
= {i ∈ Z ; a 6 i 6 b}) of N = N1 . . . Nd points, with periodic

boundary conditions, one defines an orthogonal basis (ϕk)k by the same tensor
product formula as (2.12) but using the 1-D discrete Fourier basis (2.8)

∀ (k, n) ∈ Y2
d, ϕk(n) = ϕk1(n1) . . . ϕkd(nd) =

d∏

`=1

e
2iπ
N`
k`n` = e2iπ〈k, n〉Yd

(2.13)
where we used the (rescaled) inner product

〈k, n〉Yd
def.
=

d∑

`=1

k`n`
N`

. (2.14)

The basis (ϕk)k is indeed orthonormal for this inner product. The Fourier transform gathers inner products
in this basis, and (similarly to the 1-D case) the convention is to not normalize them with (N`)`, so that

∀ k ∈ Yd, f̂k
def.
=
∑

n∈Yd

fne
−i〈k, n〉Yd ,

∀n ∈ Yd, fn =
1

N

∑

k∈Yd

f̂ke
i〈k, n〉Yd .

Fast Fourier Transform. We detail the algorithm in dimension d = 2 for notation simplicity, but this
extends similarly in arbitrary dimension. The general idea is that if a fast algorithm is available to compute
ortho-decompositions on two 1-D bases (ϕ1

k1
)N1

k1=1, (ϕ2
k2

)N2

k2=1, is extended to compute decomposition on the

tensor product basis (ϕ1
k1
⊗ ϕ2

k2
)k1,k2 by apply succesively the algorithm on the “rows” and then “columns”

(the order does not matters) of the matrix (fn)n=(n1,n2) ∈ RN1×N2 . Indeed

∀ k = (k1, k2), 〈f, ϕ1
k1 ⊗ ϕ2

k2〉 =
∑

n=(n1,n2)

fnϕ
1
k1(n1)ϕ1

k1(n2) =
∑

n1

(∑

n2

fn1,n2
ϕ1
k1(n2)

)
ϕ1
k1(n1).

Denoting C(N1) the complexity of the 1-D algorithm on RN1 , the complexity of the resulting 2-D decom-
position is N2C(N1) + N1C(N2), and hence for the FFT, it is O(N1N2 log(N1N2)) = O(N log(N)) for
N = N1N2.

If we represent f ∈ RN1×N2 as a matrix, and denote FN = (e−
2iπ
N kn)k,n the Fourier transform matrix

(or the matrix where rows are the ϕ∗k), then one can compute the 2-D Fourier transform as matrix-matrix
products

f̂ = FN1
× f × F ∗N2

∈ RN1×N2 .

But of course these multiplications are not computed explicitly (one uses the FFT).
Associated code: coding/test fft2.m

37

Figure 2.17: 2D Fourier analysis of a image (left), and attenuation of the periodicity artifact using masking
(right).

2.5.3 Shannon sampling theorem.

The sampling Theorem 1 extends easily to Rd by tensorization, assuming that the sampling is on a
uniform Cartesian grid. In 2-D for instance, if supp(f̂) ⊂ [−π/s1, π/s1] × [−π/s2, π/s2] and f is decaying
fast enough,

∀x ∈ R2, f(x) =
∑

n∈Z2

f(n1s1, n2s2) sinc(x1/s1 − n1) sinc(x2/s2 − n2) where sinc(u) =
sin(πu)

πu
.

2.5.4 Convolution in higher dimension.

Convolution on Xd with X = R or X = R/2πZ are defined in the very same way as in 1-D (2.4) as

f ? g(x) =

∫

Xd
f(t)g(x− t)dt.

Similarly, finite discrete convolution of vectors f ∈ RN1×N2 extend formula (2.11) as

∀n ∈ J0, N1 − 1K× J0, N2 − 1K, (f ? g)n
def.
=

N1−1∑

k1=0

N2−1∑

k2=0

fkgn−k

where additions and subtractions of vectors are performed modulo (N1, N2).

The Fourier-convolution theorem is still valid in all this cases, namely F(f ?g) = f̂ � ĝ. In the finite case,
this offers a fast O(N log(N)) method to compute convolutions even if f and g do not have small support.

2.6 Application to ODEs and PDEs

2.6.1 On Continuous Domains

We here give only the intuition without formal proofs.
One X = R or T, one has

F(f (k))(ω) = (iω)kf̂(ω).

Intuitively, f (k) = f ? δ(k) where δ(k) is a distribution with Fourier transform δ̂(k)(ω) = (iω)k. Similarly on
X = Rd (see Section 2.5 for the definition of the Fourier transform in dimension d), one has

F(∆f)(ω) = −||ω||2f̂(ω) (2.15)

38

Figure 2.18: Heat diffusion as a convolution.

(and similarly on T replacing ω by n ∈ Zd). The Fourier transform (or Fourier coefficients) are thus pow-
erful to study linear differential equations with constant coefficients, because they are turned into algebraic
equations.

As a typical example, we consider the heat equation

∂ft
∂t

= ∆ft =⇒ ∀ω, ∂f̂t(ω)

∂t
= −||ω||2f̂(ω).

This shows that f̂t(ω) = f̂0(ω)e−||ω||
2t and by inverse Fourier transform and the convolution theorem

ft = Gt ? f0 where Gt =
1

(4πt)d/2
e−
||x||2
4t

which is a Gaussian of standard deviation
√

2t.

2.6.2 Finite Domain and Discretization

On R/NZ (i.e. discrete domains with periodic boundary conditions), one typically considers forward
finite differences (first and second order)

D1f
def.
= N(fn+1 − fn)n = f ? d1 where d1 = [1, 0, . . . , 0,−1]> ∈ RN , (2.16)

D2f = D>1 D1f
def.
= N2(fn+1 + fn−1 − 2fn)n = f ? d2 where d2 = d1 ? d̄1 = [−2, 1, 0, . . . , 0, 1]> ∈ RN .

(2.17)

Figure 2.19: Comparison
of the spectrum of ∆ and
D2.

Thanks to Proposition 5, one can alternatively computes

F(D2f) = d̂2 � f̂ where (d̂2)k = N2(e
2iπ
N + e−

2iπ
N − 2) = −4N2 sin

(
πk

N

)2

.

(2.18)

For N � k, one thus has (d̂2)k ∼ −(2πk)2 which matches the scaling of (2.15).

2.7 A Bit of Group Theory

The reference for this section is [24].

2.7.1 Characters

For (G,+) a commutative group, a character is a group morphism χ :
(G,+)→ (C∗, ·), i.e. is satisfies

∀ (n,m) ∈ G, χ(n+m) = χ(n)χ(m).

39

The set of characters is the so-called dual (Ĝ,�) and is a group for the pointwise multiplication (χ1�χ2)(n)
def.
=

χ1(n)χ2(n). Indeed, the inverse of a character χ is χ−1(n) = χ(−n).
Note that for a finite group G with |G| = N , then since N×n = 0 for any n ∈ G, then χ(n)N = χ(Nn) =

χ(0) = 1, so that characters assume values in the unit circle, and more precisely

χ(n) ∈
{
e

2iπ
N k ; 0 6 k 6 N − 1

}
. (2.19)

So in particular Ĝ is a finite group (since there is a finite number of application between two finite sets) and
χ−1 = χ̄. In the case of a cyclic group, the dual is actually simple to describe.

Proposition 6. For G = Z/NZ, then Ĝ = (ϕk)N−1
k=0 where ϕk = (e

2iπ
N nk)n and k 7→ ϕk defines a (non-

canonical) isomorphism G ∼ Ĝ.

Proof. The ϕk are indeed characters.
Conversely, for any χ ∈ Ĝ, according to (2.19), χ(1) = e

2iπ
N k for some k. Then

χ(n) = χ(1)n =
2iπ
N kn= ϕk(n).

Note that all these applications are different (because ϕk(1) are all distincts) which shows that |G| = |Ĝ| so
that they are isomorphic.

This proposition thus shows that characters of cyclic groups are exactly the discrete Fourier orthonormal
basis defined in (2.8).

Commutative groups. For more general commutative groups with a finite number of generators, accord-
ing to the celebrated structure theorem, one can “decompose” them as a product of cyclic group (which are
in some sense the basic building blocks), i.e. there is the following isomorphism of groups

G ∼ (Z/N1Z)× . . .× (Z/NdZ)× ZQ. (2.20)

If G is finite, then Q = 0 and N = N1 ×Nd. In this case, G is simply a discrete d-dimensional “rectangle”
with periodic boundary conditions.

For two finite groups (G1, G2) one has

̂G1 ×G2 = Ĝ1 ⊗ Ĝ2 =
{
χ1 ⊗ χ2 ; (χ1, χ2) ∈ Ĝ1 × Ĝ2

}
. (2.21)

Here ⊗ is the tensor product of two functions

∀ (n1, n2) ∈ G1 ×G2, (χ1 ⊗ χ2)(n1, n2)
def.
= χ1(n1)χ2(n2).

Indeed, one verifies that χ1 ⊗ χ2 is a morphism, and in fact one has the factorization χ = χ(·, 0) ⊗ χ(0, ·)
because one decomposes (n1, n2) = (n1, 0) + (0, n2).

This construction, thanks to the structure theorem, leads to a constructive proof of the isomorphism
theorem.

Proposition 7. If G is commutative and finite then Ĝ ∼ G.

Proof. The structure theorem (2.20) for Q = 0 and the dual of a product (2.21) shows that

Ĝ ∼ Ĝ1 ⊗ . . .⊗ Ĝd
where we denoted G`

def.
= Z/N`Z. One then remark that Ĝ1 ⊗ Ĝ2 ∼ Ĝ1 × Ĝ2. One concludes thanks to

Proposition 6, since one has Ĝk ∼ Gk.

Note that the isomorphism Ĝ ∼ G is not “canonical” since it depends on the indexing of the roots of

unity on the circle. Similarly to the case of duality of vector space, the isomorphism
ˆ̂
G ∼ G can be made

canonical by considering the evaluation map

g ∈ G 7−→ eg ∈ ˆ̂
G where

(
eg : χ ∈ Ĝ 7→ χ(g) ∈ C∗.

)

40

Discrete Fourier transform from character’s point of view. One can be even more constructive by
remarking that characters in Ĝ` are the discrete Fourier atoms (2.8), i.e. are of the form

(e
2iπ
N`
k`n`)N`−1

n`=0 for some 0 6 k` < N`.

Identifying G and G1× . . .×Gd, by tensorizing these functions together, one thus obtains that the characters
composing Ĝ are exactly the orthogonal multi-dimensional discrete Fourier basis (2.13).

2.7.2 More General cases

Infinite groups. For an infinite group with a finite number of generator, one has Q > 0, and the definition
of Ĝ should impose the continuity of the characters (and also use an invariant measure on G to define inner
products). In the case G = Z, the dual are indexed by a continuous parameter,

Ẑ =
{
ϕω : n 7→ einω ∈ CZ ; ω ∈ R/2πZ

}

so that Ẑ ∼ R/2πZ. The case G = ZQ follows by tensorization. The (ϕω)ω are “orthogonal” in the sense
that 〈ϕω, ϕω′〉Z = δ(ω − ω′) can be understood as a Dirac kernel (this is similar to the Poisson formula),

where 〈u, v〉Z def.
=
∑
n unv̄n. The “decomposition” of a sequence (cn)n∈Z on the set of characters is equivalent

to forming a Fourier series
∑
n cne

−inω.

Similarly, for G = R/2πZ, one has Ĝ = Z, with orthonormal characters ϕn = ei·n, so that the decom-
position of functions in L2(G) is the computation of Fourier coefficients. Intuitively, an Hilbertian theory is
associated to a compact group, which comes with an invariant measure.

Non-commutative groups. For non-commutative group, one observes that G is not isometric to Ĝ.
A typical example is the symmetric group ΣN of N elements, where one can show that Ĝ = {Id, ε} where
ε(σ) = (−1)q is the signature, where q is the number of permutations involved in a decomposition of σ ∈ ΣN .

In order to study non-commutative groups, one has to replace morphisms χ : G → C∗ by morphisms
ρ : G→ GL(Cnρ) for some nρ, which are called “representations” of the group G. For (g, g′) ∈ G (denoting
now multiplicatively the operation on G), one should thus have ρ(gg′) = ρ(g) ◦ ρ(g′). When nρ = 1,
identifying GL(C) ∼ C∗, one retrieves the definition of characters. Note that if ρ is a representation, then

χ(g)
def.
= tr(ρ(g)), where tr is the trace, defines a character.

If there is a subspace V stable by all the ρ(g), one can build W such that Rnρ = V + W which is also
stable, thus reducing the study of ρ to the study on a small space (matrices have a block diagonal form). It
suffice to consider the inner product

〈x, y〉 def.
=
∑

g∈G
〈ρ(g)x, ρ(g)y〉Rnρ

and select the orthogonal V ⊥ for this product. Note that when using an ortho-basis of Rnρ for this inner
product, the matrices associated to the ρ(g) are unitary. In order to limit the set of such representations, one
is only interested in “elementary” ones, which does not have invariant sub-spaces, and are called “irreducible”
(otherwise one could create arbitrary large representation by stacking others in a block diagonal way). One
also only consider these irreductible representation up to isomorphism, where two representation (ρ, ρ′) are
said to be isomorphic if ρ(g) = U−1ρ(g)U where U ∈ GL(Cd) is a change of basis. The set of all these
representations up to isomomorphisms is called the dual group and denoted Ĝ.

For the symmetric group, there is an explicit description of the set of irreducible representations. For
instance, for G = Σ3, |G| = 6, and there is two representation of dimension 1 (the identity and the signature,
which are the caracters) and one representation of dimension 2, which is obtained by identifying G with the
isometric of the equilateral triangle in R2, and the dimensions indeed satisfy 6 = |G| = ∑n2

ρ = 1 + 1 + 22.

One can show that the dimensions nρ of these irreducible representations ρ ∈ Ĝ satisfies
∑
ρ∈Ĝ n

2
ρ = N

and that the entries of the matrices involved in these representation define an orthogonal basis of the space

41

of functions f : G → C (note however that this set of basis function is not canonical since it depends on a
particular choice of basis for each representation up to isomorphism). The associated Fourier transform of a
function f : G→ C is defined as

∀ ρ ∈ Ĝ, f̂(ρ)
def.
=
∑

g∈G
f(g)ρ(g) ∈ Cnρ×nρ .

This corresponds to computing inner products with the aforementioned ortho-basis. It is an invertible linear
transform, whose invert is given next.

Proposition 8. One has

∀ g ∈ G, f(g) =
1

|G|
∑

ρ∈Ĝ

nρ tr(f̂(ρ)ρ(g−1)).

Proof. The proof relies on the following formula, which states that for any g ∈ G

Ag
def.
=
∑

ρ∈Ĝ

nρ tr(ρ(g)) = δg

where δg = 0 for g 6= IdG and δIdG = 1. We will not prove this formula, and refer to the book of Diaconis p.13
for a proof, which is based on the decomposition of the character of the so-called standard representation
(which corresponds to permuting by the action of G the canonical basis of R|G|) on the set of characters,
which are orthogonal. One then has

1

|G|
∑

ρ∈Ĝ

nρ tr(f̂(ρ)ρ(g−1)) =
1

|G|
∑

ρ∈Ĝ

nρ tr(
∑

u

f(u)ρ(u)ρ(g−1))

=
∑

u

f(u)
1

|G|
∑

ρ∈Ĝ

nρ tr(ρ(ug−1)) =
∑

u

f(u)Gug−1 = f(g).

One can define the convolution of two functions f, h : G→ C as

(f ? h)(a)
def.
=
∑

bc=a

f(b)h(c)

(beware that it is not commutative anymore). The Fourier transform diagonalize these convolution operators,
has stated next.

Proposition 9. Denoting F(f) = f̂

F(f ? h)(ρ) = f̂(ρ)× ĥ(ρ)

where × is the matrix multiplication.

Proof.

F(f ? h)(ρ) =
∑

x

∑

y

f(y)h(y−1x)ρ(yy−1x) =
∑

x

∑

y

f(y)ρ(y)h(y−1x)ρ(y−1x) =
∑

y

f(y)ρ(y)
∑

z

h(z)ρ(z)

where we made the change of variable z = y−1x.

For certain groups, there exists fast Fourier transforms to compute f̂ , an example being the permutation
group, but the structure of these algorithm is much more involved than in the case G = Z/NZ.

This theory extends to compact group by considering a discrete but infinite set of representations. A
typical example is to analyze signals defined on the rotation groups SO(3), on which one can compute
explicitly the representation using the basis of sphereical harmonics detailed in Section 2.8.2 below. In this
case, one has a representation of dimension 2`+ 1 for each frequency index `.

42

2.8 A Bit of Spectral Theory

In order to define Fourier methods on general domains X, one can use the aforementioned group-theoretic
approach if X = G is a group, or also if a group acts transitively on X. An alternative way is to describe
the equivalent of Fourier basis functions as diagonalizing a specific differential operator (as we have seen in
Section 2.6 that it is in some sense a way to characterise the Fourier basis). Of particular interest is the
Laplacian, since it is the lowest order rotation-invariant differential operator, and that there exists natural
generalization on domains such as surfaces or graphs.

2.8.1 On a Surface or a Manifold

Figure 2.20: Computing
Laplacian on a surface

The presentation here is very informal. One can define the Laplacian of a
smooth function f : X→ C defined on a “surface” X as

∀x ∈ X, (∆f)(x)
def.
= lim

ε→0

1

Vol(Bε(x))

∫

Bε(x)

f(x)dµ(x)− f(x).

Here µ(x) is the area measure on X, Vol(B)
def.
=

∫
B

dµ(x), and Bε(x) =
{y ; dX(x, y) 6 ε} is the geodesic ball of radius ε at x, where dX is the geodesic
distance on X (length of the shortest path).

If the surface X is smooth, compact and connected, then it is possible to show
that ∆ is itself a compact operator with a negative spectrum 0 > λ1 > λ2 > . . .
and an orthogonal set of eigenvectors (ϕn)n>0 where ϕ1 = 1. Here the inner

product is 〈f, g〉X def.
=
∫

X f(x)g(x)dµ(x) on L2(X). In the case of a flat torus

X = (R/Z)d, then writing x = (x1, . . . , xd),

∆f =

d∑

s=1

∂2f

∂2xs
.

Similarly to (2.15) (which was for an unbounded domain), then one can chose for this eigen-functions ϕn
the Fourier basis (2.1) and λn = −||n||2

2.8.2 Spherical Harmonics

Figure 2.21: Spherical co-
ordinates.

Of particular interest is the special case of the previous construction on the
(d − 1)-dimensional sphere Sd−1 =

{
x ∈ Rd ; ||x||Rd = 1

}
. In this case, there

exists a closed form expression for the eigenvectors of the Laplacian. In the
3-D case d = 3, they are indexed by n = (`,m)

∀ ` ∈ N, ∀m = −`, . . . , `, ϕ`,m(θ, ϕ) = eimϕPm` (cos(θ))

and then the eigenvalue of the Laplacian is λ`,m = −`(` + 1). Here Pm`
are associated Legendre polynomials, and we used spherical coordinates x =
(cos(ϕ), sin(ϕ) sin(θ), sin(ϕ) cos(θ)) ∈ S3 for (θ, ϕ) ∈ [0, π]× [0, 2π]. The index
` is analogous to the amplitude of Fourier frequencies in 2-D. For a fixed `,
the space V` = span(ϕ`,m) is an eigenspace of ∆, and is also invariant under
rotation.

2.8.3 On a Graph

We assume X is a graph of N vertices, simply indexed {1, . . . , N}. Its
“geometry” is described by a connectivity matrix of weights W = (wi,j)i∼j
where we denote i ∼ j to indicate that (i, j) is an edge of the graph for (i, j) ∈
X2. We assume that this weight matrix and the connectity is symmetric, wi,j = wj,i.

43

Figure 2.22:
Weighted graph.

The graph Laplacian ∆ : RN → RN is computing the difference between the average
of values around a point and the value at this point

∀ f ∈ RN , (∆f)i
def.
=
∑

j∼i
wi,jfj − (

∑

j∼i
wi,j)fi =⇒ ∆ = W −D

where D
def.
= diagi(

∑
j∼i wi,j). In particular, note ∆1 = 0

For instance, if X = Z/NZ with the graph i ∼ i−1 and i ∼ i+ 1 (modulo N), then
∆ is the finite difference Laplacian operator ∆ = D2 defined in (2.17). This extends
to any dimension by tensorization.

Proposition 10. Denoting G : f ∈ RN 7→ (
√
wi,j(fi − fj))i<j the graph-gradient

operator, one verifies that

−∆ = G>G =⇒ ∀ f ∈ RN , 〈∆f, f〉RN = −〈Gf, Gf〉RP .

where P is the number of (ordered) edges E = {(i, j) ; i ∼ j, i < j}.

Proof. One has

||Gf ||2 =
∑

(i,j)∈E
wi,j |fi − fj |2 =

∑

i<j

wi,jf
2
i +

∑

i<j

wi,jf
2
j − 2

∑

i<j

wi,jfifj

=
∑

i<j

wi,jf
2
i +

∑

i>j

wi,jf
2
i −

∑

i,j

wi,jfifj =
∑

j

f2
i

∑

i,j

wi,j −
∑

i

fi
∑

j

wi,jfj

= 〈Df, f〉 − 〈Lf, f〉 = −〈Lf, f〉.

This proposition shows that ∆ is a negative semi-definite operator, which thus diagonalizes in an ortho-
basis (ϕn)Nn=1, with ϕ1 = 1, with eigenvalues 0 > λ1 > λN . If X is connected, one can show that λ1 < 0. In
the case of a regular graph associated to a uniform grid, one retrieves the discrete Fourier basis (2.8).

More details and application of Laplacians on graphs can be found in Chapter ??, see in particular
Section ??.

2.8.4 Other things

Multiplication of polynomials (Code text polymult.m).
Fourier transform for finite-field valued functions.

44

Chapter 3

Wavelets

The reference for this chapter is [21].

3.1 Multi-resolution Approximation Spaces

A multiresolution approximation of L2(R) is a set of nested closed subspaces (Vj)j

L2(R) ⊃ . . . ⊃ V j−1 ⊃ Vj ⊃ Vj+1 ⊃ . . . ⊃ {0} (3.1)

which must be related one from each other by dyadic scaling and must also be stable by dyadic translation

f ∈ Vj ⇐⇒ f(·/2) ∈ Vj+1 and f ∈ Vj ⇐⇒ ∀n ∈ Z, f(·+ n2j) ∈ Vj
So large j corresponds to coarse approximation spaces, and 2j is often call the “scale”.

The limit on the left of (3.1) means that ∪jVj is dense in L2(R), or equivalently that PVj (f) → f as
j → −∞ where PV is the orthogonal projector on V

PV (f) = argmin
f ′∈V

||f − f ′||.

The limit on the right of (3.1) means that ∩jVj = {0}, or equivalently that PVj (f)→ 0 as j → +∞.
The first example is piecewise constant functions on dyadic intervals

Vj =
{
f ∈ L2(R) ; ∀n, f is constant on [2jn, 2j(n+ 1)[

}
, (3.2)

A second example is the space used for Shannon interpolation of bandlimitted signals

Vj =
{
f ; Supp(f̂) ⊂ [−2−jπ, 2−jπ]

}
(3.3)

which corresponds to function which can be exactly represented using samples f(2jn) (to be compared
with piecewise constant signal on a grid with spacing 2j). In this case, the orthogonal projection is the
bandlimitting operator

PVj (f) = F−1(f̂ � 1[−2−jπ,2−jπ]).

Scaling functions. We also require that there exists a scaling function ϕ ∈ L2(R) so that

{ϕ(· − n)}n is an Hilertian orthonormal basis of V0.

By the dilation property, this implies that

{ϕj,n}n is an Hilertian orthonormal basis of Vj where ϕj,n
def.
=

1

2j/2
ϕ

(· − 2jn

2j

)
.

45

The normalization is such to ensure ||ϕj,n|| = 1.
Note that one then has

PVj (f) =
∑

n

〈f, ϕj,n〉ϕj,n.

Figure 3.1 illustrates the translation and scaling effect.

ϕj,0 ϕj+1,2 ϕj−1,

Figure 3.1: Translation and scaling to generate approximation spaces.

For the case of piecewise constant signals (3.2), one can use

ϕ = 1[0,1[and ϕj,n = 2−j/21[2jn,2j(n+1)[.

For the case of Shannon multiresolution (3.3), one can use ϕ(t) = sin(πt)/(πt) and one verifies

〈f, ϕj,n〉 = f(2jn) and f =
∑

n

f(2jn)ϕj,n.

Figure 3.2: BUG: the elevation should be 2−j/2 and not 2j/2 Haar scaling (left) and wavelet (right)
functions.

Spectral orthogonalization. In many case of practical interest, the space Vj is describe by a translation-
invariant basis which is not-orthogonal, Vj = Span(θ(· − n))n∈Z. The following proposition shows how to
orthogonalize it using the Fourier transform. Figure 3.3 shows how it leads to cardinal spline orthogonal
functions.

Proposition 11. For θ ∈ L2(R) (assumed regular and with fast enough decay), {θ(·−n)}n∈Z is orthonormal
if and only if

∀ω, A(ω)
def.
=
∑

k

|θ̂(ω − 2πk)|2 = 1.

If there exists 0 < a 6 b < +∞ such that a 6 A(ω) 6 b, then ϕ defined by

ϕ̂(ω) =
θ̂(ω)√
A(ω)

is such that {ϕ(· − n)}n∈Z is an Hilbertian basis of Span{θ(· − n)}n∈Z.

46

Figure 3.3: Orthogonalization of b-spline to defines cardinal orthogonal spline functions.

Proof. One has that {θ(· − n)}n∈Z is orthonormal if and only if

〈θ, θ(· − n)〉 = (θ ? θ̄)(n) = δ0,n
def.
=

{
0 if n = 0,
1 otherwise.

where θ̄ = θ(−·) and δ0 is the discrete Dirac vector. Recall the Poisson summation formula (1.8) for any
function h ∑

n

h(ω − 2nπ) =
∑

n

h(n)e−inω

which here reads ∑

n

F(θ ? θ̄)(ω − 2πn) =
∑

n

δ0,ne
−inω = 1.

We conclude with the Fourier-convolution formula (2.6) shows that F(θ ? θ̄)(ω) = θ̂(ω)θ̂(ω)∗ = |θ̂(ω)|2 which
leads to the desired formula, and it is if and only if. Normalizing by 1/

√
A(ω), which is a bounded function,

shows that ϕ̂ satsifies
∑
k |ϕ̂(ω − 2πk)|2 = 1.

A typical example of application is spline (e.g. cubic ones) interpolations, which are generated by the
box-spline function θ which is a piecewise polynomial with a compact support.

3.2 Multi-resolution Details Spaces

The details spaces are defined as orthogonal complement of Vj ⊂ Vj−1, which is legit because these are
closed subspaces

∀ j, Wj is such that Vj−1 = Vj ⊕⊥Wj .

This leads to the following sequence of embedded spaces

Once again, we suppose that W0 has an Hilbertian ortho-basis of the form {ψ(· − n)}n, so that

{ψj,n}n is an Hilertian orthonormal basis of Wj where ψj,n
def.
=

1

2j/2
ψ

(· − 2jn

2j

)
.

Due to the orthogonal complementarity property, one has

L2(R) =

j=+∞⊕

j=−∞
Wj = Vj0

j⊕

j6j0

Vj .

47

This means that for all f ∈ L2(R), one has the following convergence in L2(R),

f = lim
(j−,j+)→(−∞,+∞)

j+∑

j=j−

PWj
f = lim

j+→+∞
PVj0 f +

j+∑

j=j0

PWj
f.

This decomposition shows that {
ψj,n ; (j, n) ∈ Z2

}

is an Hilbertian orthogonal basis of L2(R), which is called a wavelet basis. One also have a “truncated”
ortho-basis

{ψj,n ; j 6 j0, n ∈ Z} ∪ {ϕj0,n ; n ∈ Z} .

A (forward) Wavelet transform corresponds to the computation of all the inner products of some function
f with the elements of these basis.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Signal f j = −8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

j = −7 j = −6

Figure 3.4: 1-D Haar multiresolution projection PVjf of a function f .

Haar wavelets. For the Haar multiresolution (3.2), one has

Wj =

{
f ; ∀n ∈ Z, f constant on [2j+1n, 2j+1(n+ 1)) and

∫ (n+1)2j

n2j
f = 0

}
. (3.4)

A possible choice for a mother wavelet function is

ψ(t) =
1√
2

1 for 0 6 t < 1/2,
−1 for 1/2 6 t < 1,
0 otherwise,

as shown on Figure 3.2, right.

Figure 3.5 shows examples of projections on details spaces, and how they can be derived from projection
on approximation spaces.

Shannon and splines. Figure 3.6 shows that Shannon and splines corresponds to a hard and a soft
segmentation of the frequency domain (Shannon being in some sense the high degree limit of splines).

48

0

0.2

0.4

0.6

0.8

1

PV−7
f

0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

PV−6 f PW−6f

0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

PV−5f PW−5f

Figure 3.5: Projection on Haar approximation spaces (left) and detail spaces (right).

3.3 On Bounded Domains

On a periodic bounded domain T = R/Z (note that we use here 1-periodicity, in contrast to the convention
we used for Fourier series of 2π-periodicity), one obtains an orthogonal wavelet basis of L2(T) by periodizing
the original wavelets, and also restricting the translation points 2jn to be in [0, 1], i.e. 0 6 n < 2−j . Similarly
to (1.6), the periodization of a function f ∈ L1(R) is the function

fP =
∑

n∈Z

f(· − n) ∈ L1(T).

The wavelet basis is thus define as
{
ψPj,n ; j 6 j0, 0 6 n < 2−j

}
∪
{
ϕPj0,n ; 0 6 n < 2−j0

}
.

and one verifies that it defines an Hilbertian ortho-basis of L2(T), see Figure 3.7. It is possible to define
wavelet basis using Neumann (mirror) boundary conditions, but this is more involved.

3.4 Fast Wavelet Transform

3.4.1 Discretization

We now work over R/Z. The modeling hypothesis is that one has access to a discrete signal aJ ∈ RN

with N = 2−J at some fixed scale 2J , and that this signal exactly matches the inner-product with the scaling
functions, i.e.

∀n,∈ {0, . . . , N − 1}, aJ,n = 〈f, ϕPJ,n〉 ≈ f(2Jn), (3.5)

for some function of interest f we are sampling. This is equivalent to saying that the discretization process
have exactly access to PVJ f . This hypothesis is questionnable, and similar to the Shannon bandlimit as-
sumption. In practice, the scaling functions (ϕJ,n)n are often quite close to the point-spread function of the
acquisition device, so it is acceptable. One can however improves this by correcting the acquired values by
the device to be closer to asumption (3.5).

49

Figure 3.6: Spline and Shannon wavelet segmentation of the frequency axis.

Figure 3.7: Periodizing basis functions. This leads to considering only 0 6 n2−j , so that in practice one
choose j0 = 0.

The discrete wavelet transform then computes, from this input aJ , all the coefficients

∀ j ∈ {J + 1, J + 2, . . . , 0}, ∀n ∈ J0, 2−j − 1K, aj,n
def.
= 〈f, ϕPj,n〉, and dj,n

def.
= 〈f, ψPj,n〉

in this order (increasing values of j). During the algorithm, the previously computed vector aj can be
discarded, and only the dj are kept.

The forward discrete wavelet transform on a bounded domain is thus the orthogonal finite dimensional
map

aJ ∈ RN 7−→
{
dj,n ; 0 6 j < J, 0 6 n < 2−j

}
∪ {a0 ∈ R}.

The inverse transform, which is thus the adjoint due to orthogonality, is the inverse map.
Figure 3.8 shows examples of wavelet coefficients. For each scale 2j , there are 2−j coefficients.

3.4.2 Forward Fast Wavelet Transform (FWT)

The algorithm proceeds by computing a series of simple operators

∀ j = J + 1, . . . , 0, (aj , dj) =Wj(aj−1) where Wj : R2−j+1 → R2−j × R2−j (3.6)

The number of such steps is thus |J | = log2(N). Each Wj is orthogonal since it corresponds to linear maps
between coefficients in orthogonal bases.

In order to describe the algorithm that computesWj , we introduce the filters “filter” coefficients f, g ∈ RZ

hn
def.
=

1√
2
〈ϕ(·/2), ϕ(· − n)〉 and gn

def.
=

1√
2
〈ψ(·/2), ϕ(· − n)〉. (3.7)

Figure 3.9 illustrates the computation of these weights for the Haar system.

50

!!"#

!!

!$"#

$

$"#

!

!"#

Wavelet coefficients {dj,n}j,n

0

0.2

0.4

0.6

0.8

1

!!"#

!!"$

!

!"$

!"#

Signal f d−7

!!"#

!!"$

!

!"$

!"#

!!"#

!

!"#

d−6 d−5

Figure 3.8: Wavelet coefficients. Top row: all the coefficients. Bottoms rows: zoom on the different scales

Figure 3.9: Haar wavelets weights as inner products.

We denote as ↓2: RK → RK/2 the subsampling operator by a factor of 2, i.e.

u ↓2def.
= (u0, u2, u4, . . . , uK−2, uK).

In the following, we assume that these filters are decaying fast enough.

Proposition 12. One has
Wj(aj) = ((h̄ ? aj−1) ↓2, (ḡ ? aj−1) ↓2), (3.8)

where ? denotes periodic convolutions on R−j+1.

Proof. We note that ϕ(·/2) and ψ(·/2) are in Wj , so one has the decompositions

1√
2
ϕ(t/2) =

∑

n

hnϕ(t− n) and
1√
2
ψ(t/2) =

∑

n

gnϕ(t− n) (3.9)

Doing the change of variable t 7→ t−2jp
2j−1 in (3.9), one obtains

1√
2
ϕ

(
t− 2jp

2j

)
=
∑

n

hnϕ

(
t

2j−1
− (n+ 2p)

)

51

(similarly for ψ) and then doing the change n 7→ n− 2p, one obtains

ϕj,p =
∑

n∈Z

hn−2pϕj−1,n and ψj,p =
∑

n∈Z

gn−2pψj−1,n.

When working with periodized function (ϕPj,n, ψ
P
j,p), this formula is still valid, but the summation over n ∈ Z

should be done modulo 2−j+1. Taking inner product of both size with respect to f (which is legit if h, g are
decaying fast enough), one obtains the fundamental recursion fromula

aj,p =
∑

n∈Z

hn−2paj−1,n = (h̄ ? aj−1)2p and dj,p =
∑

n∈Z

gn−2paj−1,n = (ḡ ? aj−1)2p (3.10)

where ūn
def.
= u−n. One can show that this formula is still valid when working over a bounded interval

T = R/Z, but then ? denotes the periodic convolution over Z/2−j+1Z.

Figure 3.10 shows two steps of application of these refinement relationships.

Figure 3.10: Forward filter bank decomposition.

The FWT thus operates as follow:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.
aj+1 = (aj ? h̃) ↓ 2 and dj+1 = (aj ? g̃) ↓ 2

Output: the coefficients {dj}j06j<J ∪ {aj0}.
If |h|, |g| 6 C so that both filter are compactly supported, then computing eachWj is (2C)2−j operation,

so that the complexity of the whole wavelet transform is

1∑

j=J

(2C)2−j = (2C)2−J = 2CN.

This shows that the fast wavelet transform is a linear time algorithm. Figure 3.11 shows the process of
extracting iteratively the wavelet coefficients. Figure 3.12 shows an example of computation, where at each
iteration, the coefficients of aj and dj are added to the left of the output vector.

Fast Haar transform. For the Haar wavelets, one has

ϕj,n =
1√
2

(ϕj−1,2n + ϕj−1,2n+1),

ψj,n =
1√
2

(ϕj−1,2n − ϕj−1,2n+1).

This corresponds to the filters

h = [. . . , 0, h[0] =
1√
2
,

1√
2
, 0, . . .],

52

Figure 3.11: Pyramid computation of the coefficients.

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

2

Figure 3.12: Wavelet decomposition algorithm.

g = [. . . , 0, h[0] =
1√
2
, − 1√

2
, 0, . . .].

The Haar wavelet transform algorithm thus processes by iterating averaging and differences:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.

aj+1,n =
1√
2

(aj−1,2n + aj−1,2n+1) and dj+1,n =
1√
2

(aj−1,2n − aj−1,2n+1).

Output: the coefficients {dj}j06j<J ∪ {aj0}.

3.4.3 Inverse Fast Transform (iFWT)

The inverse algorithm proceeds by inverting each step (3.11)

∀ j = 0, . . . , J + 1, aj−1 =W−1
j (aj , dj) =W∗j (aj , dj), (3.11)

where W∗j is the adjoint for the canonical inner product on R2−j+1

, i.e. when viewed as a matrix, the
transpose.

We denote ↑2: RK/2 → RK the up-sampling operator

a ↑2= (a0, 0, a1, 0, . . . , 0, aK/2, 0) ∈ RK .

53

Proposition 13. One has

W−1
j (aj , dj) = (aj ↑2) ? h+ (dj ↑2) ? g.

Proof. Since Wj is orthogonal, W−1
j =W∗j . We write the whole transform as

Wj = S2 ◦ Ch̄,ḡ ◦ D where

D(a) = (a, a),
Ch̄,ḡ(a, b) = (h̄ ? a, ḡ ? a),
S2(a, b) = (a ↓2, b ↓2).

One has the following adjoint operator

D∗(a, b) = a+ b, C∗h̄,ḡ(a, b) = (h ? a, g ? b), and S2(a, b) = (a ↑2, b ↑2).

Indeed, let us check this for the convolution, assuming involved sequences are in `1 (they are actually finite
sums when considering periodic signals),

〈f ? h̄, g〉 =
∑

n

(f ? h̄)ngn =
∑

n

∑

k

fkhk−ngn =
∑

k

fk
∑

n

hk−ngn = 〈f, h ? g〉,

for the copying

〈D(a), (u, v)〉 = 〈a, u〉+ 〈a, v〉 = 〈a, u+ v〉 = 〈a, D∗(u, v)〉,

and for the down-sampling

〈f ↓2, g〉 =
∑

n

f2ngn =
∑

n

(f2ngn + f2n+10) = 〈f, g ↑2〉.

This is shown using matrix notations in Figure 3.13. Putting everything together gives the desired formula.

=⇒

Figure 3.13: Wavelet inversion in matrix format.

The inverse Fast wavelet transform iteratively applies this elementary step

Input: {dj}j06j<J ∪ {aj0}.
For j = j0, . . . , J + 1.

aj−1 = (aj ↑ 2) ? h+ (dj ↑ 2) ? g.

Output: f = aJ .

This process is shown using a block diagram in Figure 3.14, which is the inverse of the block diagram 3.10.

54

Figure 3.14: Backward filterbank recomposition algorithm.

3.5 2-D Wavelets

3.5.1 Anisotropic Wavelets

2-D anisotropic wavelets are defined using tensor product of Wavelet basis functions (2.12). The basis
over T2 is thus of the form

{
ψ(j1,j2),(n1,n2) ; (j1, j2) ∈ Z2, 0 6 n1 < 2−j1 , 0 6 n2 < 2−j2

}

where ψ(j1,j2),(n1,n2)(x1, x2) = ψj1,n1
(x1)ψj2,n2

(x2). (3.12)

The computation of the fast anisotropic Wavelet transform in 2-D is similar to the 2-D FFT detailed in

Section 2.5.2. Viewing the input image aJ ∈ R2−J×2−J as a matrix, one first apply the 1-D FWT to each
row, and then to each column, resulting in a linear time O(N) algorithm, where N = 2−2J .

Image f Row transform Column transform.

Figure 3.15: Steps of the anisotropic wavelet transform.

3.5.2 Isotropic Wavelets

A major issue with these anisotropic wavelet (3.12) is that a function ψ(j1,j2),(n1,n2) is scaled independently
in each direction, leads to functions concentrated along an axis-oriented rectangle of size 2−j1 × 2j2 . This
is not a very good features (since natural images usually do not exhibit such an anisotropy) and typically
leads to visually unpleasant artifacts when used for processing (denoising or compression).

55

Figure 3.16: Anisotropic (left) versus isotropic (right) wavelet coefficients.

One rather use isotropic wavelet obtained by considering 2-D multi-resolution, obtained by tensor prod-
ucts of the 1-D approximation spaces

L2(R2) ⊃ . . . ⊃ V j−1 ⊗ V j−1 ⊃ Vj ⊗ Vj ⊃ Vj+1 ⊗ Vj+1 ⊃ . . . ⊃ {0}.
In the following, we denote

V Oj
def.
= Vj ⊗ Vj

this isotropic 2-D multiresolution space.
Recall that the tensor product of two space (V1, V2) ∈ L2(R)2 is

V1 ⊗ V2 = Closure
(
Span

{
f1(x1)f2(x2) ∈ L2(R2) ; f1 ∈ V1, f2 ∈ V2

})
.

If (ϕsk)k are Hilbertian bases for Vs, then one can show that (ϕ1
k(x1)ϕ2

k(x2))k is an Hilbertian basis for
V1 ⊗ V2.

One easily verify that one has the distributivity

(Vj ⊕⊥WJ)⊗ (Vj ⊕⊥WJ) = V Oj ⊕⊥WV
j ⊕⊥WV

j ⊕⊥WV
j where

WV
j

def.
= (Vj ⊗Wj),

WH
j

def.
= (Wj ⊗ Vj),

WD
j

def.
= (Wj ⊗Wj).

Here the letters {V,H,D} stands for Vertical, Horizontal, Diagonal detail spaces. This leads to the following
diagram of embedded spaces

For j ∈ Z, each of the three wavelet spaces is spanned with a wavelet, where basis elements are indexed
by n = (n1, n2) ∈ Z (or in {0, . . . , 2−j − 1}2 on the interval T),

∀ω ∈ {V,H,D}, Wω
j = Span{ψωj,n1,n2

}n1,n2

where

∀ω ∈ {V,H,D}, ψωj,n1,n2
(x) =

1

2j
ψω
(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)

and where the three mother wavelets are

ψH(x) = ψ(x1)ϕ(x2), ψV (x) = ϕ(x1)ψ(x2), and ψD(x) = ψ(x1)ψ(x2).

Figure 3.17 displays an examples of these wavelets.

56

ψH ψV ψD Support

Figure 3.17: 2-D wavelets and their approximative support (right).

Haar 2-D multiresolution. For the Haar multiresolution, one obtains 2-D piecewise-constant Haar ap-
proximation. A function of Vj ⊗ Vj is constant on squares of size 2j × 2j . Figure 3.18 shows an example of
projection of an image onto these 2-D Haar approximation spaces.

Figure 3.18: 2-D Haar approximation PV Oj f for increasing j.

Discrete 2-D wavelet coefficients. Similarly to (3.5), we suppose that the sampling mechanism gives
us access to inner product of the analog (continuous) signal f with the scaling function at scale N = 2−J

∀n,∈ {0, . . . , N − 1}2, aJ,n = 〈f, ϕPJ,n〉

Discrete wavelet coefficients are defined as

∀ω ∈ {V,H,D}, ∀ J < j 6 0, ∀ 0 6 n1, n2 < 2−j , dωj,n = 〈f, ψωj,n〉.

(we use here periodized wavelets). Approximation coefficients are defined as

aj,n = 〈f0, ϕ
O
j,n〉.

Figure 3.19 shows examples of wavelet coefficients, that are packed in an image of N pixels. Figure 3.20
shows other examples of wavelet decompositions.

Forward 2-D wavelet transform basic step. A basic step of the computation of the 2-D wavelet
transform computes detail coefficients and a low pass residual from the fine scale coefficients

aj−1 7−→ (aj , d
H
j , d

V
j , d

D
j).

57

Figure 3.19: 2-D wavelet coefficients.

Similarly to the 1-D setting, this mapping is orthogonal, and is computed using the 1-D filtering and sub-
sampling formula (3.8).

One first applies 1-D horizontal filtering and sub-sampling

ãj = (aj−1 ?
H h̃) ↓H 2

d̃j = (aj−1 ?
H h̃) ↓H 2,

where ?H is the horizontal convolution, that applies the 1-D convolution to each column of a matrix

a ?H bn1,n2
=

P−1∑

m1=0

an1−m1,n2
bm1

where a ∈ CP×P and b ∈ CP are matrix and vectors. The notation ↓H 2 accounts for sub-sampling in the
horizontal direction

(a ↓H 2)n1,n2
= a2n1,n2

.

One then applies 1-D vertical filtering and sub-sampling to ãj and d̃j to obtain

aj = (ãj ?
V h̃) ↓V 2,

dVj = (ãj ?
V g̃) ↓V 2,

dHj = (d̃j ?
V h̃) ↓V 2,

dDj = (d̃j ?
V g̃) ↓V 2,

where the vertical operators are defined similarly to horizontal operators but operating on rows.
These two forward steps are shown in block diagram in Figure 3.21. These steps can be applied in place,

so that the coefficients are stored in an image of N pixels, as shown in Figure 3.22. This gives the traditional
display of wavelet coefficients used in Figure 3.20.

Fast 2-D wavelet transform. The 2-D FWT algorithm iterates these steps through the scales:

Input: signal f ∈ CN .

Initialization: aJ = f .

For j = J, . . . , j0 − 1.

ãj = (aj−1 ?
H h̃) ↓H 2,

d̃j = (aj−1 ?
H h̃) ↓H 2,

aj = (ãj ?
V h̃) ↓V 2,

dVj = (ãj ?
V g̃) ↓V 2,

dHj = (d̃j ?
V h̃) ↓V 2,

dDj = (d̃j ?
V g̃) ↓V 2.

Output: the coefficients {dωj }j06j<J,ω ∪ {aj0}.

58

Figure 3.20: Examples of images (top row) and the corresponding wavelet coefficients (bottom row) .

Fast 2-D inverse wavelet transform. The inverse transform undo the horizontal and vertical filtering
steps. The first step computes

ãj = (aj ?
V h) ↑V 2 + (dVj ?

V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

where the vertical up-sampling is

(a ↑V 2)n1,n2 =

{
ak,n2 if n1 = 2k,
0 if n = 2k + 1.

The second inverse step computes

aj−1 = (ãj ?
H h) ↑H 2 + (d̃j ?

H g) ↑H 2.

Figure 3.23 shows in block diagram this inverse filter banks, that is the inverse of the diagram 3.21.
The inverse Fast wavelet transform iteratively applies these elementary steps

Input: {dωj }j06j<J,ω ∪ {aj0}.
For j = j0, . . . , J + 1.

ãj = (aj ?
V h) ↑V 2 + (dVj ?

V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

aj−1 = (ãj ?
H h) ↑V 2 + (d̃j ?

H g) ↑V 2.

Output: f = aJ .

59

Figure 3.21: Forward 2-D filterbank step.

Coefficients aj Transform on rows Transform on columns

Figure 3.22: One step of the 2-D wavelet transform algorithm.

3.6 Wavelet Design

To be able to compute the wavelet coefficients using the FWT algorithm, it remains to know how to
compute the scaling and wavelet functions. The FWT only makes use of the filters h and g, so instead
of explicitly knowing the functions ϕ and ψ, one can only know these filters. Indeed, most of the known
wavelets do not have explicit formula, and are implicitly defined through the cascade of the FWT algorithm.

This section shows what are the constraints h and g should satisfy, and gives practical examples. Fur-
thermore, it shows that the knowledge of h determines g under the constraint of having quadrature filters,
which is the most usual choice for wavelet analysis.

3.6.1 Low-pass Filter Constraints

We introduce the following three conditions on a filter h

ĥ(0) =
√

2 (C1)

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, (C2)

inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0. (C∗)

60

Figure 3.23: Backward 2-D filterbank step.

Here we are using the Fourier series associated to a filter h ∈ RZ

∀ω ∈ R/2πZ, ĥ(ω)
def.
=
∑

n∈Z

hne
−inω.

If h ∈ `1(Z), this defines a continuous periodic fonction ĥ ∈ C0(R/2πZ), and this definition can be extended

to h ∈ `2(Z) and defines ĥ ∈ L2(R/2πZ).

Theorem 3. If ϕ defines multi-resolution approximation spaces, then (C1) and (C2) holds for h defined
in (3.7). Conversely, if (C1), (C2) and (C∗) holds, then there exists a ϕ defining multi-resolution approxi-
mation spaces so that associated filter is h as defined in (3.7).

Proof. We only prove the first statement of the theorem. The converse statement is much more difficult to
prove.

We now prove condition (C1). The refinement equation reads like a discrete-continuous convolution (or
equivalently a convolution with a distribution)

1√
2
ϕ

(
t

2

)
=
∑

n∈Z

hnϕ(t− n). (3.13)

Denoting h ? ϕ such a convolution, assuming h ∈ `1(Z) and ϕ ∈ L1(R), one check that one can apply Fubini
and that h ? ϕ ∈ L1(R) and then

F(
∑

n∈Z

hnϕ(t− n))(ω) =

∫

R

∑

n∈Z

hnϕ(t− n)e−iωtdt =
∑

n∈Z

hn

∫

R
ϕ(t− n)e−iωtdt

=
∑

n∈Z

hne
−inω

∫

R
ϕ(x)e−iωxdx = ϕ̂(ω)ĥ(ω)

where we made the change of variable x = t−n. Note that here, ĥ(ω) is the 2π-periodic Fourier transform (i.e.
Fourier series) of infinite filters defined in (3.6.1), whereas ϕ̂(ω) is the Fourier transform of function. This is

thus a product of a 2π-periodic function ĥ and a non-periodic function ϕ̂. We recall that F(f(·/s)) = sf̂(s·).
Over the Fourier domain, equation (3.13) thus reads

ϕ̂(2ω) =
1√
2
ĥ(ω)ϕ̂(ω). (3.14)

61

One can show that ϕ̂(0) 6= 0 (actually, |ϕ̂(0)| = 1), so that this relation implies the first condition (C1).
We now prove condition (C2). The orthogonality of ϕ(·−n)}n is rewritten using a continuous convolution

as (see also Proposition 11)
∀n ∈ Z, ϕ ? ϕ̄(n) = δ0

where ϕ̄(x) = ϕ(−x), and thus over the Fourier domain, using (3.14) which shows ϕ̂(ω) = 1√
2
ĥ(ω/2)ϕ̂(ω/2)

1 =
∑

k

|ϕ̂(ω + 2kπ)|2 =
1

2

∑

k

|ĥ(ω/2 + kπ)|2|ϕ̂(ω/2 + kπ)|2.

Since ĥ is 2π-periodic, one can split even and odd k and obtain

2 = |ĥ(ω/2)|2
∑

k

|ϕ̂(ω/2 + 2kπ)|2 + |ĥ(ω/2 + π)|2
∑

k

|ϕ̂(ω/2 + 2kπ + π)|2

This leads to condition (C2). Re-using the fact that
∑
k |ϕ̂(ω + 2kπ)|2 = 1 for ω′ = ω/2 in place of ω, one

thus has
|ĥ(ω′)|2 + |ĥ(ω′ + π)|2 = 2.

We do not prove the converse statement, which requires to “create” a function ϕ from the filter h. The
intuition is that iterating (3.14) leads informally to

ϕ̂(ω) =
∏

k<0

ĥ(ω/2k)√
2

. (3.15)

Condition (C∗) can be shown to imply that this infinite product converge, and define a (non-periodic)
function in L2(R).

Note that for the converse statement of this theorem to holds, condition (C∗) imposes a control on the

behavior of ĥ near 0.

3.6.2 High-pass Filter Constraints

We now introduce the following two conditions on a pair of filter (g, h)

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (C3)

ĝ(ω)ĥ(ω)∗ + ĝ(ω + π)ĥ(ω + π)∗ = 0. (C4)

Figure 3.24 illustrates this constraint.

Figure 3.24: Low/high pass filter constraint.

62

Theorem 4. If (ϕ,ψ) defines a multi-resolution analysis, then (C3) and (C4) holds for (h, g) defined in (3.7).
Conversely, if (C1) to (C4) hold, then there exists a (ϕ,ψ) defining multi-resolution analysis so that associ-
ated filters are (h, g) as defined in (3.7). Furthermore,

ψ̂(ω) =
1√
2
ĝ(ω/2)ϕ̂(ω/2). (3.16)

Proof. We prove condition (C3). The refinement equation for the wavelet reads

1√
2
ψ

(
t

2

)
=
∑

n∈Z

gnϕ(t− n)

and thus over the Fourier domain

ψ̂(2ω) =
1√
2
ĝ(ω)ϕ̂(ω). (3.17)

The orthogonality of {ψ(· − n)}n is re-written

∀n ∈ Z, ψ ? ψ̄(n) = δ0

and thus over the Fourier domain (using Poisson formula, see also Proposition 11)

∑

k

|ψ̂(ω + 2kπ)|2 = 1.

Using the Fourier domain refinement equation (3.17), similarely to the proof of Theorem 3 for (C1), this
is equivalent to condition (C3). Figure 3.25 shows the Fourier transform of two filters that satisfy this
complementary condition.

Figure 3.25: Complementarity between a low pass and a high pass wavelet filters h and g that satisfy
condition (C3).

We now prove condition (C4). The orthogonality between {ψ(· − n)}n and {ϕ(· − n)}n is written as

∀n ∈ Z, ψ ? ϕ̄(n) = 0

and hence over the Fourier domain (using Poisson formula, similarly to Proposition 11)

∑

k

ψ̂(ω + 2kπ)ϕ̂∗(ω + 2kπ) = 0.

Using the Fourier domain refinement equations (3.14) and (3.17), this is equivalent to condition (C4).

Quadrature mirror filters. Quadrature mirror filters (QMF) defines g as a function of h so that the
conditions of Theorem 4 are automatically satisfy. This choice is the natural choice to build wavelet filters,
and is implicitly assumed in most constructions (other choices leading to the same wavelet function anyway,
since it safisfies (3.16)).

63

Proposition 14. For a filter h ∈ `2(Z) satisfying (C1), defining g ∈ `2(Z) as

∀n ∈ Z, gn = (−1)1−nh1−n (3.18)

satisfies conditions (C3) and (C4).

Proof. One indeed has that

ĝ(ω) = e−iωĥ(ω + π)∗, (3.19)

so that

|ĝ(ω)|2 + |ĝ(ω + π)|2 = |e−iωĥ(ω + π)∗|2 + |e−i(ω+π)ĥ(ω + 2π)∗|2 = |ĥ(ω + π)|2 + |ĥ(ω + 2π)|2 = 2.

where we used the fact that ĥ is 2π-periodic, and also

ĝ(ω)ĥ(ω)∗ + ĝ(ω + π)ĥ(ω + π)∗ = e−iωĥ(ω + π)∗ĥ(ω)∗ + e−i(ω+π)ĥ(ω + 2π)∗ĥ(ω + π)∗

= (e−iω + e−i(ω+π))ĥ(ω + π)∗ĥ(ω)∗ = 0.

3.6.3 Wavelet Design Constraints

According to the previous sections, the construction of a multi-resolution analysis (i.e. of functions (ϕ,ψ)
is obtained by designing a filter h satisfying conditions (C1) and (C2). The function ϕ is obtained by an
infinite cascade of filtering, or equivalently in the Fourier domain by (3.15), there is in general (put aside
special case such as the Haar multiresolution) no closed form expression for ϕ. Once ϕ is defined, ψ is
automatically defined by the relation (3.16) (and g can be defined as (3.19)).

There exists only one Fourier transform, but there is a large choice of different mother wavelet functions
ψ. They are characterized by

Size of the support.

Number of oscillations (the so called number p of vanishing moments).

Symmetry (only possible for non-orthogonal bases).

Smoothness (number of derivatives).

We now detail how these constraints are integrated together with conditions (C1)- (C4).

Vanishing moments. A wavelet ψ has p vanishing moments if

∀ k 6 p− 1,

∫

R
ψ(x)xkdx = 0. (3.20)

This ensures that 〈f, ψj,n〉 is small if f is Cα, α < p on Supp(ψj,n), which can be seen by doing a Taylor
expansion of f around the point 2jn on the support of the wavelet. This condition is equivalently expressed
over Fourier as followed (see Fig. 3.26).

Proposition 15. Assuming enough regularity of ψ, and using the QMF construction (3.19), it has p van-
ishing moments if and only if

∀ k 6 p− 1,
dkĥ

dωk
(π) =

dkĝ

dωk
(0) = 0. (3.21)

Proof. Since ψ is regular, one has that ψ̂(k) = F((−i·)kψ(·)), so that

(−i)k
∫

R
xkψ(x)dx = ψ̂(k)(0).

64

Figure 3.26: Wanishing moment condition as zero derivative conditions.

Relation (3.16) and (3.19) implies

ψ̂(2ω) = ĥ(ω + π)∗ρ(ω) where ρ(ω)
def.
=

1√
2
e−iωϕ̂(ω).

and differentiating this relation shows

2ψ̂(1)(2ω) = ĥ(ω + π)∗ρ(1)(ω) + ĥ(1)(ω + π)∗ρ(ω)

which shows that, since ρ(0) = ϕ̂(0) 6= 0, ψ(1)(0) = 0 ⇔ ĥ(1)(π)∗ = 0. Recursing this argument and

iterating the derrivative, one obtains that ψ(k)(0) = 0 ⇔ ĥ(k)(π)∗ = 0 (assuming this hold for previous
derivatives).

Note that conditions (C1) and (C1) implies that ĥ(π) = 0, so that an admissible wavelet necessarily has
1 vanishing moment, i.e.

∫
ψ = 0. Condition (3.21) shows that having more vanishing moment is equivalent

to having a Fourier transform ĥ which is “flatter” arround ω = π.

Support. Figure 3.27 shows the wavelet coefficients of a piecewise smooth signal. Coefficients of large
magnitude are clustered near the singularities, because the wavelet ψ has enough vanishing moments.

To avoid that many wavelets create large coefficients near singularities, one should choose ψ with a small
support. One can show that the size of the support of ψ is proportional to the size of the support of h. This
requirement is however contradictory with the vanishing moment property (3.20). Indeed, one can prove
that for an orthogonal wavelet basis with p vanishing moments

|Supp(ψ)| > 2p− 1,

where sup(a) is the largest closed interval outside of which the function f is zero.

Chapter 4 studies in details the tradeoff of support size and vanishing moment to perform non-linear
approximation of piecewise smooth signals.

Smoothness. In compression or denoising applications, an approximate signals is recovered from a partial
set IM of coefficients,

fM =
∑

(j,n)∈IM
〈f, ψj,n〉ψj,n.

This approximation fM has the same smoothness as ψ.

To avoid visually unpleasant artifacts, one should thus choose a smooth wavelet function ψ. This is
only for cosmetic reasons, since increasing smoothness does not leads to a better approximation. However,
for most wavelet family, increasing the number of vanishing moments also increases the smoothness of the
wavelets. This is for instance the case of the Daubechies family exposed in the next section.

65

!!"#

!!"$

!

!"$

!"#

!!"#

!!"$

!

!"$

!"#

!!"#

!

!"#

!!"#

!

!"#

0

0.2

0.4

0.6

0.8

1

Figure 3.27: Location of large wavelet coefficients.

3.6.4 Daubechies Wavelets

To build a wavelet ψ with a fixed number p of vanishing moments, one designs the filter h, and use the
quadrature mirror filter relation (3.19) to compute g. One thus look for h such that

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, ĥ(0) =
√

2, and ∀ k < p,
dkĥ

dωk
(π) = 0.

This corresponds to algebraic relationships between the coefficients of h, and it turns out that they can be
solved explicitly using the Euclidean division algorithm for polynomials.

This leads to Daubechies wavelets with p vanishing moments, which are orthogonal wavelets with a
minimum support length of 2p− 1.

For p = 1, it leads to the Haar wavelet, with

h = [h0 = 0.7071; 0.7071].

For p = 2, one obtains the celebrated Daubechies 4 filter

h = [0.4830;h0 = 0.8365; 0.2241;−0.1294],

66

and for p = 3,
h = [0; 0.3327; 0.8069;h0 = 0.4599;−0.1350;−0.0854; 0.0352].

Wavelet display. Figure 3.28 shows examples of Daubechies mother wavelet functions with an increasing
number of vanishing moments. These displays are obtained by computing in fact a discrete wavelet ψ̄j,n
defined in (??) for a very large number of samples N . This discrete wavelet is computed by applying the
inverse wavelet transform to the coefficients dj′,n′ = δj−j′δn−n′ .

Figure 3.28: Examples of Daubechies mother wavelets ψ with an increasing number p of vanishing moments.

67

68

Chapter 4

Linear and Non-linear Approximation

This chapter studies the theory of signal and image approximation, and gives an application to lossy
compression. This theoritical analysis is performed for continuous functions f ∈ L2([0, 1]d) for d = 1, 2. This
analysis is important to studies the performance of compression, denoising, and super-resolution applications.

4.1 Approximation

4.1.1 Approximation in an Ortho-basis

We consider an orthogonal basis B = {ψm}m of L2([0, 1]d), with for instance d = 1 (signals) or d = 2
(images). We recall that the decomposition of a signal in an orthonormal basis

f =
∑

m∈Z

〈f, ψm〉ψm

gives back the original signal and thus produces no error. Processing algorithms modify the coefficients
〈f, ψm〉 and introduce some error.

The simplest processing computes an approximation by considering only a sub-set IM ⊂ Z of M coeffi-
cients and performing the reconstruction from this subset

fM
def.
=

∑

m∈IM
〈f, ψm〉ψm, where M = |IM |.

The reconstructed signal fM is the orthogonal projection of f onto the space

VM
def.
= Span {ψm ; m ∈ IM} .

Since VM might depend on f , this projection f 7→ fM might be non-linear.
Since the basis is orthogonal, the approximation error is

||f − fM ||2 =
∑

m/∈IM
|〈f, ψm〉|2.

The important question is now to choose the set IM , which might depend on the signal f itself.

4.1.2 Linear Approximation

Linear approximation is obtained by fixing once for all IM , and thus using the same set of coefficients
for all f . The mapping f 7→ fM is a linear orthogonal projection on VM , and it satisfies

(f + g)M = fM + gM

69

For the Fourier basis, one usually selects the low-frequency atoms

IM = {−M/2 + 1, . . . ,M/2}.

For a 1-D wavelet basis, one usually selects the coarse wavelets

IM = {m = (j,m) ; j > j0}

where j0 is selected such that |IM | = M .

Original f Linear f `M Non-linear fnM

Figure 4.1: Linear versus non-linear wavelet approximation.

Figure 4.1, center, shows an example of such a linear approximation with wavelets. Linear approximation
tends to performs poorly near singularities, because they introduce some blurring.

4.1.3 Non-linear Approximation

A non-linear approximation is obtained by choosing IM depending on f . In particular, one would like to
choose IM to minimize the approximation error ||f − fM ||. Since the basis is orthogonal, this is achieved by
selecting the M largest coefficients in magnitude

IM = {M largest coefficients |〈f, ψm〉|}.

This can be equivalently obtained using a thresholding

IM = {m ; |〈f, ψm〉| > T}

where T depends on the number of coefficients M ,

M = # {m ; |〈f, ψm〉| > T} .

Computation of the threshold. There is a bijective 1:1 mapping between T and M obtained by ordering
the coefficient magnitudes |〈f, ψm〉| by decaying order,

T = dM where {dm}N−1
m=0 = {|〈f, ψm〉|}N−1

0 and dm > dm+1. (4.1)

Figure 4.2 shows this mapping between M and T .
The following proposition show that the decay of the ordered coefficients is linked to the non-linear

approximation decay.

70

Proposition 16. One has

dm = O(m−
α+1
2) ⇐⇒ ||f − fM ||2 = O(M−α). (4.2)

Proof. One has

||f − fM ||2 =
∑

m>M

d2
m

and

d2
M 6 2

M

M∑

m=M/2+1

d2
m 6 2

M

∑

m>M/2

d2
m =

2

M
||f − fM/2||2.

Figure 4.2: Decay of the ordered coefficients and determination of the threshold for non-linear approxiation.

Hard thresholding. The non-linear approximation is re-written as

fM =
∑

|〈f, ψm〉|>T
〈f, ψm〉ψm =

∑

m

ST (〈f, ψm〉)ψm, (4.3)

where

ST (x) =

{
x if |x| > T
0 if |x| 6 T

(4.4)

is the hard thresholding, that is displayed in Figure 4.3.

4.2 Signal and Image Modeling

A signal model is a constraint f ∈ Θ, where Θ ⊂ L2([0, 1]d) is a set of signals one is interested in. Figure
4.4 shows different class of models for images, that we describe in the following paragraph.

4.2.1 Uniformly Smooth Signals and Images

Signals with derivatives. The simplest model is made of uniformly smooth signals, that have bounded
derivatives

Θ =
{
f ∈ L2([0, 1]d) ; ||f ||Cα 6 C

}
, (4.5)

where C > 0 is a fixed constant, and where in 1-D

||f ||Cα def.
= max

k6α

∣∣∣
∣∣∣d
kf

dtk

∣∣∣
∣∣∣
∞
.

This extends to higher dimensional signals by considering partial derivatives along each direction.

71

Figure 4.3: Hard thresholding.

Regular Bounded variations Cartoon Natural

Figure 4.4: Examples of different kinds of image models.

Sobolev smooth signals and images. A smooth Cα signals in (4.5) has derivatives with bounded energy,
so that

dαf

dtα
(t) = f (α)(t) ∈ L2([0, 1]).

Using the fact that
f̂ (α)
m = (2iπm)αf̂m

where f̂ is the Fourier coefficient defined in (2.2), except we are here on R/Z in place of R/2πZ,

f̂n
def.
=

∫ 1

0

e−2iπnxf(x)dx,

one defines a so-called Sobolev functional

||f ||2Sob(α) =
∑

m∈Z

|2πm|2α|〈f, em〉|2, (4.6)

that satisfies ||f ||Sob(α) = ||f (α)|| for smooth functions. This Sobolev functional is extended to signals that

have derivatives in the sense of distribution in L2([0, 1]).
This definition extends to distributions and signals f ∈ L2([0, 1]d) of arbitrary dimension d as

||f ||2Sob(α) =
∑

m∈Zd

(2π||m||)2α|〈f, em〉|2, (4.7)

72

The Cα-Sobolev model

Θ =

{
f ∈ `2([0, 1]d) ; max

k6α
||f ||2Sob(k) 6 C

}
(4.8)

generalizes the Cα smooth image model (4.5).
Figure 4.5 shows images with an increasing Sobolev norm for α = 2.

Figure 4.5: Images with increasing Sobolev norm.

4.2.2 Piecewise Regular Signals and Images

Piecewise smooth signals. Piecewise smooth signals in 1-D are functions f ∈ L2([0, 1]) that are Cα

smooth outside a set of less than K pointwise discontinuities

Θ =
{
f ∈ L2([0, 1]) ; ∃ (ti)

K−1
i=0 , ||f(ti,ti+1)||Cα 6 C

}
(4.9)

where f(ti,ti+1) is the restriction of f to the open interval (ti, ti+1).

Piecewise smooth images. Piecewise smooth images are 2-D functions f ∈ L2([0, 1]2) that are Cα regular
outside a set of less than K curves that have a finite perimeter

Θ =
{
f ∈ L2([0, 1]2) ; ∃Γ = (γi)

K−1
i=0 , ||f ||Cα(Γc) 6 C1 and |γi| 6 C2

}
(4.10)

where |γi| is the length of the curve γi and where ||f ||Cα(Γc) is the maximum norm of the derivatives of f
outside the set of curves Γ.

Segmentation methods such as the one proposed by Mumford and Shah [22] implicitly assume such a
piecewise smooth image modem.

4.2.3 Bounded Variation Signals and Images

Signals with edges are obtained by considering functions with bounded variations

Θ =
{
f ∈ L2(Rd) ; ||f ||∞ 6 C1 and ||f ||TV 6 C2

}
. (4.11)

For d = 1 and d = 2, this model generalizes the model of piecewise smooth signals (4.9) and images (4.10).
The total variation of a smooth function is

∫
||∇f(x)||dx

where

∇f(x) =

(
∂f

∂xi

)d−1

i=0

∈ Rd

73

is the gradient vector at x. The total variation is extended to discontinuous images, that might for instance
exhibit jumps across singular curves (the edges of the image). In particular, the total variation of a piecewise
smooth image is the sum of the lengths of its level sets

||f ||TV =

∫ ∞

−∞
|Lt(f)|dt < +∞ where Lt(f) = {x ; f(x) = t} , (4.12)

and where |Lt(f)| is the length of Lt(f). For a set Ω ⊂ R2 with finite perimeter |∂Ω|, then

||1Ω||TV = |∂Ω|.

The model of bounded variation was introduced in image processing by Rudin, Osher and Fatemi [26].

4.2.4 Cartoon Images

The bounded variation image model (4.11) does not constrain the smoothness of the level set curves
Lt(f). Geometrical images have smooth contour curves, which should be taken into account to improve the
result of processing methods.

The model of Cα cartoon images is composed of 2-D functions that are Cα regular outside a set of less
that K regular edge curves γi

Θ =
{
f ∈ L2([0, 1]2) ; ∃Γ = (γi)

K−1
i=0 , ||f ||Cα(Γc) 6 C1 and ||γi||Cα 6 C2

}
(4.13)

where each γi is a arc-length parameterization of the curve γi : [0, A] 7→ [0, 1]2. Figure 4.6 shows cartoon
images with increasing total variation ||f ||TV.

∫
|∇f |

Figure 4.6: Cartoon image with increasing total variation.

Typical images might also be slightly blurred by optical diffraction, so that one might consider a blurred
cartoon image model

Θ̃ =
{
f̃ = f ? h ∈ L2([0, 1]2) ; f ∈ Θ and h ∈ H

}
(4.14)

where Θ is the model of sharp (unblurred) images (4.13) and H is a set of constraints on the blurring kernel,
for instance h > 0 should be smooth, localized in space and frequency. This unknown blurring makes difficult
brute force approaches that detects the edges location Γ and then process the regular parts in [0, 1]2\Γ.

Figure 4.7 shows examples of images in Θ and Θ̃.

4.3 Efficient approximation

4.3.1 Decay of Approximation Error

To perform an efficient processing of signals or images in Θ, the goal is to design an orthogonal basis
such that the non-linear approximation error ||f − fM || decays as fast as possible to 0 when M increases.

74

Figure 4.7: Examples of cartoon images: sharp discontinuities (left and center) and smooth discontinuities
(right).

Polynomial error decay. This error decay measured using a power law

∀ f ∈ Θ, ∀M, ||f − fM ||2 6 CfM
−α (4.15)

where α is independent of f and should be as large as possible. The parameter α depends on the basis and
on Θ. It is a class-complexity parameter that describes the overall complexity of signals in Θ with respect
to the orthogonal basis one considers for approximation. The parameter Cf depends on f and describes the
complexity of the signal f within its class Θ.

Relevance for compression, denoising and inverse problems. Monitoring the decay of approxima-
tion error is not only interesting from a mathematical point of view. Section 5.1 shows that the compression
error is close to the non-linear approximation error. Bases that are efficient for approximation are thus also
efficient for compression.

Chapter ?? shows that a similar conclusion holds for non-linear denoising with thresholding. Efficient
denoisers are obtained by performing a non-linear approximation of the noisy image in a well chosen basis.
The average denoising error with respect to a random noise is closely related to the approximation error.

Chapter ?? shows that ill-posed inverse problems such as super-resolution of missing information can
be solved by taking advantage of the compressibility of the signal or the image in a well chosen basis. A
basis that is efficient for approximation of the high resolution signal is needed to recover efficiently missing
information. The performance of these schemes is difficult to analyze, and the basis atoms must also be far
enough from the kernel of the operator that removes information.

Comparison of signals. For a fixed basis (for instance wavelets), the decay of ||f − fM || allows one to
compare the complexity of different images. Figure 4.9 shows that natural images with complicated geometric
structures and textures are more difficult to approximate using wavelets.

Since the approximation error often decays in a power-low fashion (4.15), the curves are displayed in a
log-log plot, so that

log(||f − fM ||2) = cst− α log(M)

and hence one should expect an affine curve with slope −α. Due to discretization issue, this is only the case
for value of M � N , since the error quickly drops to zero for M ≈ N .

4.3.2 Comparison of bases.

For a given image f , one can compare different ortho-bases using the decay of ||f−fM ||. Figure 4.11 shows
the efficiency of several bases to approximate a fixed natural image with contours and textures. The Fourier
basis described in Section ?? is highly innefficient because of periodic boundary artifact and the global

75

Smooth Cartoon Natural #1 Natural #2

Figure 4.8: Several different test images.
lo

g
1
0
(||f
−

f M
||)

log10(M/N)

Figure 4.9: Comparison of approximation error decay in wavelets for different images shown in Figure 4.8.

support of its atoms that fail to capture contours. The cosine basis uses symmetric boundary conditions and
thus removes the boundary artifacts, but it still not able to resolve efficiently localized features. The local
DCT basis corresponds to the union of local cosine bases defined on small square patches. It is more efficient
since its atoms have a local support. However, it gives bad approximation for a small number M of kept
coefficients, because of blocking artifacts. The isotropic wavelet basis detailed in Section ?? gives the best
approximation results because its is both composed of localized atoms and does not have a block structure
but rather a multiresolution structure.

Figure 4.12 summarizes the different type of approximation decays for various class of data, which are
detailed in the following section.

4.4 Fourier Linear Approximation of Smooth Functions

The smooth signal and image model (4.5) assumed that the analog function have bounded α continuous
derivatives. A function f with a large α has more smoothness, and is thus simpler to approximate. Figure
4.5 shows images with increasing smoothness.

4.4.1 1-D Fourier Approximation

A 1-D signal f ∈ L2([0, 1]) is associated to a 1-periodic function f(t+ 1) = f(t) defined for t ∈ R.

76

Fourier Cosine Local DCT Wavelets
SNR=17.1dB SNR=17.5dB SNR=18.4dB SNR=19.3dB

Figure 4.10: Comparison of approximation errors for different bases using the same number M = N/50 of
coefficients.

lo
g
1
0
(||f
−

f M
||)

log10(M/N)

Figure 4.11: Comparison of approximation error decay for different bases.

Low pass approximation. We consider a linear Fourier approximation, that only retains low frequencies

f lin
M =

M/2∑

m=−M/2

〈f, em〉em

where we use the 1-D Fourier atoms

∀n ∈ Z, em(t)
def.
= e2iπmt.

We note that fM actually requires M + 1 Fourier atoms.
Figure 4.13 shows examples of such linear approximation for an increasing value of M . Since the original

function f is singular (no derivative), this produces a large error and one observe ringing artifacts near
singularities.

This low pass approximation corresponds to a filtering, since

fM =

M/2∑

m=−M/2

〈f, em〉em = f ? hM where ĥM
def.
= 1[−M/2,M/2].

77

Figure 4.12: Summary of linear and non-linear approximation rates ||f − fM ||2 for different classes of 1-D
signals and images.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4.13: Fourier approximation of a signal.

Here, hM is the so-called Dirichlet kernel (see also the chapter on Fourier).
The following proposition shows that this approximation decays fast for Cα signals.

Proposition 17. One has for f ∈ Cα(R/Z)

||f − f linM ||2 = O(M−2α+1).

Proof. Using integration by part, one shows that for a Cα function f in the smooth signal model (4.5),

F(f (`))m = (2imπ)`f̂m, so that one has using Cauchy-Schwartz

|〈f, em〉| 6 |2πm|−α||f (α)||2.

This implies

||f − f lin
M ||2 =

∑

|m|>M/2

|〈f, em〉|2 6 ||f (α)||22
∑

|m|>M/2

|2πm|−2α = O(M−2α+1).

We show next that a slightly modified proof gives a better decay (assuming f (α) is in L2(R/Z)) and that
this conclusion is valid for a larger class of Sobolev functions.

78

Proposition 18. For signal f in the Sobolev model (4.8), i.e. f (α) ∈ L2(R), one has

||f − f linM ||2 6 C||f (α)||2M−2α. (4.16)

Proof. One has

||f (α)||2 =
∑

m

|2πm|2α|〈f, em〉|2 >
∑

|m|>M/2

|2πm|2α|〈f, em〉|2 (4.17)

> (πM)2α
∑

m>M/2

|〈f, em〉|2 > (πM)2α||f − f lin
M ||2. (4.18)

One can also shows that this asymptotic error decay is optimal, and that the non-linear approximation
error in Fourier also decays like O(M−2α).

For a signal in the piecewise smooth model (4.9), such as the one shows in Figure 4.13, one only has a
slow decay of the linear and non-linear approximation error

||f − fM ||2 6 CfM
−1 (4.19)

and Fourier atoms are not anymore optimal for approximation. A typical example is f = 1[a, b] the indicator

of a step, for which |f̂m| ∼ 1/m, and thus ||f−fM ||2 ∼
∑
|m|>M 1/|m|2 ∼ 1/M for both linear and non-linear

approximations.

4.4.2 Sobolev Images

This analysis caries over to images and higher dimensional datasets by considering a Sobolev functional
(4.7) for d > 1.

The linear and non-linear approximation of an α-regular Sobolev image then satisfy

||f − fM ||2 6 C||fα||2M−α.

For d-dimensional data f : [0, 1]d → R, one would have an error decay of O(M−2α/d).
For an image in the piecewise smooth model (4.10), the linear and non-linear error decays are slow,

||f − fM ||2 6 CfM
−1/2, (4.20)

and Fourier atoms are not anymore optimal for approximation.

4.5 Wavelet Approximation of Piecewise Smooth Functions

Wavelet approximation improve significantly over Fourier approximation to capture singularities. This
is due to the localized support of wavelets.

4.5.1 Decay of Wavelet Coefficients

To efficiently approximate regular parts of signals and images, one uses wavelet with a large enough
number p of vanishing moments

∀ k < p,

∫
ψ(x)xkdx = 0.

This number p should be larger than the regularity α of the signal outside singularities (for instance jumps
or kinks).

To quantify the approximation error decay for piecewise smooth signals (4.9) and images (4.10), one
needs to treat differently wavelets that are in regular and singular areas. Figure 4.15 shows for a signal and
an image the localization of singular and regular parts.

79

Figure 4.14: Linear (top row) and non-linear (bottom row) Fourier approximation.

Proposition 19. If f is Cα on supp(ψj,n), with p > α, one has

|〈f, ψj,n〉| 6 Cf ||ψ||12j(α+d/2). (4.21)

In general, one always has for bounded f

|〈f, ψj,n〉| 6 ||f ||∞||ψ||12j
d
2 .

Proof. If f is Cα on supp(ψj,n), with p > α, then one can perform a Taylor expansion of f around the point
2jn

f(x) = P (x− 2jn) +R(x− 2jn) = P (2jt) +R(2jt)

where deg(P) < α and
|R(x)| 6 Cf ||x||α.

One then bounds the wavelet coefficient

〈f, ψj,n〉 =
1

2j
d
2

∫
f(x)ψ

(
x− 2jn

2j

)
dx = 2j

d
2

∫
R(2jt)ψ(t)dt

where we have performed the change of variable t = x−2jn
2j . This shows that (4.21) holds. Property (19) is

straightforward.

4.5.2 1-D Piecewise Smooth Approximation

For 1-D signal in the piecewise regular model (4.9), large wavelets coefficients 〈f, ψj,n〉 are clustered
around the singularities of the signal. We call S ⊂ [0, 1] the finite set of singular points.

Theorem 5. f is in the piecewise smooth signal model (4.9), the non-linear approximation error in wavelet
obeys

||f − fM ||2 = O(M−2α). (4.22)

Proof. The proof is split in several parts.

80

f(x)

Figure 4.15: Singular par of signals (left) and image (right).

Step 1. Coefficient segmentation. The singular support at scale 2j is the set of coefficients correspond-
ing to wavelets that are crossing a singularity

Cj = {n ; supp(ψj,n) ∩ S 6= ∅} (4.23)

It has a constant size because of the dyadic translation of wavelets

|Cj | 6 K|S| = constant.

Using (4.21) for d = 1, the decay of regular coefficients is bounded as

∀n ∈ Ccj , |〈f, ψj,n〉| 6 C2j(α+1/2).

Using (19) for d = 1, the decay of singular coefficients is bounded as

∀n ∈ Cj , |〈f, ψj,n〉| 6 C2j/2.

Once a fixed threshold T is fixed to compute the non-linear approximation, one defines cut-off scales for
regular and singular coefficients that depend on T

2j1 = (T/C)
1

α+1/2 and 2j2 = (T/C)2.

Figure 4.16 shows a schematic segmentation of the set of wavelet coefficients into regular and singular parts,
and also using the cut-off scales.

Step 2. Counting the error. These cut-off scales allow us to define a hand-crafted approximation signal

f̃M =
∑

j>j2

∑

n∈Cj
〈f, ψj,n〉ψj,n +

∑

j>j1

∑

n∈Ccj

〈f, ψj,n〉ψj,n. (4.24)

The approximation error generated by this M -term approximation f̃M is larger than the best M -term
approximation error, and hence

||f − fM ||2 6 ||f − f̃M ||2 6
∑

j<j2,n∈Cj
|〈f, ψj,n〉|2 +

∑

j<j1,n∈Ccj

|〈f, ψj,n〉|2 (4.25)

6
∑

j<j2

(K|S|)× C22j +
∑

j<j1

2−j × C22j(2α+1) (4.26)

= O(2j2 + 22αj1) = O(T 2 + T
2α

α+1/2) = O(T
2α

α+1/2). (4.27)

81

x1 x2

S = {x1, x2}
f(x)

j1

j2

Large coefficient

|〈f, ψjn〉| < T
Small coefficient

Figure 4.16: Segmentation of the wavelet coefficients into regular and singular parts.

Step 3. Counting the number of measurements. The number of coefficients needed to build the
approximating signal f̃M is

M 6
∑

j>j2

|Cj |+
∑

j>j1

|Ccj | 6
∑

j>j2

K|S|+
∑

j>j1

2−j (4.28)

= O(| log(T)|+ T
−1

α+1/2) = O(T
−1

α+1/2). (4.29)

Step 3. Putting everything together. Putting equations (4.25) and (4.28) together gives the desired
result.

This theorem improves significantly over the O(M−1) decay of Fourier approximation (4.19). Further-
more, this decay is the same as the error decay of uniformly smooth signal (4.16). In 1-D, wavelet ap-
proximations do not “see” the singularities. The error decay (4.22) can be shown to be asymptotically
optimal.

Figure 4.17 shows examples of wavelet approximation of singular signals.

4.5.3 2-D Piecewise Smooth Approximation

We now give the equivalent of Theorem 5 but for 2-D functions.

Theorem 6. f is in the piecewise smooth signal model (4.10), the non-linear approximation error in wavelet
obeys

||f − fM ||2 = O(M−1). (4.30)

Proof. For an image in the piecewise smooth model (4.10), we define the singular support Cj as in (4.23).
The major difference with the 1-D setting, is that for 2-D images, the size of the singular support grows
when the scale 2j goes to zero

|Cωj | 6 2−jK|S|,
where |S| is the perimeter of the singular curves S, and ω ∈ {V,H,D} is the wavelet orientation. Using
(4.21) for d = 2, the decay of regular coefficients is bounded as

∀n ∈ (Cωj)c,
∣∣〈f, ψωj,n〉

∣∣ 6 C2j(α+1).

Using (19) for d = 2, the decay of singular coefficients is bounded as

∀n ∈ Cωj ,
∣∣〈f, ψωj,n〉

∣∣ 6 C2j .

82

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4.17: 1-D wavelet approximation.

After fixing T , the cut-off scales are defined as

2j1 = (T/C)
1

α+1 and 2j2 = T/C.

We define similarly to (4.24) a hand-made approximation. Similarly to (4.25), we bound the approximation
error as

||f − fM ||2 6 ||f − f̃M ||2 = O(2j2 + 22αj1) = O(T + T
2α
α+1) = O(T)

and the number of coefficients as

M = O(T−1 + T
−1
α+1) = O(T−1).

This leads to the announced decay of the non-linear wavelet approximation error.

This improves significantly over the O(M−1/2) decay of Fourier approximation (4.20). This result is
however deceiving, since it does not take advantage of the Cα regularity of the image outside the edge
curves.

This error decay is still valid for the more general model of images with bounded variations (4.11). One
can shows that wavelets are asymptotically optimal to approximate images with bounded variations.

Figure 4.18 shows wavelet approximations of a bounded variation image.

4.6 Cartoon Images Approximation

The square support of wavelet makes them inefficient to approximate geometric images (4.13), whose
edges are more regular than the level set of bounded variation images (4.11), which are only assumed to be
of finite length.

4.6.1 Wavelet Approximation of Cartoon Images

Result (4.30) shows that wavelet approximation of images in the cartoon models (4.13) decays at least
like O(M−1). One can show that simple cartoon images like f = 1Ω where Ω is a disk reach this low decay

83

Figure 4.18: 2-D wavelet approximation.

speed. This is because the square support of wavelets forbid them to take advantage of the regularity of
edge curves. The approximation error for the smoothed cartoon model (4.14) is also slow if the width of the
blurring kernel is small with respect to the number M of coefficients.

Figure 4.19 shows that many large coefficients are located near edge curves, and retaining only a small
number leads to a bad approximation with visually unpleasant artifacts.

f {〈f, ψωj,n〉} fM

Figure 4.19: Wavelet approximation of a cartoon image.

4.6.2 Finite Element Approximation

To improve over the wavelet approximation, one can design an adapted triangulation that is highly
anisotropic near edges. Figure 4.20 shows an example of such a triangulation.

A triangulation is obtain by sampling M points over the image domain [0, 1]2 and then connecting them
using triangles. One then defines a piecewise linear interpolation f̃M over these triangles.

As shown in Figure 4.21, an efficient approximation of a C2-cartoon image (4.13) for α = 2 is obtained
by seeding ≈ M/2 approximately equilateral triangles of width ≈ M−1/2 in the areas where the image is
regular. Near the edges, using the C2 regularity of the singular curve, one can seed ≈ M/2 anisotropic
triangles of length M−1 and width ≈M−1/2. One can show that such an adaptive triangulation leads to an

84

Figure 4.20: Left: cartoon image, right: adaptive triangulation.

M−1/2

M−1/2

Figure 4.21: Aspect ratio of triangle away from edges (left) and near an edge (right).

approximation error

||f − fM ||2 = O(M−2), (4.31)

which improves over the wavelet approximation error decay (4.30).

This scheme is however difficult to implement in practice, since the edge curves are not known and
difficult to find. This is in particular the case for smooth cartoon images when the smoothing kernel h is
unknown.

There is currrently no known algorithm that can automatically produces the error decay (4.31). One
thus has to use heuristics and greedy algorithm to find the location of the sampling points and computes
the triangles. Figure (4.22) shows an example of compression using such a greedy seeding algorithm, that
works well in practice.

4.6.3 Curvelets Approximation

Instead of using an adaptive approximation scheme such as finite elements, one can replace the wavelet
basis by a set of oriented anisotropic atoms. The curvelet frame was proposed by Candès and Donoho for
this purpose [7].

Curvelets. The curvelet construction starts from a curvelet function c that is oriented along the horizontal
direction, and perform stretching

c2j (x1, x2) ≈ 2−3j/4c(2−j/2x1, 2
−jx2),

85

Adpated triangulation f̃M JPEG-2000

Figure 4.22: Comparison of adaptive triangulation and JPEG-2000, with the same number of bits.

translation and rotation

cθ2j ,u(x1, x2) = c2j (Rθ(x− u))

where Rθ is the rotation of angle θ.

The atoms cθ2j ,u is located near u, with an orientation θ, and has an aspect ratio “width ≈ length2”, which
is the same aspect used to build an adaptive finite element approximation. This aspect ratio is essential to
capture the anisotropic regularity near edges for images in the cartoon model (4.13) for α = 2.

Figure 4.23: Left: a curvelet cm, right: its Fourier transform localization.

Figure 4.24 shows the spacial and frequency localization of curvelets.

Parameter discretization. To build an image representation, one need to sample the u and θ parameter.
To maintain a stable representation, the sub-sampling of the angles depends on the scale

∀ 0 6 k < 2−dj/2e+2, θ
(j)
k = kπ2dj/2e−1

86

and the spacial grid depends on the scale and on the angles

∀m = (m1,m2) ∈ Z2, u(j,θ)
m = Rθ(2

j/2m1, 2
jm2).

Figure 4.24 shows this sampling pattern.

Figure 4.24: Sampling pattern for the curvelet positions.

Curvelet tight frame. This sampling leads to a stable redundant family

Cj,m,k(x) = cθ2j ,u(x) where θ = θ
(j)
k and u = u(j,θ)

m ,

that obeys a conservation of energy

||f ||2 =
∑

j∈Z

2−dj/2e+2∑

k=0

∑

m∈Z2

|〈f, Cj,m,k〉|2

and a reconstruction formula

f =
∑

j∈Z

2−dj/2e+2∑

k=0

∑

m∈Z2

〈f, Cj,m,k〉Cj,m,k

that extends the properties of orthogonal basis (tight frame), although the representation is redundant (the
atoms are not orthogonal).

A numerical implementation of this tight frame also defines a discrete tight frame for image of N pixels,
that is made of ≈ 5N atoms [8].

Curvelet approximation. A non-linear M -term approximation in curvelets is defined as

fM =
∑

|〈f, Cj,m,k〉|>T
〈f, Cj,m,k〉Cj,m,k

where T is a threshold that depends on M . One should note that fM is not necessarily the best M -term
curvelet approximation since the curvelet frame is not orthogonal.

87

Figure 4.25: Comparison of the principle of wavelets (left) and curvelet (right) approximations of a cartoon
image.

For position u
(j,θ)
m that are far away from an edges, the vanishing moments of the curvelets create a small

coefficient 〈f, Cj,m,k〉. If u
(j,θ)
m is close to an edge curve whose tangent has direction θ̃, then the coefficient

〈f, Cj,m,k〉 decays very fast to zero when |θ − θ̃| increases. Figure 4.25 shows the principle of this curvelet
approximation, and compares it with directional wavelets that have a square support.

Using these two properties together with the sparse sampling of the curvelet in space and orientation
leads to the following approximation error decay

||f − fM ||2 = O(log3(M)M−2)

for image in the cartoon model (4.13) for α = 2. This is close to the decay of adaptive triangulations (4.31),
but this time one computes fM with a fast O(N log(N)) algorithm for an image of N pixels.

In practice, the redundancy of the curvelet frame makes it not suitable for image compression. Its
efficiency is however useful for denoising purpose, where it can improve over wavelet to denoise geometric
images and textures, see Figure 4.26. The result is obtained by using a thresholding denoiser as detailed in
Section 6.3.1.

Noisy f Wavelet f̃ Curvelets f̃

Figure 4.26: Comparison of wavelets (translation invariant) and curvelet denoising.

88

Chapter 5

Compression

5.1 Transform Coding

5.1.1 Coding

State of the art compression schemes correspond to transform coders, that code quantized coefficients in
an ortho-basis. They first computes the coefficients of the decomposition of the signal into an well-chosen
basis (for instance wavelets)

am = 〈f, ψm〉 ∈ R.

Quantization corresponds to rounding the coefficients to an integer using a step size T > 0

qm = QT (am) ∈ Z where QT (x) = sign(x)

⌊ |x|
T

⌋
.

We note that this quantizer has a twice larger zero bin, so that coefficients in [−T, T] are set to zero.
This quantizer nonlinearity should be compared to the hard thresholding nonlinearity (9.4) used to

perform non-linear approximation. The quantizer not only set to zero small coefficients that are smaller
than T in magnitude, it also modifies larger coefficients by rounding, see Figure 5.1.

Figure 5.1: Thresholding and quantization non-linearity mappings.

The resulting integer values (qm)m are stored into a binary file of length R, which corresponds to a
number of bits. Sections 5.1.3 and 5.2 detail two different approach to perform this transformation from
integer to bits. The goal is to reduce as much as possible the number R of bits.

89

5.1.2 De-coding

The decoder retrieves the quantized coefficients qm from the binary file, and dequantizes the coefficients
using

ãm = sign(qm)

(
|qm|+

1

2

)
T. (5.1)

This corresponds to retrieving the value from quantization at the center of quantization bins:

ã[m]

−T T 2T−2T a[m]

The compressed-decompressed image is then reconstructed as

QT (f)
def.
=
∑

m∈IT
ãmψm =

∑

m∈IT
QT (〈f, ψm〉)ψm,

thus producing a decompression error ||f −QT (f)||.
This decompression reconstruction (5.1.2) should be compared with the non-linear approximation for-

mula (4.3). One necessarily has ||f − fM || 6 ||f −QT (f)||, but in practice these two errors have comparable
magnitudes.

Proposition 20. One has

||f −QT (f)||2 6 ||f − fM ||2 +MT 2/4 where M = # {m ; ãm 6= 0} . (5.2)

Proof. Indeed, the de-quantization formula (5.1) implies that for |am| > T ,

|am − ãm| 6
T

2
.

One thus has

||f −QT (f)||2 =
∑

m

(am − ãm)2 6
∑

|am|<T
|am|2 +

∑

|am|>T

(
T

2

)2

,

which leads to the desired bound.

5.1.3 Support Coding

To measure how large is the additional error term MT 2/4 in (5.2), one needs to choose a method to store
the quantized coefficients qm into a file.

For aggressive compression scenario, where R and M are small with respect to the size N of the image,
the support

IM = {m ; ãm 6= 0}
is highly sparse. It thus make sense to code first this support and then to code the actual value qm 6= 0 for
m ∈ IM .

The remaining of this section proves the following theorem.

Theorem 7. We assume ||f − fM ||2 ∼ M−α where fM is the M -term non-linear approximation of f in
{ψm}m. We also assume that the required number of discrete samples N used can be bounded polynomially
with N (see (5.7) below for more details). Then for all T there exists a coding strategy of QT (f) using
R = R(T) bits such that

||f −QT (f)||2 = O(logα(R)R−α).

Proof. This proof is split in several parts.

90

Signals constraints. First, let us notice that, thanks to Proposition 16 the error decay hypothesis ||f −
fM ||2 ∼M−α is equivalent to imposing a fast decay of the ordered coefficients dm defined in (4.1) satisfies

dm ∼ m−
α+1
2 =⇒ T ∼M−α+1

2 . (5.3)

Thanks to Proposition 20, one thus has

||f − fM ||2 6 ||f −QT (f)||2 6 ||f − fM ||2 +MT 2/4 ∼M−α ∼ ||f − fM ||2, (5.4)

which shows that the compression error is comparable with the approximation error.

Discrete computation and scaling of N . For the compression from the discrete signals to be the same
as a compression of a continuous signal, we impose that N is large enough so that

∀m > N, |〈f, ψm〉| < T (5.5)

so that the coefficients not quantized to 0 are contained within the set {〈f, ψm〉}06m<N of the N computed
coefficients. For instance, if f is bounded and one considers a wavelet basis, (19) ensures that |〈f, ψm〉| =
O(2−jd/2), and thus choosing T ∼ 2−jmaxd/2 ensures (5.5) where N = 2−jmaxd, i.e.

N = O(1/T 2). (5.6)

The other hypothesis beyond (5.3) of Theorem 7 is that the number N of required discrete samples is
not too large, and in particular, that there is a polynomial grows of N with respect to the number M of
coefficients to code

N = O(Mβ) (5.7)

for some β > 0. For instance, under the decay condition (5.3) and the worse case scaling (5.6) for bounded
function in a wavelet basis,

N = O(1/T 2) and T ∼M−α+1
2 =⇒ N = O(Mα+1).

Support coding. One can simply encode the M indexes of each element m ∈ IM ⊂ {1, . . . , N} using
log2(N) bits, so that the total number of bits for the support IM is

Rind = M log2(N) = O(M log2(M)) (5.8)

where we used (5.3).

Values coding. The quantized values satisfy qm ∈ {−A, . . . , A}, with

A 6 1

T
max
m
|〈f, ψm〉| = O(T−1),

so one can code them using a number of bits

Rval = O(M | log2(T)|) = O(M log2(M)) (5.9)

where we have used hypothesis (5.3) that implies | log2(T)| ∼ log2(M).

91

Total number of bits. Putting (5.8) and (5.9) together, the total number of bits for this support coding
approach is thus

R = Rind +Rval = O(M log2(M)). (5.10)

The function ϕ(m) = m log2(m) is strictly increasing, one can invert it, and we now show that ϕ−1(r) =
r/ log(r) + o(1) for large r. Indeed, writing r = ϕ(m)

m =
r

log2(m)
=

r

log2(r)− log2 log2(m)
∼ r

log2(r)

where we used the fact that since m 6 r, log2 log2(m) = o(log2(r)). Inverting this relationship (5.10) thus
proves that

M > C
R

log2(R)
(5.11)

for some constant C. Using (5.4) and (5.11), one thus finally arrives to

||f −QT (f)||2 ∼M−α = O(logα(R)R−α).

This theorem shows the importance of the study of non-linear approximation, and in particular the
design of bases that are efficient for approximation of a given signal model Θ. Let us also insists on the
fact that a practical compression algorithm is only capable of dealing with discrete signals of size N . We
thus considers that the algorithm has access to N inner products {〈f, ψm〉}16m<N that are computed using
a decomposition algorithm from a discretized signal or image of size N . For instance, Section ?? details a
discrete wavelet transform, and introduces a compatibility condition (??) on the sampling operator for this
inner product computation to be possible from discrete data.

Original f Zoom Wavelet support Compressed QT (f)

Figure 5.2: Image compression using wavelet support codding.

5.2 Entropic Coding

To further reduce the file size R (in bits), one can use an entropic coder to transform the integer values
qm into bits. Such coding scheme makes use of the statistical redundancy of the quantized values, that have
a large number of zero entries and very few large entries. The theory of coding was formalized by Shannon
[28].

We refer to Section 1.3 for the theoretical foundation associated to what we now describe.

92

Probabilistic modeling. The quantized coefficients qm ∈ {−A, . . . , A} are assumed to take values in an
alphabet of Q = 2A+ 1 elements. A coding scheme performs the transformation

{qm}m 7−→ {0, 1, 1, . . . , 0, 1} ∈ {0, 1}R.
To reduce the average value of R, one makes use of a statistical model, which assumes that the qm are drawn
independently at random from a known probability distribution

P(qm = i) = pi ∈ [0, 1].

Huffman code. A Huffman code is a code with variable length, since it perform a mapping from symbols
to binary strings

qm = i ∈ {−A, . . . , A} 7−→ ci ∈ {0, 1}|ci|

where |ci| is the length of the binary code word ci, that should be larger if pi is small. A Huffman tree
algorithm is able to build a code such that

|ci| 6 dlog2(pi)e
so that

R 6 (E(p) + 1)N

where E is the entropy of the distribution, defined as

E(p) = −
∑

i

pi log2(pi).

Figure 5.3 shows different probability distribution. The entropy is small for highly sparse distribution.
Wavelet coefficients of natural images tend to have a low entropy because many coefficients are small.

The Huffman scheme codes symbols independently, leading to a sub-optimal code if some of the pi are
large, which is usually the case for wavelet coefficients. One usually prefers arithmetic coding schemes, that
codes groups of symbols, and are able to get close to the entropy bound R ≈ E(p)N for large N .

E(p) = log2(Q) E(p) = 0 0 < E(p) < log2(Q)

Figure 5.3: Three different probability distributions.

5.3 JPEG-2000

JPEG-2000 is the latest still image compression standard. It corresponds to a wavelet transform coder
that performs a clever adaptive entropy coding that makes use of the statistical redundancy of wavelet
coefficients of natural images. The wavelet transform is not orthogonal, it is a symmetric 7/9 biorthogo-
nal, with symmetric boundary condition and a lifting implementation. This transform is however close to
orthogonality, so that the previous discussion about orthogonal approximation and coding is still relevant.

Figure 5.4 shows an overview of JPEG-2000 architecture. Figure 5.5 shows a comparison between JPEG
and JPEG-2000 compressors. JPEG is based on a local DCT transform, and suffers from blocking artifacts
at low bit rates, which is not the case of JPEG-2000. This new standard also comes with several important
features, such as regions of interest, which allows to refine the coding in some specific parts of the image.

93

Figure 5.4: JPEG-2000 coding architecture.

Dyadic quantization. The wavelet coefficients are quantized with a varying quantization step Ti = 2−iT0.
This allows one to progressively increase the precision of the coded coefficients. For each i, a bit plane coding
pass produces new bits to refine the value of the coefficients when i increases.

Steam packing. The bits obtained using the bit plane pass with quantizer Ti = 2−iT0 are entropy coded
using a contextual coder. This coder processes square blocks Sk of coefficients. This local coding enhances
the parallelization of the method. This local block coding produces a bit stream cki , and these streams are
optimally packed into the final coded file to reduce the distortion ||f − QT (f)|| for almost every possible
number R of bits. This stream packing ensures scalability of the output bit stream. It means that one can
receive only the R first bits of a large coded file and get a low resolution decoded image QT (f) that has an
almost minimal distortion ||f −QT (f)||.

Bit plane coding pass. For each threshold Ti, for each scale and orientation (j, ω ∈ {V,H,D}), for each
coefficient location n ∈ Sk, JPEG-2000 coder encodes several bit reflecting the value of the wavelet coefficient
dωj [n]. In the following we drop the dependancy on (j, ω) for simplicity.

If dωj [n] < Ti−1, the coefficient was not significant at bit-plane i−1. It thus encodes a significance bit b1i [n]
to tell wether dωj [n] > Ti or not.

If b1i [n] = 1, meaning that the coefficient has became significant, it codes it sign as a bit b2i [n].

For every position n that was previously significant, meaning dωj [n] > Ti−1, it codes a value refinement bit

b3i [n] to tell wether dωj [n] > Ti or not.

Contextual coder. The final bits streams cki are computed from the produced bits {bsi [n]}3s=1 for n ∈ Sk
using a contextual coder. The contextual coding makes use of spacial redundancies in wavelet coefficients,
especially near edges and geometric singularities that create clusters of large coefficients. The coefficients
n ∈ Sk are traversed in zig-zag order as shown on Figure 5.6.

For each coefficient location n ∈ Sk, the context value vsi [n] of the bit bsi [n] to code at position x is an
integer computed over a 3× 3 window

wn = {(n1 + ε1, n2 + ε2)}εi=±1.

This local context vsi [n] integrates in a complicated way the previous bit plane values {bsi−1[ñ]}ñ∈wn , and
neighboring bits at plane {bsi [ñ]}ñ∈wn,ñ coded that have already been coded.

The bit value bsi [n] is then coded with an arithmetic coding by making use of the conditional probability
distribution P(bsi [n]|vsi [n]). The choice made for the computation vsi [n] allows to reduce significantly the

94

Figure 5.5: Comparison of JPEG (left) and JPEG-2000 (right) coding.

entropy of this conditional probability condition with respect to the original distribution P(bsi [n]), thus
reducing the overall number of bits.

95

code block width

3 × 3 context window

Figure 5.6: Coding order and context for JPEG-2000 coding.

96

Chapter 6

Denoising

Together with compression, denoising is the most important processing application, that is pervasive in
almost any signal or image processing pipeline. Indeed, data acquisition always comes with some kind of
noise, so modeling this noise and removing it efficiently is crucial.

6.1 Noise Modeling

6.1.1 Noise in Images

Image acquisition devices always produce some noise. Figure 6.1 shows images produced by different
hardware, where the regularity of the underlying signal and the statistics of the noise is very different.

Digital camera Confocal imaging SAR imaging

Figure 6.1: Example of noise in different imaging device.

One should thus model both the acquisition process and the statistics of the noise to fit the imaging
process. Then one should also model the regularity and geometry of the clean signal to choose a basis
adapted to its representation. This chapter describes how thresholding methods can be used to perform
denoising in some specific situations where the noise statistics are close to being Gaussian and the mixing
operator is a sum or can be approximated by a sum.

Since noise perturbs discrete measurements acquired by some hardware, in the following, we consider
only finite dimensional signal f ∈ CN .

97

6.1.2 Image Formation

Figure 6.2 shows an idealized view of the image formation process, that mixes a clean image f0 with a
noise w to obtain noisy observations f = f0 ⊕ w, where ⊕ might for instance be a sum or a multiplication.

Figure 6.2: Image formation with noise modeling and denoising pipepline.

Statistical modeling considers w as a random vector with known distribution, while numerical computa-
tion are usually done on a single realization of this random vector, still denoted as w.

Additive Noise. The simplest model for such image formation consists in assuming that it is an additive
perturbation of a clean signal f0

f = f0 + w

where w is the noise residual. Statistical noise modeling assume that w is a random vector, and in practice
one only observes a realization of this vector. This modeling thus implies that the image f to be processed
is also a random vector. Figure 6.3 and 6.4 show examples of noise addition to a clean signal and a clean
image.

f0 f

Figure 6.3: 1-D additive noise example.

The simplest noise model assumes that each entry wn of the noise is a Gaussian random variable of
variance σ2, and that the wn are independent, i.e. w ∼ N (0, IdN). This is the white noise model.

Depending on the image acquisition device, one should consider different noise distributions, such as for
instance uniform noise wn ∈ [−a, a] or Impulse noise

P(wn = x) ∝ e−|x/σ|α where α < 2

In many situations, the noise perturbation is not additive, and for instance its intensity might depend on
the intensity of the signal. This is the case with Poisson and multiplicative noises considered in Section 6.4.

98

f0 f

Figure 6.4: 2-D additive noise example.

6.1.3 Denoiser

A denoiser (also called estimator) is an estimation f̃ of f0 computed from the observation f alone. It is
thus also a random vector that depends on the noise w. Since f is a random vector of mean f0, the numerical
denoising process corresponds to the estimation of the mean of a random vector from a single realization.
Figure 6.5 shows an example of denoising.

The quality of a denoiser is measured using the average mean square risk Ew(||f0− f̃ ||2). where Ew is the
esperance (averaging) with respect to the noise w. Since f0 is unknown, this corresponds to a theoretical
measure of performance, that is bounded using a mathematical analysis. In the numerical experiments, one
observes a single realization fr ∼ f0 +w, and the performance is estimated from this single denoising using
the SNR

SNR(f̃r, f0) = −20 log10(||f̃r − f0||/||f0||),
where f̃r should be computed from the single realization fr of f . In the following, with an abuse of notation,
when displaying single realization, we ignore the exponent r. The SNR is expressed in “decibels”, denoted
dB. This measure of performance requires the knowledge of the clean signal f0, and should thus only be
considered as an experimentation tool, that might not be available in a real life denoising scenario where
clean data are not available. Furthermore, the use of an `2 measure of performance is questionable, and one
should also observe the result to judge of the visual quality of the denoising.

6.2 Linear Denoising using Filtering

6.2.1 Translation Invariant Estimators

A linear estimator E(f) = f̃ of f0 depends linearly on f , so that E(f + g) = E(f) + E(g). A translation
invariant estimator commutes with translation, so that E(fτ) = E(f)τ , where fτ (t) = f(t − τ). Such a
denoiser can always be written as a filtering

f̃ = f ? h

where h ∈ RN is a (low pass) filter, that should satisfy at least

∑

n

hn = ĥ0 = 1

where ĥ is the discrete Fourier transform.
Figure 6.6 shows an example of denoising using a low pass filter.

99

f0 f f̃

Figure 6.5: Left: clean image, center: noisy image, right: denoised image.

The filtering strength is usually controlled the width s of h. A typical example is the Gaussian filter

∀ −N/2 < i 6 N/2, hs,i =
1

Zs
exp

(
− i2

2s2

)
(6.1)

where Zs ensures that
∑
i hs,i = 1 (low pass). Figure 6.6 shows the effect of Gaussian filtering over the

spacial and Fourier domains.
Figure 6.7 shows the effect of low pass filtering on a signal and an image with an increasing filter width

s. Linear filtering introduces a blur and are thus only efficient to denoise smooth signals and image. For
signals and images with discontinuities, this blur deteriorates the signal. Removing a large amount of noise
necessitates to also smooth significantly edges and singularities.

6.2.2 Optimal Filter Selection

The selection of an optimal filter is a difficult task. Its choice depends both on the regularity of the
(unknown) data f0 and the noise level σ. A simpler option is to optimize the filter width s among a
parametric family of filters, such as for instance the Gaussian filters defined in (6.1).

The denoising error can be decomposed as

||f̃ − f0|| 6 ||hs ? f0 − f0||+ ||hs ? w||

The filter width s should be optimized to perform a tradeoff between removing enough noise (||hs ? w||
decreases with s) and not smoothing too much the singularities ((||hs ? f0 − f0|| increases with s).

Figure (6.8) shows the oracle SNR performance, defined in (??).
Figure 6.9 and 6.10 show the results of denoising using the optimal filter width s? that minimizes the

SNR for a given noisy observation.
These optimal filtering appear quite noisy, and the optimal SNR choice is usually quite conservative.

Increasing the filter width introduces a strong blurring that deteriorates the SNR, although it might look
visually more pleasant.

6.2.3 Wiener Filter

If one has a random model both for the noise w ∼ W and for for the signal f0 ∼ F , one can derives an
optimal filters in average over both the noise and the signal realizations. One further assumes that w and

100

f log(f̂)

f log(ĥ)

f ? h log(f̂ · ĥ) = log(ĥ) + log(ĥ)

Figure 6.6: Denoising by filtering over the spacial (left) and Fourier (right) domains.

f0 are independent realization. The optimal h thus minimizes

EW,F (||h ? (F +W)− F ||2)

If both F is wide-sense stationary, and W is a Gaussian white noise of variance σ2, then the optimal filer is
known as the Wiener filter

ĥω =
|F̂ω|2

|F̂ω|2 + σ2

where |F̂ |2 is the power spectrum of F ,

F̂ω = Ĉω where Cn = E(〈F, F [·+ n]〉),

the Fourier transform of an infinite vector is defined in Section 2.3.
In practice, one rarely has such a random model for the signal, and interesting signals are often not

stationary. Most signals exhibit discontinuities, and are thus poorly restored with filtering.

6.2.4 Denoising and Linear Approximation

In order to study linear (and also non-linear, see the section below) denoising without assuming a random
signal model, one should use approximation theory as studied in Chapter 4. We thus consider an ortho-basis
B = (ψm)m of RN , and consider a simple denoising obtained by keeping only the M first term elements of
the approximation of the noisy observation in B

f̃
def.
=

M∑

m=1

〈f, ψm〉ψm. (6.2)

101

Figure 6.7: Denoising using a filter of increasing width s.

This is a linear projection on the space spanned by (ψm)Mm=1. This denoising scheme is thus parameterized
by some integer M > 0, increasing M increases the denoising strength. For instance, when B is the discrete
Fourier basis, this corresponds to an ideal low-pass filter against a (discretized) Dirichlet kernel.

More advanced linear denoising operator can be designed by computing weighted average
∑
m λm〈f, ψm〉ψm,

and (6.2) is retrieve when using binary weights αn = 1 for n 6 M , and αn = 0 otherwise. The asymptotic
theoretical performances described by the following theorem are however not improved by using non-binary
weights.

Theorem 8. We assume that f0 ∈ RN has a linear approximation error decay that satisfies

∀M, ||f0 − f lin0,M ||2 6 CM−2β where f lin0,M
def.
=

M∑

m=1

〈f0, ψm〉ψm

for some constant C. Then the linear denoising error using (6.2) satisfies

E(||f0 − f̃ ||2) 6 2C
1

2β+1σ2− 1
β+1/2 ,

when choosing

M = C
1

2β+1σ−
2

2β+1 . (6.3)

Proof. One has, thanks to the ortho-normality of (ψm)m

E(||f0 − f̃ ||2) = E(
∑

m

〈f0 − f̃ , ψm〉2) = E(

M∑

m=1

〈f0 − f, ψm〉2 +
∑

m>M

〈f0, ψm〉2)

= E

(
M∑

m=1

〈w, ψm〉2
)

+
∑

m>M

〈f0, ψm〉2 = Mσ2 + ||f0 − f lin
0,M ||2

6Mσ2 + CM−2β .

102

Figure 6.8: Curves of SNR as a function of the filtering width in 1-D (left) and 2-D (right).

Figure 6.9: Noisy image (left) and denoising (right) using the optimal filter width.

Here we use the fundamental fact that (〈w, ψm〉)m is also N (0, σ2IdN). Choosing M such that Mσ2 =

CM−2β , i.e. M = C
1

2β+1σ−
2

2β+1 leads to

E(||f0 − f̃ ||2) = 2CM−2β = 2CC−
2β

2β+1σ
4β

2β+1 = 2C
1

2β+1σ2− 1
β+1/2 .

There are several important remark regarding this simple but important result:

Thanks to the decay of the linear approximation error, the denoising error E(||f0 − f̃ ||2) is bounded inde-
pendently of the sampling size N , although the input noise level E(||w||2) = Nσ2 growth with N .

If the signal is well approximated linearly, i.e. if β is large, then the denoising error decays fast when the
noise level σ drops to zero. The upper bound approaches the optimal rate σ2 by taking β large enough.

This theory is finite dimensional, i.e. this computation makes only sense when introducing some discretiza-
tion step N . This is natural because random noise vectors of finite energy are necessarily finite dimensional.

For the choice (6.3) to be realizable, one should however have M 6 N , i.e. N > C
1

2β+1σ−
2

2β+1 . Thus N
should increase when the noise diminish for the denoising effect to kick-in.

Section 4.3.1 bounds the linear approximation error for infinite dimensional signal and image model. This
theory can be applied provided that the discretization error is smaller than the denoising error, i.e. once
again, one should use N large enough.

A typical setup where this denoising theorem can be applied is for the Sobolev signal and image model
detailed in Section 4.2.1. In the discrete setting, where the sampling size N is intended to grow (specially if
σ diminishes), one can similarly consider a “Sobolev-like” model, and similarely as for Proposition 18, this
model implies a decay of the linear approximation error.

103

Figure 6.10: Noisy image (left) and denoising (right) using the optimal filter width.

Proposition 21. Assuming that
N∑

m=1

m2α|〈f0, ψm〉|2 6 C (6.4)

then

∀M, ||f0 − f lin0,M ||2 6 CM−2α

Proof.

C >
N∑

m=1

m2α|〈f0, ψm〉|2 >
∑

m>M

m2α|〈f0, ψm〉|2 >M2α
∑

m>M

|〈f0, ψm〉|2 >M2α||f0 − f lin
0,M ||2.

If ψm is the discrete Fourier basis defined in (2.8), then this discrete Sobolev model (6.4) is equivalent to
the continuous Sobolev model of Section 4.2.1, up to a discretization error which tends to 0 as N increase.
Choosing N large enough shows that smooth signals and image are thus efficiently denoised by a simple
linear projection on the first M element of the Fourier basis.

6.3 Non-linear Denoising using Thresholding

6.3.1 Hard Thresholding

We consider an orthogonal basis {ψm}m of CN , for instance a discrete wavelet basis. The noisy coefficients
satisfy

〈f, ψm〉 = 〈f0, ψm〉+ 〈w, ψm〉. (6.5)

Since a Gaussian white noise is invariant under an orthogonal transformation, 〈w, ψm〉 is also a Gaussian
white noise of variance σ2. If the basis {ψm}m is efficient to represent f0, then most of the coefficients
〈f0, ψm〉 are close to zero, and one observes a large set of small noisy coefficients, as shown on Figure 6.11.
This idea of using thresholding estimator for denoising was first systematically explored by Donoho and
Jonhstone [17].

A thresholding estimator removes these small amplitude coefficients using a non-linear hard thresholding

f̃ =
∑

|〈f, ψm〉|>T
〈f, ψm〉ψm =

∑

m

ST (〈f, ψm〉)ψm.

104

f 〈f, ψωj,n〉 ST (〈f, ψωj,n〉) f̃

Figure 6.11: Denoising using thresholding of wavelet coefficients.

where ST is defined in (9.4). This corresponds to the computation of the best M -term approximation f̃ = fM
of the noisy function f . Figure 6.11 shows that if T is well chose, this non-linear estimator is able to remove
most of the noise while maintaining sharp features, which was not the case with linear filtering estimatiors.

6.3.2 Soft Thresholding

We recall that the hard thresholding operator is defined as

ST (x) = S0
T (x) =

{
x if |x| > T,
0 if |x| 6 T.

(6.6)

This thresholding performs a binary decision that might introduces artifacts. A less aggressive nonlinearity
is the soft thresholding

S1
T (x) = max(1− T/|x|, 0)x. (6.7)

Figure 6.12 shows the 1-D curves of these 1-D non-linear mapping.

Figure 6.12: Hard and soft thresholding functions.

For q = 0 and q = 1, these thresholding defines two different estimators

f̃q =
∑

m

SqT (〈f, ψm〉)ψm (6.8)

105

Figure 6.13: Curves of SNR with respect to T/σ for hard and soft thresholding.

Coarse scale management. The soft thresholded S1
T introduces a bias since it diminishes the value

of large coefficients. For wavelet transforms, it tends to introduces unwanted low-frequencies artifacts by
modifying coarse scale coefficients. If the coarse scale is 2j0 , one thus prefers not to threshold the coarse
approximation coefficients and use, for instance in 1-D,

f̃1 =
∑

06n<2−j0

〈f, ϕj0,n〉ϕj0,n +

0∑

j=j0

∑

06n<2−j

S1
T (〈f, ψj0,n〉)ψj0,n.

Empirical choice of the threshold. Figure 6.13 shows the evolution of the SNR with respect to the
threshold T for these two estimators, for a natural image f0. For the hard thresholding, the best result is
obtained around T ≈ 3σ, while for the soft thresholding, the optimal choice is around T ≈ 3σ/2. These
results also shows that numerically, for thresholding in orthogonal bases, soft thresholding is slightly superior
than hard thresholding on natural signals and images.

Although these are experimental conclusions, these results are robust across various natural signals and
images, and should be considered as good default parameters.

6.3.3 Minimax Optimality of Thresholding

Sparse coefficients estimation. To analyze the performance of the estimator, and gives an estimate for
the value of T , we first assumes that the coefficients

a0,m = 〈f0, ψm〉 ∈ RN

are sparse, meaning that most of the a0,m are zero, so that its `0 norm

||a0||0 = # {m ; a0,m 6= 0}

is small. As shown in (6.5), noisy coefficients

〈f, ψm〉 = am = a0,m + zm

106

20.9dB 21.8dB

Figure 6.14: Comparison of hard (left) and soft (right) thresholding.

are perturbed with an additive Gaussian white noise of variance σ2. Figure 6.15 shows an example of such
a noisy sparse signal.

Figure 6.15: Left: sparse signal a, right: noisy signal.

Universal threshold value. If

min
m:a0,m 6=0

|a0,m|

is large enough, then ||f0 − f̃ || = ||a0 − ST (a)|| is minimum for

T ≈ τN = max
06m<N

|zm|.

τN is a random variable that depends on N . One can show that its mean is σ
√

2 log(N), and that as N
increases, its variance tends to zero and τN is highly concentrated close to its mean. Figure 6.16 shows that
this is indeed the case numerically.

Asymptotic optimality. Donoho and Jonhstone [17] have shown that the universal threshold T =
σ
√

2 log(N) is a good theoretical choice for the denoising of signals that are well approximated non-linearly
in {ψm}m. The obtain denoising error decay rate with σ can also be shown to be in some sense optimal.

Theorem 9. We assume that f0 ∈ RN has a non-linear approximation error decay that satisfies

∀M, ||f0 − fnlin0,M ||2 6 CM−2β where fnlin0,M
def.
=

M∑

r=1

〈f0, ψmr 〉ψmr

107

Figure 6.16: Empirical estimation of the mean of Zn (top) and standard deviation of Zn (bottom)

for some constant C, where here (〈f0, ψmr 〉)r are the coefficient sorted by decaying magnitude. Then the
non-linear denoising error using (6.2) satisfies

E(||f0 − f̃q||2) 6 C ′ ln(N)σ2− 1
β+1/2 ,

for some constant C ′, when choosing T =
√

2 ln(N), where f̃q is defined in (6.8) for q ∈ {0, 1}.

This universal threshold choice T =
√

2 ln(N) is however very conservative since it is guaranteed to
remove almost all the noise. In practice, as shown in Figure 6.14, better results are obtained on natural
signals and images by using T ≈ 3σ and T ≈ 3σ/2 for hard and soft thresholdings.

6.3.4 Translation Invariant Thresholding Estimators

Translation invariance. Let f 7→ f̃ = D(f) by a denoising method, and fτ (x) = f(x− τ) be a translated
signal or image for τ ∈ Rd, (d = 1 or d = 2). The denoising is said to be translation invariant at precision
∆ if

∀ τ ∈ ∆, D(f) = D(fτ)−τ

where ∆ is a lattice of Rd. The denser ∆ is, the more translation invariant the method is. This corresponds
to the fact that D computes with the translation operator.

Imposing translation invariance for a fine enough set ∆ is a natural constraint, since intuitively the denoising
results should not depend on the location of features in the signal or image. Otherwise, some locations might
be favored by the denoising process, which might result in visually unpleasant denoising artifacts.

For denoising by thresholding

D(f) =
∑

m

ST (〈f, ψm〉)ψm.

108

then translation invariance is equivalent to asking that the basis {ψm}m is translation invariant at precision
∆,

∀m, ∀ τ ∈ ∆, ∃m, ∃λ ∈ C, (ψm′)τ = λψm

where |λ| = 1.
The Fourier basis is fully translation invariant for ∆ = Rd over [0, 1]d with periodic boundary conditions

and the discrete Fourier basis is translation invariant for all interger translations ∆ = {0, . . . , N0−1}d where
N = N0 is the number of points in 1-D, and N = N0 ×N0 is the number of pixels in 2-D.

Unfortunately, an orthogonal wavelet basis

{ψm = ψj,n}j,n

is not translation invariant both in the continuous setting or in the discrete setting. For instance, in 1-D,

(ψj′,n′)τ /∈ {ψj,n} for τ = 2j/2.

Cycle spinning. A simple way to turn a denoiser ∆ into a translation invariant denoiser is to average the
result of translated images

Dinv(f) =
1

|∆|
∑

τ∈∆

D(fτ)−τ . (6.9)

One easily check that
∀ τ ∈ ∆, Dinv(f) = Dinv(fτ)−τ

To obtain a translation invariance up to the pixel precision for a data of N samples, one should use a set of
|∆| = N translation vectors. To obtain a pixel precision invariance for wavelets, this will result in O(N2)
operations.

Figure 6.17 shows the result of applying cycle spinning to an orthogonal hard thresholding denois-
ing using wavelets, where we have used the following translation of the continuous wavelet basis ∆ =
{0, 1/N, 2/N, 3/N}2, which corresponds to discrete translation by {0, 1, 2, 3}2 on the discretized image. The
complexity of the denoising scheme is thus 16 wavelet transforms. The translation invariance brings a very
large SNR improvement, and significantly reduces the oscillating artifacts of orthogonal thresholding. This
is because this artifacts pop-out at random locations when τ changes, so that the averaging process reduces
significantly these artifacts.

Figure 6.18 shows that translation invariant hard thresholding does a slightly better job than translation
invariant soft thresholding. The situation is thus reversed with respect to thresholding in an orthogonal
wavelet basis.

Translation invariant wavelet frame. An equivalent way to define a translation invariant denoiser is
to replace the orthogonal basis B = {ψm} by a redundant family of translated vectors

Binv = {(ψm)τ}m,τ∈∆. (6.10)

One should be careful about the fact that Binv is not any more an orthogonal basis, but it still enjoy a
conservation of energy formula

||f ||2 =
1

|∆|
∑

m,τ∈∆

|〈f, (ψm)τ 〉|2 and f =
1

|∆|
∑

m,τ∈∆

〈f, (ψm)τ 〉(ψm)τ .

This kind of redundant family are called tight frames.
One can then define a translation invariant thresholding denoising

Dinv(f) =
1

|∆|
∑

m,τ∈∆

ST (〈f, (ψm)τ 〉)(ψm)τ . (6.11)

109

21.8dB 23.4dB

Figure 6.17: Comparison of wavelet orthogonal soft thresholding (left) and translation invariant wavelet hard
thresholding (right).

This denoising is the same as the cycle spinning denoising defined in (6.9).

The frame Binv might contain up to |∆||B| basis element. For a discrete basis of signal with N samples,
and a translation lattice of |∆| = N vectors, it corresponds to up to N2 elements in Binv. Hopefully, for a
hierarchical basis such as a discrete orthogonal wavelet basis, one might have

(ψm)τ = (ψm′)τ ′ for m 6= m′ and τ 6= τ ′,

so that the number of elements in Binv might be much smaller than N2. For instance, for an orthogonal
wavelet basis, one has

(ψj,n)k2j = ψj,n+k,

so that the number of basis elements is |Binv| = N log2(N) for a 2-D basis, and 3N log2(N) for a 2-D basis.
The fast translation invariant wavelet transform, also called “a trou” wavelet transform, computes all the
inner products 〈f, (ψm)τ 〉 in O(N log2(N)) operations. Implementing formula (6.11) is thus much faster
than applying the cycle spinning (6.9) equivalent formulation.

Translation invariant wavelet coefficients are usually grouped by scales in log2(N) (for d = 1) or by
scales and orientations 3 log2(N) (for d = 2) sets of coefficients. For instance, for a 2-D translation invariant
transform, one consider

∀n ∈ {0, . . . , 2jN0 − 1}2, ∀ k ∈ {0, . . . , 2−j}2, dωj [2−jn+ k] = 〈f, (ψj,n)k2j 〉

where ω ∈ {V,H,D} is the orientation. Each set dωj has N coefficients and is a band-pass filtered version of
the original image f , as shown on Figure 6.19.

Figure 6.20 shows how these set of coefficients are hard thresholded by the translation invariant estimator.

6.3.5 Exotic Thresholdings

It is possible to devise many thresholding nonlinearities that interpolate between the hard and soft
thresholder. We present here two examples, but many more exist in the literature. Depending on the
statistical distribution of the wavelet coefficients of the coefficients of f in the basis, these thresholders might
produce slightly better results.

110

Figure 6.18: Curve of SNR with respect to T/σ for translation invariant thresholding.

Semi-soft thresholding. One can define a family of intermediate thresholder that depends on a parameter
µ > 1

SθT (x) = g 1
1−θ

(x) where gµ(x) =

0 if |x| < T
x if |x| > µT

sign(x) |x|−Tµ−1 otherwise.

One thus recovers the hard thresholding as S0
T and the soft thresholding as S1

T . Figure 6.21 display an
example of such a non-linearity.

Figure 6.22 shows that a well chosen value of µ might actually improves over both hard and soft thresh-
olders. The improvement is however hardly noticeable visually.

Stein thresholding. The Stein thresholding is defined using a quadratic attenuation of large coefficients

SStein
T (x) = max

(
1− T 2

|x|2 , 0
)
x.

This should be compared with the linear attenuation of the soft thresholding

S1
T (x) = max

(
1− T

|x| , 0
)
x.

The advantage of the Stein thresholder with respect to the soft thresholding is that

|SStein
T (x)− x| → 0 whereas |S1

T (x)− x| → T,

where x→ ±∞. This means that Stein thresholding does not suffer from the bias of soft thresholding.
For translation invariant thresholding, Stein and hard thresholding perform similarly on natural images.

6.3.6 Block Thresholding

The non-linear thresholding method presented in the previous section are diagonal estimators, since they
operate a coefficient-by-coefficient attenuation

f̃ =
∑

m

AqT (〈f, ψm〉)〈f, ψm〉ψm

111

f j = −8, ω = H j = −8, ω = V j = −8, ω = D

j = −7, ω = H j = −7, ω = V j = −7, ω = D

Figure 6.19: Translation invariant wavelet coefficients.

where

AqT (x) =

max(1− x2/T 2, 0) for q = Stein
max(1− |x|/T, 0) for q = 1 (soft)
1|x|>T for q = 0 (hard)

Block thresholding takes advantage of the statistical dependancy of wavelet coefficients, by computing the
attenuation factor on block of coefficients. This is especially efficient for natural images, where edges and
geometric features create clusters of high magnitude coefficients. Block decisions also help to remove artifacts
due to isolated noisy large coefficients in regular areas.

The set of coefficients is divided into disjoint blocks, and for instance for 2-D wavelet coefficients

{(j, n, ω)}j,n,ω =
⋃

k

Bk,

where each Bk is a square of s× s coefficients, where the block size s is a parameter of the method. Figure
6.24 shows an example of such a block.

The block energy is defined as

Bk =
1

s2

∑

m∈Bk
|〈f, ψm〉|2,

and the block thresholding

f̃ =
∑

m

Sblock,q
T (〈f, ψm〉)ψm

makes use of the same attenuation for all coefficients within a block

∀m ∈ Bk, Sblock,q
T (〈f, ψm〉) = AqT (Ek)〈f, ψm〉.

for q ∈ {0, 1, stein}. Figure 6.24 shows the effect of this block attenuation, and the corresponding denoising
result.

112

Figure 6.20: Left: translation invariant wavelet coefficients, for j = −8, ω = H, right: tresholded coefficients.

Figure 6.21: Left: semi-soft thresholder, right: Stein thresholder.

Figure 6.25, left, compares the three block thresholding obtained for q ∈ {0, 1, stein}. Numerically, on
natural images, Stein block thresholding gives the best results. Figure 6.25, right, compares the block size
for the Stein block thresholder. Numerically, for a broad range of images, a value of s = 4 works well.

Figure 6.26 shows a visual comparison of the denoising results. Block stein thresholding of orthogonal
wavelet coefficients gives a result nearly as good as a translation invariant wavelet hard thresholding, with
a faster algorithm. The block thresholding strategy can also be applied to wavelet coefficients in translation
invariant tight frame, which produces the best results among all denoisers detailed in this book.

Code ?? implement this block thresholding.
One should be aware that more advanced denoisers use complicated statistical models that improves over

the methods proposed in this book, see for instance [25].

6.4 Data-dependant Noises

For many imaging devices, the variance of the noise that perturbs f0,n depends on the value of f0,n.
This is a major departure from the additive noise formation model considered so far. We present here two
popular examples of such non-additive models.

113

Figure 6.22: Left: image of SNR with respect to the parameters µ and T/σ, right: curve of SNR with respect
to µ using the best T/σ for each µ.

Figure 6.23: SNR curves with respect to T/σ for Stein threhsolding.

6.4.1 Poisson Noise

Many imaging devices sample an image through a photons counting operation. This is for instance the
case in digital camera, confocal microscopy, TEP and SPECT tomography.

Poisson model. The uncertainty of the measurements for a quantized unknown image f0,n ∈ N is then
modeled using a Poisson noise distribution

fn ∼ P(λ) where λ = f0,n ∈ N,

and where the Poisson distribution P(λ) is defined as

P(fn = k) =
λke−λ

k!

and thus varies from pixel to pixel. Figure 6.27 shows examples of Poisson distributions.
One has

E(fn) = λ = f0,n and Var(fn) = λ = f0,n

114

Figure 6.24: Left: wavelet coefficients, center: block thresholded coefficients, right: denoised image.

Figure 6.25: Curve of SNR with respect to T/σ (left) and comparison of SNR for different block size (right).

so that the denoising corresponds to estimating the mean of a random vector from a single observation, but
the variance now depends on the pixel intensity. This shows that the noise level increase with the intensity
of the pixel (more photons are coming to the sensor) but the relative variation (fn− f0,n)/f0,n tends to zero
in expectation when f0,n increases.

Figure 6.28 shows examples of a clean image f0 quantized using different values of λmax and perturbed
with the Poisson noise model.

Variance stabilization. Applying thresholding estimator

D(f) =
∑

m

SqT (〈f, ψm〉)ψm

to f might give poor results since the noise level fluctuates from point to point, and thus a single threshold
T might not be able to capture these variations. A simple way to improve the thresholding results is to first
apply a variance stabilization non-linearity ϕ : R → R to the image, so that ϕ(f) is as close as possible to
an additive Gaussian white noise model

ϕ(f) ≈ ϕ(f0) + w (6.12)

115

SNR=23.4dB 22.8dB 23.8dB

Figure 6.26: Left: translation invariant wavelet hard thresholding, center: block orthogonal Stein threshold-
ing, right: block translation invariant Stein thresholding.

Figure 6.27: Poisson distributions for various λ.

where wn ∼ N (0, σ) is a Gaussian white noise of fixed variance σ2.
Perfect stabilization is impossible, so that (6.12) only approximately holds for a limited intensity range

of f0,n. Two popular variation stabilization functions for Poisson noise are the Anscombe mapping

ϕ(x) = 2
√
x+ 3/8

and the mapping of Freeman and Tukey

ϕ(x) =
√
x+ 1 +

√
x.

Figure 6.29 shows the effect of these variance stabilizations on the variance of ϕ(f).
A variance stabilized denoiser is defined as

∆stab,q(f) = ϕ−1(
∑

m

SqT (〈ϕ(f), ψm〉)ψm)

where ϕ−1 is the inverse mapping of ϕ.

116

λmax = 5 λmax = 50 λmax = 50 λmax = 100

Figure 6.28: Noisy image with Poisson noise model, for various λmax = maxn f0,n.

1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 6.29: Comparison of variariance stabilization: display of Var(ϕ(fn)) as a function of f0,n.

Figure 6.30 shows that for moderate intensity range, variance stabilization improves over non-stabilized
denoising.

6.4.2 Multiplicative Noise

Multiplicative image formation. A multiplicative noise model assumes that

fn = f0,nwn

where w is a realization of a random vector with E(w) = 1. Once again, the noise level depends on the pixel
value

E(fn) = f0,n and Var(fn) = f2
0,nσ

2 where σ2 = Var(w).

Such a mutiplicative noise is a good model for SAR satellite imaging, where f is obtained by averaging S
images

∀ 0 6 s < K, f (s)
n = f0,nw

(s)
n + r(s)

n

where r(s) is a Gaussian white noise, and w
(s)
n is distributed according to a one-sided exponential distribution

P(w(s)
n = x) ∝ e−x Ix>0.

For K large enough, averaging the images cancels the additive noise and one obtains

fn =
1

K

K∑

s=1

f (s)
n ≈ f0,nwn

117

Figure 6.30: Left: noisy image, center: denoising without variance stabilization, right: denoising after
variance stabilization.

where w is distributed according to a Gamma distribution

w ∼ Γ(σ = K−
1
2 , µ = 1) where P(w = x) ∝ xK−1e−Kx,

One should note that increasing the value of K reduces the overall noise level.

Figure 6.31: Noisy images with multiplicative noise, with varying σ.

Figure ?? shows an example of such image formation for a varying number K = 1/σ2 of averaged images.
A simple variance stabilization transform is

ϕ(x) = log(x)− c

where
c = E(log(w)) = ψ(K)− log(K) where ψ(x) = Γ′(x)/Γ(x)

and where Γ is the Gamma function that generalizes the factorial function to non-integer. One thus has

ϕ(f)n = ϕ(f0)n + zn,

where zn = log(w)− c is a zero-mean additive noise.
Figure 6.32 shows the effect of this variance stabilization on the repartition of w and z.
Figure 6.33 shows that for moderate noise level σ, variance stabilization improves over non-stabilized

denoising.

118

0 0.5 1 1.5 2 2.5 −1.5 −1 −0.5 0 0.5 1 1.5

Figure 6.32: Histogram of multiplicative noise before (left) and after (right) stabilization.

Figure 6.33: Left: noisy image, center: denoising without variance stabilization, right: denoising after
variance stabilization.

119

120

Chapter 7

Variational Priors and Regularization

7.1 Sobolev and Total Variation Priors

The simplest prior are obtained by integrating local differential quantity over the image. They corresponds
to norms in functional spaces that imposes some smoothness on the signal of the image. We detail here the
Sobolev and the total variation priors, that are the most popular in image processing.

7.1.1 Continuous Priors

In the following, we consider either continuous functions f ∈ L2([0, 1]2) or discrete vectors f ∈ RN , and
consider continuous priors and there discrete counterparts in Section 7.1.2.

Sobolev prior. The prior energy J(f) ∈ R is intended to be low for images in a class f ∈ Θ. The class of
uniformly smooth functions detailed in Section 4.2.1 corresponds to functions in Sobolev spaces. A simple
prior derived from this Sobolev class is thus

JSob(f) =
1

2
||f ||2Sob =

1

2

∫
||∇f(x)||2dx, (7.1)

where ∇f is the gradient in the sense of distributions.

Total variation prior. To take into account discontinuities in images, one considers a total variation
energy, introduced in Section 4.2.3. It was introduced for image denoising by Rudin, Osher and Fatemi [26]

The total variation of a smooth image f is defined as

JTV(f) = ||f ||TV =

∫
||∇xf ||dx. (7.2)

This energy extends to non-smooth functions of bounded variations f ∈ BV([0, 1]2). This class contains
indicators functions f = 1Ω of sets Ω with a bounded perimeter |∂Ω|.

The total variation norm can be computed alternatively using the co-area formula (4.12), which shows
in particular that ||1Ω||TV = |∂Ω|.

7.1.2 Discrete Priors

An analog image f ∈ L2([0, 1]2) is discretized through an acquisition device to obtain a discrete image
f ∈ RN . Image processing algorithms work on these discrete data, and we thus need to define discrete priors
for finite dimensional images.

121

Discrete gradient. Discrete Sobolev and total variation priors are obtained by computing finite differences
approximations of derivatives, using for instance forward differences

δ1fn1,n2 = fn1+1,n2 − fn1,n2

δ2fn1,n2 = fn1,n2+1 − fn1,n2 ,

and one can use higher order schemes to process more precisely smooth functions. One should be careful with
boundary conditions, and we consider here for simplicity periodic boundary conditions, which correspond
to computing the indexes ni + 1 modulo N . More advanced symmetric boundary conditions can be used as
well to avoid boundary artifacts.

A discrete gradient is defined as
∇fn = (δ1fn, δ2fn) ∈ R2

which corresponds to a mapping from images to vector fields

∇ : RN −→ RN×2.

Figure 7.1 shows examples of gradient vectors. They point in the direction of the largest slope of the function
discretized by f . Figure 7.2 shows gradients and their norms displayed as an image. Regions of high gradients
correspond to large intensity variations, and thus typically to edges or textures.

Figure 7.1: Discrete gradient vectors.

Discrete divergence. One can also use backward differences,

δ̃1fn1,n2 = fn1,n2 − fn1−1,n2

δ̃2fn1,n2
= fn1,n2

− fn1,n2−1.

They are dual to the forward differences, so that

δ∗i = −δ̃i,

which means that
∀ f, g ∈ RN , 〈δif, g〉 = −〈f, δ̃ig〉,

which is a discrete version of the integration by part formula

∫ 1

0

f ′g = −
∫ 1

0

fg′

122

for smooth periodic functions on [0, 1].
A divergence operator is defined using backward differences,

div(v)n = δ̃1v1,n + δ̃2v2,n,

and corresponds to a mapping from vector fields to images

div : RN×2 −→ RN .

It is related to the dual of the gradient
div = −∇∗

which means that
∀ f ∈ RN , ∀ v ∈ RN ×2, 〈∇f, v〉RN×2 = −〈f, div(v)〉RN

which corresponds to a discrete version of the divergence theorem.

Image f ∇f ||∇f ||

Figure 7.2: Discrete operators.

Discrete laplacian. A general definition of a Laplacian is

∆f = div(∇f),

which corresponds to a semi-definite negative operator.
For discrete images, and using the previously defined gradient and divergence, it is a local high pass filter

∆fn =
∑

p∈V4(n)

fp − 4fn, (7.3)

that approximates the continuous second order derivative

∂2f

∂x2
1

(x) +
∂2f

∂x2
2

≈ N2∆fn for x = n/N.

Lapalacian operators thus correspond to filterings. A continuous Laplacian is equivalently defined over
the Fourier domain in diagonal form as

g = ∆f =⇒ ĝ(ω) = ||ω||2f̂(ω)

and the discrete Laplacian (7.3) as

g = ∆f =⇒ ĝω = ρ2
ω f̂(ω) where ρ2

ω = sin
(π
N
ω1

)2

+ sin
(π
N
ω2

)2

. (7.4)

123

Discrete energies. A discrete Sobolev energy is obtained by using the `2 norm of the discrete gradient
vector field

JSob(f) =
1

2

∑

n

(δ1fn)2 + (δ2fn)2 =
1

2
||∇f ||2. (7.5)

Similarly, a discrete TV energy is defined as the `1 norm of the gradient field

JTV(f) =
∑

n

√
(δ1fn)2 + (δ2fn)2 = ||∇f ||1 (7.6)

where the `1 norm of a vector field v ∈ RN×2 is

||v||1 =
∑

n

||vn|| (7.7)

where vn ∈ R2.

7.2 PDE and Energy Minimization

Image smoothing is obtained by minimizing the prior using a gradient descent.

7.2.1 General Flows

The gradient of the prior J : RN → R is a vector grad J(f). It describes locally up to the first order the
variation of the prior

J(f + ε) = J(f) + 〈ε, grad J(f)〉+ o(||ε||).
If J is a smooth function of the image f , a discrete energy minimization is obtained through a gradient

descent
f (k+1) = f (k) − τ grad J(f (k)), (7.8)

where the step size τ must be small enough to guarantee convergence.
For infinitesimal step size τ , one replaces the discrete parameter k by a continuous time, and the flow

t > 0 7−→ ft ∈ RN

solves the following partial differential equation

∂ft
∂t

= − grad J(ft) and f0 = f. (7.9)

The gradient descent can be seen as an explicit discretization in time of this PDE at times tk = kτ .

7.2.2 Heat Flow

The heat flow corresponds to the instantiation of the generic PDE (7.9) to the case of the Sobolev energies
JSob(f) defined for continuous function in (7.1) and for discrete images in (7.5).

Since it is a quadratic energy, its gradient is easily computed

J(f + ε) =
1

2
||∇f +∇ε||2 = J(f)− 〈∆f, ε〉+ o(||ε||2),

so that
grad JSob(f) = −∆f.

Figure 7.4, left, shows an example of Laplacian. It is typically large (positive or negative) near edges.
The heat flow is thus

∂ft
∂t

(x) = −(grad J(ft))(x) = ∆ft(x) and f0 = f. (7.10)

124

Figure 7.3: Display of ft for increasing time t for heat flow (top row) and TV flow (bottom row).

Continuous in space. For continuous images and an unbounded domain R2, the PDE (7.10) has an
explicit solution as a convolution with a Gaussian kernel of increasing variance as time increases

ft = f ? ht where ht(x) =
1

4πt
e−
−||x||2

4t . (7.11)

This shows the regularizing property of the heat flow, that operates a blurring to make the image more
regular as time evolves.

Discrete in space. The discrete Sobolev energy (7.5) minimization defined a PDE flow that is discrete
in space

∂fn,t
∂t

= −(grad J(ft))n = (∆ft)n.

It can be further discretized in time as done in (7.8) and leads to a fully discrete flow

f (k+1)
n = f (k)

n + τ
(∑

p∈V4(n)

fp − 4fn

)
= (f ? h)n

where V4(n) are the four neighbor to a pixel n. The flow thus corresponds to iterative convolutions

f (k) = f ? h ? . . . ? h = f ?k h.

where h is a discrete filter.
It can be shown to be stable and convergent if τ < 1/4.

7.2.3 Total Variation Flows

Total variation gradient. The total variation energy JTV, both continuous (7.2) and discrete (7.6) is
not a smooth function of the image. For instance, the discrete JTV is non-differentiable at an image f such
that there exists a pixel n where ∇fn = 0.

125

div(∇f) div(∇f/||∇f ||)

Figure 7.4: Discrete Laplacian and discrete TV gradient.

If ∇fn 6= 0, one can compute the gradient of the TV energy specialized at pixel n as

(grad J(f))n = −div

(∇f
||∇f ||

)

n

which exhibits a division by zero singularity for a point with vanishing gradient. Figure 7.4 shows an example
of TV gradient, which appears noisy in smooth areas, because ||∇fn|| is small in such regions.

This non-differentiabilty makes impossible the definition of a gradient descent and a TV flow.

Regularized total variation. To avoid this issue, one can modify the TV energy, and define a smoothed
TV prior

JεTV(f) =
∑

n

√
ε2 + ||∇fn||2 (7.12)

where ε > 0 is a small regularization parameter. Figure 7.5 shows this effect of this regularization on the
absolute value function.

ε = 0.1 ε = 0.01

Figure 7.5: Regularized absolute value x 7→
√
x2 + ε2.

This smoothed TV energy is a differentiable function of the image, and its gradient is

grad JεTV(f) = −div

(
∇f√

ε2 + ||∇f ||2

)
. (7.13)

126

One can see that this smoothing interpolate between TV and Sobolev, as

gradεf ∼ −∆/ε when ε→ +∞.

Figure 7.6 shows the evolution of this gradient for several value of the smoothing parameter.

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.5

Figure 7.6: Regularized gradient norm
√
||∇f(x)||2 + ε2.

Regularized total variation flow. The smoothed total variation flow is then defined as

∂ft
∂t

= div

(
∇ft√

ε2 + ||∇ft||2

)
. (7.14)

Choosing a small ε makes the flow closer to a minimization of the total variation, but makes the computation
unstable.

In practice, the flow is computed with a discrete gradient descent (7.8). For the smoothed total variation
flow to converge, one needs to impose that τ < ε/4, which shows that being more faithful to the TV energy
requires smaller time steps and thus slower algorithms.

Figure 7.3 shows a comparison between the heat flow and the total variation flow for a small value of ε.
This shows that the TV flow smooth less the edges than heat diffusion, which is consistent with the ability
of the TV energy to better characterize sharp edges.

7.2.4 PDE Flows for Denoising

PDE flows can be used to remove noise from an observation f = f0 + w. As detailed in Section 6.1.2 a
simple noise model assumes that each pixel is corrupted with a Gaussian noise wn ∼ N (0, σ), and that these
perturbations are independent (white noise).

The denoising is obtained using the PDE flow within initial image f at time t = 0

∂ft
∂t

= − gradft J and ft=0 = f.

An estimator f̃ = ft0 is obtained for a well chose t = t0. Figure 7.7 shows examples of Sobolev and TV flows
for denoising.

Since ft converges to a constant image when t→ +∞, the choice of t0 corresponds to a tradeoff between
removing enough noise and not smoothing too much the edges in the image. This is usually a difficult task.
During simulation, if one has access to the clean image f0, one can monitor the denoising error ||f0− ft|| and
choose the t = t0 that minimizes this error. Figure 7.8, top row, shows an example of this oracle estimation
of the best stopping time.

127

Figure 7.7: Denoising using ft displayed for various time t for Sobolev (top) and TV (bottom) flows.

7.3 Regularization for Denoising

Instead of performing a gradient descent flow for denoising as detailed in Section 7.2.4 and select a
stopping time, one can formulate an optimization problem. The estimator is then defined as a solution of
this optimization. This setup has the advantage as being well defined mathematically even for non-smooth
priors such as the TV prior JTV or the sparsity prior J1. Furthermore, this regularization framework is also
useful to solve general inverse problems as detailed in Chapter ??.

7.3.1 Regularization

Given some noisy image f = f0 + w of N pixels and a prior J , we consider the convex optimization
problem

f?λ ∈ argmin
g∈RN

1

2
||f − g||2 + λJ(g), (7.15)

where λ > 0 is a Lagrange multiplier parameter that weights the influence of the data fitting term ||f − g||2
and the regularization term J(g).

If one has at his disposal a clean original image f0, one can minimize the denoising error ||f?λ − f0||, but
it is rarely the case. In practice, this parameter should be adapted to the noise level and to the regularity of
the unknown image f0, which might be a non trivial task.

We note that since we did not impose J to be convex, the problem (7.15) might have several optimal
solutions.

An estimator is thus defined as
f̃ = f?λ

for a well chosen λ.
If J is differentiable and convex, one can compute the solution of (7.15) through a gradient descent

f (k+1) = f (k) − τ
(
f (k) − λ grad J(f (k)

)
(7.16)

128

Noisy f Sobolev flow TV flow

Sobolev reg TV reg TI wavelets

Figure 7.8: Denoising using PDE flows and regularization.

where the descent step size τ > 0 should be small enough. This gradient descent is similar to the time-
discretized minimization flow (7.8), excepted that the data fitting term prevent the flow to converge to a
constant image.

Unfortunately, priors such as the total variation JTV or the sparsity J1 are non-differentiable. Some
priors such as the ideal sparsity J0 might even be non-convex. This makes the simple gradient descent not
usable to solve for (7.15). In the following Section we show how to compute f?λ for several priors.

7.3.2 Sobolev Regularization

The discrete Sobolev prior defined in (7.5) is differentiable, and the gradient descent (7.16) reads

f (k+1) = (1− τ)f (k) + τf − τλ∆J(f (k).

Since J(f) = ||∇f ||2 is quadratic, one can use a conjugate gradient descent, which converges faster.

The solution f?λ can be computed in closed form as the solution of a linear system

f?λ = (IdN − λ∆)−1f,

which shows that the regularization (7.15) is computing an estimator that depends linearly on the observa-
tions f .

129

Sobolev flow TV flow

Sobolev regularization TV regularization

Figure 7.9: SNR as a function of time t for flows (top) and λ for regularization (bottom).

If the differential operators are computed with periodic boundary conditions, this linear system can be
solved exactly over the Fourier domain

(f̂?λ)ω =
1

1 + λρ2
ω

f̂ω (7.17)

where ρω depends on the discretization of the Laplacian, see for instance (7.4).

Equation (7.17) shows that denoising using Sobolev regularization corresponds to a low pass filtering,
whose strength is controlled by λ. This should be related to the solution (7.11) of the heat equation, which
also corresponds to a filtering, but using a Gaussian low pass kernel parameterized by its variance t2.

This Sobolev regularization denoising is a particular case of the linear estimator considered in Section
6.2. The selection of the parameter λ is related to the selection of an optimal filter as considered in Section
6.2.2, but with the restriction that the filter is computed in a parametric family.

7.3.3 TV Regularization

The total variation prior JTV defined in (7.6) is non-differentiable. One can either use a smoothed
approximation of the prior, or use an optimization algorithm not based on a gradient descent.

The TV prior can be approximated to obtain the prior JεTV(g) defined in (7.12), which is differentiable
with respect to g. Using the gradient of this prior defined in (7.13), one obtains the following instantiation

130

of the gradient descent (7.16)

f (k+1) = (1− τ)f (k) + τf + λτ div

(
∇ft√

ε2 + ||∇ft||2

)
. (7.18)

which converge to the unique minimizer f?λ of (7.15).
Section 18.5.1 details a better alternative which does not require introducing this ε smoothing.

131

132

Chapter 8

Inverse Problems

The main references for this chapter are [21, 27, 18].

8.1 Inverse Problems Regularization

Increasing the resolution of signals and images requires to solve an ill posed inverse problem. This
corresponds to inverting a linear measurement operator that reduces the resolution of the image. This
chapter makes use of convex regularization introduced in Chapter ?? to stabilize this inverse problem.

We consider a (usually) continuous linear map Φ : S → H where S can be an Hilbert or a more general
Banach space. This operator is intended to capture the hardware acquisition process, which maps a high
resolution unknown signal f0 ∈ S to a noisy low-resolution obervation

y = Φf0 + w ∈ H

where w ∈ H models the acquisition noise. In this section, we do not use a random noise model, and simply
assume that ||w||H is bounded.

In most applications, H = RP is finite dimensional, because the hardware involved in the acquisition
can only record a finite (and often small) number P of observations. Furthermore, in order to implement
numerically a recovery process on a computer, it also makes sense to restrict the attention to S = RN , where
N is number of point on the discretization grid, and is usually very large, N � P . However, in order to
perform a mathematical analysis of the recovery process, and to be able to introduce meaningful models on
the unknown f0, it still makes sense to consider infinite dimensional functional space (especially for the data
space S).

The difficulty of this problem is that the direct inversion of Φ is in general impossible or not advisable
because Φ−1 have a large norm or is even discontinuous. This is further increased by the addition of some
measurement noise w, so that the relation Φ−1y = f0 +Φ−1w would leads to an explosion of the noise Φ−1w.

We now gives a few representative examples of forward operators Φ.

Denoising. The case of the identity operator Φ = IdS , S = H corresponds to the classical denoising
problem, already treated in Chapters ?? and ??.

De-blurring and super-resolution. For a general operator Φ, the recovery of f0 is more challenging,
and this requires to perform both an inversion and a denoising. For many problem, this two goals are in
contradiction, since usually inverting the operator increases the noise level. This is for instance the case for
the deblurring problem, where Φ is a translation invariant operator, that corresponds to a low pass filtering
with some kernel h

Φf = f ? h. (8.1)

133

One can for instance consider this convolution over S = H = L2(Td), see Proposition 3. In practice, this
convolution is followed by a sampling on a grid Φf = {(f ? h)(xk) ; 0 6 k < P}, see Figure 8.1, middle, for
an example of a low resolution image Φf0. Inverting such operator has important industrial application to
upsample the content of digital photos and to compute high definition videos from low definition videos.

Interpolation and inpainting. Inpainting corresponds to interpolating missing pixels in an image. This
is modelled by a diagonal operator over the spacial domain

(Φf)(x) =

{
0 if x ∈ Ω,
f(x) if x /∈ Ω.

(8.2)

where Ω ⊂ [0, 1]d (continuous model) or {0, . . . , N − 1} which is then a set of missing pixels. Figure 8.1,
right, shows an example of damaged image Φf0.

Original f0 Low resolution Φf0 Masked Φf0

Figure 8.1: Example of inverse problem operators.

Medical imaging. Most medical imaging acquisition device only gives indirect access to the signal of
interest, and is usually well approximated by such a linear operator Φ. In scanners, the acquisition operator is
the Radon transform, which, thanks to the Fourier slice theorem, is equivalent to partial Fourier mesurments
along radial lines. Medical resonance imaging (MRI) is also equivalent to partial Fourier measures

Φf =
{
f̂(x) ; x ∈ Ω

}
. (8.3)

Here, Ω is a set of radial line for a scanner, and smooth curves (e.g. spirals) for MRI.
Other indirect application are obtained by electric or magnetic fields measurements of the brain activity

(corresponding to MEG/EEG). Denoting Ω ⊂ R3 the region around which measurements are performed (e.g.
the head), in a crude approximation of these measurements, one can assume Φf = {(ψ ? f)(x) ; x ∈ ∂Ω}
where ψ(x) is a kernel accounting for the decay of the electric or magnetic field, e.g. ψ(x) = 1/||x||2.

Regression for supervised learning. While the focus of this chapter is on imaging science, a closely
related problem is supervised learning using linear model. The typical notations associated to this problem
are usually different, which causes confusion. This problem is detailed in Chapter 12.3, which draws con-
nection between regression and inverse problems. In statistical learning, one observes pairs (xi, yi)

n
i=1 of n

observation, where the features are xi ∈ Rp. One seeks for a linear prediction model of the form yi = 〈β, xi〉
where the unknown parameter is β ∈ Rp. Storing all the xi as rows of a matrix X ∈ Rn×p, supervised learn-
ing aims at approximately solving Xβ ≈ y. The problem is similar to the inverse problem Φf = y where one

134

performs the change of variable Φ 7→ X and f 7→ β, with dimensions (P,N)→ (n, p). In statistical learning,
one does not assume some well specified model y = Φf0 +w, and the major difference is that the matrix X
is random, which add extra “noise” which needs to be controlled as n→ +∞. The recovery is performed by
the normalized ridge regression problem

min
β

1

2n
||Xβ − y||2 + λ||β||2

so that the natural change of variable should be 1
nX
∗X ∼ Φ∗Φ (empirical covariance) and 1

nX
∗y ∼ Φ∗y.

The law of large number shows that 1
nX
∗X and 1

nX
∗y are contaminated by a noise of amplitude 1/

√
n,

which plays the role of ||w||.

8.2 Theoretical Study of Quadratic Regularization

We now give a glimpse on the typical approach to obtain theoretical guarantee on recovery quality in the
case of Hilbert space. The goal is not to be exhaustive, but rather to insist on the modelling hypotethese,
namely smoothness implies a so called “source condition”, and the inherent limitations of quadratic methods
(namely slow rates and the impossibility to recover information in ker(Φ), i.e. to achieve super-resolution).

8.2.1 Singular Value Decomposition

Finite dimension. Let us start by the simple finite dimensional case Φ ∈ RP×N so that S = RN and
H = RP are Hilbert spaces. In this case, the Singular Value Decomposition (SVD) is the key to analyze the
operator very precisely, and to describe linear inversion process.

Proposition 22 (SVD). There exists (U, V) ∈ RP×R × RN×R, where R = rank(Φ) = dim(Im(Φ)), with
U>U = V >V = IdR, i.e. having orthogonal columns (um)Rm=1 ⊂ RN , (vm)Rm=1 ⊂ RP , and (σm)Rm=1 with
σm > 0, such that

Φ = U diagm(σm)V > =

R∑

m=1

σmumv
>
m. (8.4)

Proof. We first analyze the problem, and notice that if Φ = UΣV > with Σ = diagm(σm), then ΦΦ> =
UΣ2U> and then V > = Σ−1U>Φ. We can use this insight. Since ΦΦ> is a positive symmetric matrix,
we write its eigendecomposition as ΦΦ> = UΣ2U> where Σ = diagRm=1(σm) with σm > 0. We then define

V
def.
= Φ>UΣ−1. One then verifies that

V >V = (Σ−1U>Φ)(Φ>UΣ−1) = Σ−1U>(UΣ2U>)UΣ−1 = IdR and UΣV > = UΣΣ−1U>Φ = Φ.

This theorem is still valid with complex matrice, replacing > by ∗. Expression (8.4) describes Φ as a sum
of rank-1 matrices umv

>
m. One usually order the singular values (σm)m in decaying order σ1 > . . . > σR. If

these values are different, then the SVD is unique up to ±1 sign change on the singular vectors.
The left singular vectors U is an orthonormal basis of Im(Φ), while the right singular values is an

orthonormal basis of Im(Φ>) = ker(Φ)⊥. The decomposition (8.4) is often call the “reduced” SVD because
one has only kept the R non-zero singular values. The “full” SVD is obtained by completing U and V to
define orthonormal bases of the full spaces RP and RN . Then Σ becomes a rectangular matrix of size P ×N .

A typical example is for Φf = f ? h over RP = RN , in which case the Fourier transform diagonalizes the
convolution, i.e.

Φ = (um)∗m diag(ĥm)(um)m (8.5)

where (um)n
def.
= 1√

N
e

2iπ
N nm so that the singular values are σm = |ĥm| (removing the zero values) and the

singular vectors are (um)n and (vmθm)n where θm
def.
= |ĥm|/ĥm is a unit complex number.

Computing the SVD of a full matrix Φ ∈ RN×N has complexity N3.

135

Compact operators. One can extend the decomposition to compact operators Φ : S → H between
separable Hilbert space. A compact operator is such that ΦB1 is pre-compact where B1 = {s ∈ S ; ||s|| 6 1}
is the unit-ball. This means that for any sequence (Φsk)k where sk ∈ B1 one can extract a converging
sub-sequence. Note that in infinite dimension, the identity operator Φ : S → S is never compact.

Compact operators Φ can be shown to be equivalently defined as those for which an expansion of the
form (8.4) holds

Φ =

+∞∑

m=1

σmumv
>
m (8.6)

where (σm)m is a decaying sequence converging to 0, σm → 0. Here in (8.6) convergence holds in the operator
norm, which is the algebra norm on linear operator inherited from those of S and H

||Φ||L(S,H)
def.
= min
||Φu||H

||u||S 6 1.

For Φ having an SVD decomposition (8.6), ||Φ||L(S,H) = σ1.
When σm = 0 for m > R, Φ has a finite rank R = dim(Im(Φ)). As we explain in the sections below, when

using linear recovery methods (such as quadratic regularization), the inverse problem is equivalent to a finite
dimensional problem, since one can restrict its attention to functions in ker(Φ)⊥ which as dimension R. Of
course, this is not true anymore when one can retrieve function inside ker(Φ), which is often referred to as
a “super-resolution” effect of non-linear methods. Another definition of compact operator is that they are
the limit of finite rank operator. They are thus in some sense the extension of finite dimensional matrices,
and are the correct setting to model ill-posed inverse problems. This definition can be extended to linear
operator between Banach spaces, but this conclusion does not holds.

Typical example of compact operator are matrix-like operator with a continuous kernel k(x, y) for (x, y) ∈
Ω where Ω is a compact sub-set of Rd (or the torus Td), i.e.

(Φf)(x) =

∫

Ω

k(x, y)f(y)dy

where dy is the Lebesgue measure. An example of such a setting which generalizes (8.5) is when Φf = f ? h
on Td = (R/2πZ)d, which is corresponds to a translation invariant kernel k(x, y) = h(x − y), in which case

um(x) = (2π)−d/2eiωx, σm = |f̂m|. Another example on Ω = [0, 1] is the integration, (Φf)(x) =
∫ x

0
f(y)dy,

which corresponds to k being the indicator of the “triangle”, k(x, y) = 1x6y.

Pseudo inverse. In the case where w = 0, it makes to try to directly solve Φf = y. The two obstruction
for this is that one not necessarily has y ∈ Im(Φ) and even so, there are an infinite number of solutions if
ker(Φ) 6= {0}. The usual workaround is to solve this equation in the least square sense

f+ def.
= argmin

Φf=y+
||f ||S where y+ = ProjIm(Φ)(y) = argmin

z∈Im(Φ)

||y − z||H.

The following proposition shows how to compute this least square solution using the SVD and by solving
linear systems involving either ΦΦ∗ or Φ∗Φ.

Proposition 23. One has

f+ = Φ+y where Φ+ = V diagm(1/σm)U∗. (8.7)

In case that Im(Φ) = H, one has Φ+ = Φ∗(ΦΦ∗)−1. In case that ker(Φ) = {0}, one has Φ+ = (Φ∗Φ)−1Φ∗.

Proof. Since U is an ortho-basis of Im(Φ), y+ = UU∗y, and thus Φf = y+ reads UΣV ∗f = UU∗y and
hence V ∗f = Σ−1U∗y. Decomposition orthogonally f = f0 + r where f0 ∈ ker(Φ)⊥ and r ∈ ker(Φ), one
has f0 = V V ∗f = V Σ−1U∗y = Φ+y is a constant. Minimizing ||f ||2 = ||f0||2 + ||r||2 is thus equivalent
to minimizing ||r|| and hence r = 0 which is the desired result. If Im(Φ) = H, then R = N so that
ΦΦ∗ = UΣ2U∗ is the eigen-decomposition of an invertible and (ΦΦ∗)−1 = UΣ−2U∗. One then verifies
Φ∗(ΦΦ∗)−1 = V ΣU∗UΣ−2U∗ which is the desired result. One deals similarly with the second case.

136

For convolution operators Φf = f ? h, then

Φ+y = y ? h+ where ĥ+
m =

{
ĥ−1
m if ĥm 6= 0

0 if ĥm = 0.
.

8.2.2 Tikonov Regularization

Regularized inverse. When there is noise, using formula (8.7) is not acceptable, because then

Φ+y = Φ+Φf0 + Φ+w = f+
0 + Φ+w where f+

0
def.
= Projker(Φ)⊥ ,

so that the recovery error is ||Φ+y− f+
0 || = ||Φ+w||. This quantity can be as larges as ||w||/σR if w ∝ uR. The

noise is thus amplified by the inverse 1/σR of the smallest amplitude non-zero singular values, which can be
very large. In infinite dimension, one typically has R = +∞, so that the inverse is actually not bounded
(discontinuous). It is thus mendatory to replace Φ+ by a regularized approximate inverse, which should have
the form

Φ+
λ = V diagm(µλ(σm))U∗ (8.8)

where µλ, indexed by some parameter λ > 0, is a regularization of the inverse, that should typically satisfies

µλ(σ) 6 Cλ < +∞ and lim
λ→0

µλ(σ) =
1

σ
.

Figure 8.2, left, shows a typical example of such a regularized inverse curve, obtained by thresholding.

Variational regularization. A typical example of such regularized inverse is obtained by considering a
penalized least square involving a regularization functional

fλ
def.
= argmin

f∈S
||y − Φf ||2H + λJ(f) (8.9)

where J is some regularization functional which should at least be continuous on S. The simplest example
is the quadratic norm J = || · ||2S ,

fλ
def.
= argmin

f∈S
||y − Φf ||2H + λ||f ||2 (8.10)

which is indeed a special case of (8.8) as proved in Proposition 24 below. In this case, the regularized solution
is obtained by solving a linear system

fλ = (Φ∗Φ + λIdP)−1Φ∗y. (8.11)

This shows that fλ ∈ Im(Φ∗) = ker(Φ)⊥, and that it depends linearly on y.

Proposition 24. The solution of (8.10) has the form fλ = Φ+
λ y as defined in (8.8) for the specific choice

of function

∀σ ∈ R, µλ(σ) =
σ

σ2 + λ
.

Proof. Using expression (8.11) and plugging the SVD Φ = UΣV ∗ leads to

Φ+
λ = (V Σ2V ∗ + λV V ∗)−1V ΣU∗ = V ∗(Σ2 + λ)−1ΣU∗

which is the desired expression since (Σ2 + λ)−1Σ = diag(µλ(σm))m.

137

A special case is when Φf = f ? h is a convolution operator. In this case, the regularized inverse is
computed in O(N log(N)) operation using the FFT as follow

f̂λ,m =
ĥ∗m

|ĥm|2 + σ2
ŷm.

Figure 8.2 contrast the regularization curve associated to quadratic regularization (8.11) (right) to the
simpler thresholding curve (left).

The question is to understand how to choose λ as a function of the noise level ||w||H in order to guarantees
that fλ → f0 and furthermore establish convergence speed. One first needs to ensure at least f0 = f+

0 , which
in turns requires that f0 ∈ Im(Φ∗) = ker(Φ)⊥. Indeed, an important drawback of linear recovery methods
(such as quadratic regularization) is that necessarily fλ ∈ Im(Φ∗) = ker(Φ⊥) so that no information can
be recovered inside ker(Φ). Non-linear methods must be used to achieve a “super-resoltution” effect and
recover this missing information.

Source condition. In order to ensure convergence speed, one quantify this condition and impose a so-
called source condition of order β, which reads

f0 ∈ Im((Φ∗Φ)β) = Im(V diag(σ2β
m)V ∗). (8.12)

In some sense, the larger β, the farther f0 is away from ker(Φ), and thus the inversion problem is “easy”. This
condition means that there should exists z ∈ RP such that f0 = V diag(σ2β

m)V ∗z, i.e. z = V diag(σ−2β
m)V ∗f0.

In order to control the strength of this source condition, we assume ||z|| 6 ρ where ρ > 0. The source
condition thus corresponds to the following constraint

∑

m

σ−2β
m 〈f0, vm〉2 6 ρ2 < +∞. (Sβ,ρ)

This is a Sobolev-type constraint, similar to those imposed in 6.4. A prototypical example is for a low-
pass filter Φf = f ? h where h as a slow polynomial-like decay of frequency, i.e. |ĥm| ∼ 1/mα for large m.
In this case, since vm is the Fourier basis, the source condition (Sβ,ρ) reads

∑

m

||m||2αβ |f̂m|2 6 ρ2 < +∞,

which is a Sobolev ball of radius ρ and differential order αβ.

Sublinear convergence speed. The following theorem shows that this source condition leads to a con-
vergence speed of the regularization. Imposing a bound ||w|| 6 δ on the noise, the theoretical analysis of the
inverse problem thus depends on the parameters (δ, ρ, β). Assuming f0 ∈ ker(Φ)⊥, the goal of the theoretical
analysis corresponds to studying the speed of convergence of fλ toward f0, when using y = Φf0 +w as δ → 0.
This requires to decide how λ should depends on δ.

Theorem 10. Assuming the source condition (Sβ,ρ) with 0 < β 6 2, then the solution of (8.10) for ||w|| 6 δ
satisfies

||fλ − f0|| 6 Cρ
1

β+1 δ
β
β+1

for a constant C which depends only on β, and for a choice

λ ∼ δ 2
β+1 ρ−

2
β+1 .

Proof. Because of the source condition, f0 ∈ Im(Φ∗). We decompose

fλ = Φ+
λ (Φf0 + w) = f0

λ + Φ+
λw where f0

λ
def.
= Φ+

λ (Φf0),

138

Figure 8.2: Bounding µλ(σ) 6 Cλ = 1
2
√
λ

.

so that fλ = f0
λ + Φ+

λw, one has for any regularized inverse of the form (8.8)

||fλ − f0|| 6 ||fλ − f0
λ||+ ||f0

λ − f0||. (8.13)

The term ||fλ − f0
λ|| is a variance term which account for residual noise, and thus decays when λ increases

(more regularization). The term ||f0
λ − f0|| is independent of the noise, it is a bias term coming from the

approximartion (smoothing) of f0, and thus increases when λ increases. The choice of an optimal λ thus
results in a bias-variance tradeoff between these two terms. Assuming

∀σ > 0, µλ(σ) 6 Cλ

the variance term is bounded as

||fλ − f0
λ||2 = ||Φ+

λw||2 =
∑

m

µλ(σm)2w2
m 6 C2

λ||w||2H.

The bias term is bounded as, since
f2
0,m

σ2β
m

= z2
m,

||f0
λ − f0||2 =

∑

m

(1− µλ(σm)σm)2f2
0,m =

∑

m

(
(1− µλ(σm)σm)σβm

)2 f2
0,m

σ2β
m

6 D2
λ,βρ

2 (8.14)

where we assumed

∀σ > 0,
∣∣(1− µλ(σ)σ)σβ

∣∣ 6 Dλ,β . (8.15)

Note that for β > 2, one has Dλ,β = +∞ Putting (8.14) and (8.15) together, one obtains

||fλ − f0|| 6 Cλδ +Dλ,βρ. (8.16)

In the case of the regularization (8.10), one has µλ(σ) = σ
σ2+λ , and thus (1−µλ(σ)σ)σβ = λσβ

σ2+λ . For β 6 2,
one verifies (see Figure 8.2 and 12.9) that

Cλ =
1

2
√
λ

and Dλ,β = cβλ
β
2 ,

for some constant cβ . Equalizing the contributions of the two terms in (8.16) (a better constant would be

reached by finding the best λ) leads to selecting δ√
λ

= λ
β
2 ρ i.e. λ = (δ/ρ)

2
β+1 . With this choice,

||fλ − f0|| = O(δ/
√
λ) = O(δ(δ/ρ)−

1
β+1) = O(δ

β
β+1 ρ

1
β+1).

139

Figure 8.3: Bounding λ σβ

λ+σ2 6 Dλ,β .

This theorem shows that using larger β 6 2 leads to faster convergence rates as ||w|| drops to zero. The
rate (8.13) however suffers from a “saturation” effect, indeed, choosing β > 2 does not helps (it gives the
same rate as β = 2), and the best possible rate is thus

||fλ − f0|| = O(ρ
1
3 δ

2
3).

By choosing more alternative regularization functional µλ and choosing β large enough, one can show that
it is possible to reach rate ||fλ − f0|| = O(δ1−κ) for an arbitrary small κ > 0. Figure 8.2 contrast the
regularization curve associated to quadratic regularization (8.11) (right) to the simpler thresholding curve
(left) which does not suffers from saturation. Quadratic regularization however is much simpler to implement
because it does not need to compute an SVD, is defined using a variational optimization problem and is
computable as the solution of a linear system. One cannot however reach a linear rate ||fλ − f0|| = O(||w||).
Such rates are achievable using non-linear sparse `1 regularizations as detailed in Chapter 9.

8.3 Quadratic Regularization

After this theoretical study in infinite dimension, we now turn our attention to more practical matters,
and focus only on the finite dimensional setting.

Convex regularization. Following (8.9), the ill-posed problem of recovering an approximation of the
high resolution image f0 ∈ RN from noisy measures y = Φf0 + w ∈ RP is regularized by solving a convex
optimization problem

fλ ∈ argmin
f∈RN

E(f)
def.
=

1

2
||y − Φf ||2 + λJ(f) (8.17)

where ||y−Φf ||2 is the data fitting term (here || · || is the `2 norm on RP) and J(f) is a convex functional on
RN .

The Lagrange multiplier λ weights the importance of these two terms, and is in practice difficult to
set. Simulation can be performed on high resolution signal f0 to calibrate the multiplier by minimizing the
super-resolution error ||f0 − f̃ ||, but this is usually difficult to do on real life problems.

In the case where there is no noise, w = 0, the Lagrange multiplier λ should be set as small as possible. In
the limit where λ→ 0, the unconstrained optimization problem (8.17) becomes a constrained optimization,
as the following proposition explains. Let us stress that, without loss of generality, we can assume that
y ∈ Im(Φ), because one has the orthogonal decomposition

||y − Φf ||2 = ||y − ProjIm(Φ)(y)||2 + ||ProjIm(Φ)(y)− Φf ||2

so that one can replace y by ProjIm(Φ)(y) in (8.17).
Let us recall that a function J is coercive if

lim
||f ||→+∞

J(f) = +∞

140

i.e.
∀K, ∃R, ||x|| > R =⇒ |J(f)| > K.

This means that its non-empty levelsets {f ; J(f) 6 c} are bounded (and hence compact) for all c.

Proposition 25. We assume that J is coercive and that y ∈ Im(Φ). Then, if for each λ, fλ is a solution
of (8.17), then (fλ)λ is a bounded set and any accumulation point f? is a solution of

f? = argmin
f∈RN

{J(f) ; Φf = y} . (8.18)

Proof. Denoting h, any solution to (8.18), which in particular satisfies Φh = y, because of the optimality
condition of fλ for (8.17), one has

1

2λ
||Φfλ − y||2 + J(fλ) 6 1

2λ
||Φh− y||2 + J(h) = J(h).

This shows that J(fλ) 6 J(h) so that since J is coercive the set (fλ)λ is bounded and thus one can consider an
accumulation point fλk → f? for k → +∞. Since ||Φfλk−y||2 6 λkJ(h), one has in the limit Φf? = y, so that
f? satisfies the constraints in (8.18). Furthermore, by continuity of J , passing to the limit in J(fλk) 6 J(h),
one obtains J(f?) 6 J(h) so that f? is a solution of (8.18).

Note that it is possible to extend this proposition in the case where J is not necessarily coercive on the
full space (for instance the TV functionals in Section 8.4.1 below) but on the orthogonal to ker(Φ). The
proof is more difficult.

Quadratic Regularization. The simplest class of prior functional are quadratic, and can be written as

J(f) =
1

2
||Gf ||2RK =

1

2
〈Lf, f〉RN (8.19)

where G ∈ RK×N and where L = G∗G ∈ RN×N is a positive semi-definite matrix. The special case (8.10) is
recovered when setting G = L = IdN .

Writing down the first order optimality conditions for (8.17) leads to

∇E(f) = Φ∗(Φf − y) + λLf = 0,

hence, if
ker(Φ) ∩ ker(G) = {0},

then (8.19) has a unique minimizer fλ, which is obtained by solving a linear system

fλ = (Φ∗Φ + λL)−1Φ∗y. (8.20)

In the special case where L is diagonalized by the singular basis (vm)m of Φ, i.e. L = V diag(α2
m)V ∗, then

fλ reads in this basis

〈fλ, vm〉 =
σm

σ2
m + λα2

m

〈y, vm〉. (8.21)

Example of convolution. A specific example is for convolution operator

Φf = h ? f, (8.22)

and using G = ∇ be a discretization of the gradient operator, such as for instance using first order finite
differences (2.16). This corresponds to the discrete Sobolev prior introduced in Section 7.1.2. Such an
operator compute, for a d-dimensional signal f ∈ RN (for instance a 1-D signal for d = 1 or an image
when d = 2), an approximation ∇fn ∈ Rd of the gradient vector at each sample location n. Thus typically,

141

∇ : f 7→ (∇fn)n ∈ RN×d maps to d-dimensional vector fields. Then −∇∗ : RN×d → RN is a discretized
divergence operator. In this case, ∆ = −GG∗ is a discretization of the Laplacian, which is itself a convolution
operator. One then has

f̂λ,m =
ĥ∗mŷm

|ĥm|2 − λd̂2,m

, (8.23)

where d̂2 is the Fourier transform of the filter d2 corresponding to the Laplacian. For instance, in dimension
1, using first order finite differences, the expression for d̂2,m is given in (2.18).

8.3.1 Solving Linear System

When Φ and L do not share the same singular spaces, using (8.21) is not possible, so that one needs to
solve the linear system (8.20), which can be rewritten as

Af = b where A
def.
= Φ∗Φ + λL and b = Φ∗y.

It is possible to solve exactly this linear system with direct methods for moderate N (up to a few thousands),
and the numerical complexity for a generic A is O(N3). Since the involved matrix A is symmetric, the
best option is to use Choleski factorization A = BB∗ where B is lower-triangular. In favorable cases, this
factorization (possibly with some re-re-ordering of the row and columns) can take advantage of some sparsity
in A.

For large N , such exact resolution is not an option, and should use approximate iterative solvers, which
only access A through matrix-vector multiplication. This is especially advantageous for imaging applications,
where such multiplications are in general much faster than a naive O(N2) explicit computation. If the matrix
A is highly sparse, this typically necessitates O(N) operations. In the case where A is symmetric and positive
definite (which is the case here), the most well known method is the conjugate gradient methods, which is
actually an optimization method solving

min
f∈RN

E(f)
def.
= Q(f)

def.
= 〈Af, f〉 − 〈f, b〉 (8.24)

which is equivalent to the initial minimization (8.17). Instead of doing a naive gradient descent (as studied
in Section 18.1 below), stating from an arbitrary f (0), it compute a new iterate f (`+1) from the previous
iterates as

f (`+1) def.
= argmin

f

{
E(f) ; f ∈ f (`) + Span(∇E(f (0)), . . . ,∇E(f `))

}
.

The crucial and remarkable fact is that this minimization can be computed in closed form at the cost of two
matrix-vector product per iteration, for k > 1 (posing initially d(0) = ∇E(f (0)) = Af (0) − b)

f (`+1) = f (`) − τ`d(`) where d(`) = g` +
||g(`)||2
||g(`−1)||2 d

(`−1) and τ` =
〈g`, d(`)〉
〈Ad(`), d(`)〉 (8.25)

g(`) def.
= ∇E(f (`)) = Af (`) − b. It can also be shown that the direction d(`) are orthogonal, so that after

` = N iterations, the conjugate gradient computes the unique solution f (`) of the linear system Af = b. It is
however rarely used this way (as an exact solver), and in practice much less than N iterates are computed.
It should also be noted that iterations (8.25) can be carried over for an arbitrary smooth convex function
E , and it typically improves over the gradient descent (although in practice quasi-Newton method are often
preferred).

8.4 Non-Quadratic Regularization

8.4.1 Total Variation Regularization

A major issue with quadratic regularization such as (8.19) is that they typically leads to blurry recovered
data fλ, which is thus not a good approximation of f0 when it contains sharp transition such as edges in

142

images. This is can clearly be seen in the convolutive case (8.23), this the restoration operator Φ+
λΦ is a

filtering, which tends to smooth sharp part of the data.
This phenomena can also be understood because the restored data fλ always belongs to Im(Φ∗) =

ker(Φ)⊥, and thus cannot contains “high frequency” details that are lost in the kernel of Φ. To alleviate this
shortcoming, and recover missing information in the kernel, it is thus necessarily to consider non-quadratic
and in fact non-smooth regularization.

Total variation. The most well know instance of such a non-quadratic and non-smooth regularization is
the total variation prior. For smooth function f : Rd 7→ R, this amounts to replacing the quadratic Sobolev
energy (often called Dirichlet energy)

JSob(f)
def.
=

1

2

∫

Rd
||∇f ||2Rddx,

where ∇f(x) = (∂x1f(x), . . . , ∂xdf(x))> is the gradient, by the (vectorial) L1 norm of the gradient

JTV(f)
def.
=

∫

Rd
||∇f ||Rddx.

We refer also to Section 7.1.1 about these priors. Simply “removing” the square 2 inside the integral might
seems light a small change, but in fact it is a game changer.

Indeed, while JSob(1Ω) = +∞ where 1Ω is the indicator a set Ω with finite perimeter |Ω| < +∞, one can
show that JTV(1Ω) = |Ω|, if one interpret ∇f as a distribution Df (actually a vectorial Radon measure) and∫

Rd ||∇f ||Rddx is replaced by the total mass |Df |(Ω) of this distribution m = Df

|m|(Ω) = sup

{∫

Rd
〈h(x), dm(x)〉 ; h ∈ C(Rd 7→ Rd),∀x, ||h(x)|| 6 1

}
.

The total variation of a function such that Df has a bounded total mass (a so-called bounded variation
function) is hence defined as

JTV(f)
def.
= sup

{∫

Rd
f(x) div(h)(x)dx ; h ∈ C1

c (Rd; Rd), ||h||∞ 6 1

}
.

Generalizing the fact that JTV(1Ω) = |Ω|, the functional co-area formula reads

JTV(f) =

∫

R
Hd−1(Lt(f))dt where Lt(f) = {x ; f(x) = t}

and where Hd−1 is the Hausforf measures of dimension d− 1, for instance, for d = 2 if L has finite perimeter
|L|, then Hd−1(L) = |L| is the perimeter of L.

Discretized Total variation. For discretized data f ∈ RN , one can define a discretized TV semi-norm
as detailed in Section 7.1.2, and it reads, generalizing (7.6) to any dimension

JTV(f) =
∑

n

||∇fn||Rd

where ∇fn ∈ Rd is a finite difference gradient at location indexed by n.
The discrete total variation prior JTV(f) defined in (7.6) is a convex but non differentiable function of

f , since a term of the form ||∇fn|| is non differentiable if ∇fn = 0. We defer to chapters 17 and 18 the study
of advanced non-smooth convex optimization technics that allows to handle this kind of functionals.

In order to be able to use simple gradient descent methods, one needs to smooth the TV functional. The
general machinery proceeds by replacing the non-smooth `2 Euclidean norm || · || by a smoothed version, for
instance

∀u ∈ Rd, ||u||ε def.
=
√
ε2 + ||u||.

143

This leads to the definition of a smoothed approximate TV functional, already introduced in (7.12),

JεTV(f)
def.
=
∑

n

||∇fn||ε

One has the following asymptotics for ε→ {0,+∞}

||u||ε ε→0−→ ||u|| and ||u||ε = ε+
1

2ε
||u||2 +O(1/ε2)

which suggest that JεTV interpolates between JTV and JSob.
The resulting inverse regularization problem (8.17) thus reads

fλ
def.
= argmin

f∈RN
E(f) =

1

2
||y − Φf ||2 + λJεTV(f) (8.26)

It is a strictly convex problem (because || · ||ε is strictly convex for ε > 0) so that its solution fλ is unique.

8.4.2 Gradient Descent Method

The optimization program (8.26) is a example of smooth unconstrained convex optimization of the form

min
f∈RN

E(f) (8.27)

where E : RN → R is a C1 function. Recall that the gradient ∇E : RN 7→ RN of this functional (not to be
confound with the discretized gradient ∇f ∈ RN of f) is defined by the following first order relation

E(f + r) = E(f) + 〈f, r〉RN +O(||r||2RN)

where we used O(||r||2RN) in place of o(||r||RN) (for differentiable function) because we assume here E is of
class C1 (i.e. the gradient is continuous).

For such a function, the gradient descent algorithm is defined as

f (`+1) def.
= f (`) − τ`∇E(f (`)), (8.28)

where the step size τ` > 0 should be small enough to guarantee convergence, but large enough for this
algorithm to be fast.

We refer to Section 18.1 for a detailed analysis of the convergence of the gradient descent, and a study
of the influence of the step size τ`.

8.4.3 Examples of Gradient Computation

Note that the gradient of a quadratic function Q(f) of the form (8.24) reads

∇G(f) = Af − b.

In particular, one retrieves that the first order optimality condition ∇G(f) = 0 is equivalent to the linear
system Af = b.

For the quadratic fidelity term G(f) = 1
2 ||Φf − y||2, one thus obtains

∇G(f) = Φ∗(Φy − y).

In the special case of the regularized TV problem (8.26), the gradient of E reads

∇E(f) = Φ∗(Φy − y) + λ∇JεTV(f).

144

Recall the chain rule for differential reads ∂(G1 ◦ G2) = ∂G1 ◦ ∂G2, but that gradient vectors are actually
transposed of differentials, so that for E = F ◦ H where F : RP → R and H : RN → RP , one has

∇E(f) = [∂H(f)]∗ (∇F(Hf)) .

Since JεTV = || · ||1,ε ◦ ∇, one thus has

∇JεTV = ∇? ◦ (∂|| · ||1,ε) where ||u||1,ε =
∑

n

||un||ε

so that
JεTV(f) = −div(N ε(∇f)),

whereN ε(u) = (un/||un||ε)n is the smoothed-normalization operator of vector fields (the differential of ||·||1,ε),
and where div = −∇∗ is minus the adjoint of the gradient.

Since div = −∇∗, their Lipschitz constants are equal || div ||op = ||∇||op, and is for instance equal to
√

2d
for the discretized gradient operator. Computation shows that the Hessian of || · ||ε is bounded by 1/ε, so
that for the smoothed-TV functional, the Lipschitz constant of the gradient is upper-bounded by

L =
||∇||2
ε

+ ||Φ||2op.

Furthermore, this functional is strongly convex because || · ||ε is ε-strongly convex, and the Hessian is lower
bounded by

µ = ε+ σmin(Φ)2

where σmin(Φ) is the smallest singular value of Φ. For ill-posed problems, typically σmin(Φ) = 0 or is very
small, so that both L and µ degrades (tends respectively to 0 and +∞) as ε → 0, so that gradient descent
becomes prohibitive for small ε, and it is thus required to use dedicated non-smooth optimization methods
detailed in the following chapters. On the good news side, note however that in many case, using a small but
non-zero value for ε often leads to better a visually more pleasing results, since it introduce a small blurring
which diminishes the artifacts (and in particular the so-called “stair-casing” effect) of TV regularization.

8.5 Examples of Inverse Problems

We detail here some inverse problem in imaging that can be solved using quadratic regularization or
non-linear TV.

8.5.1 Deconvolution

The blurring operator (8.1) is diagonal over Fourier, so that quadratic regularization are easily solved
using Fast Fourier Transforms when considering periodic boundary conditions. We refer to (8.22) and the
correspond explanations. TV regularization in contrast cannot be solved with fast Fourier technics, and is
thus much slower.

8.5.2 Inpainting

For the inpainting problem, the operator defined in (8.3) is diagonal in space

Φ = diagm(δΩc [m]),

and is an orthogonal projector Φ∗ = Φ.
In the noiseless case, to constrain the solution to lie in the affine space

{
f ∈ RN ; y = Φf

}
, we use the

orthogonal projector

∀x, Py(f)(x) =

{
f(x) if x ∈ Ω,
y(x) if x /∈ Ω.

145

In the noiseless case, the recovery (8.18) is solved using a projected gradient descent. For the Sobolev
energy, the algorithm iterates

f (`+1) = Py(f (`) + τ∆f (`)).

which converges if τ < 2/||∆|| = 1/4. Figure 8.4 shows some iteration of this algorithm, which progressively
interpolate within the missing area.

k = 1 k = 10 k = 20 k = 100

Figure 8.4: Sobolev projected gradient descent algorithm.

Figure 8.5 shows an example of Sobolev inpainting to achieve a special effect.

Image f0 Observation y = Φf0 Sobolev f?

Figure 8.5: Inpainting the parrot cage.

For the smoothed TV prior, the gradient descent reads

f (`+1) = Py

(
f (`) + τ div

(
∇f (`)

√
ε2 + ||∇f (`)||2

))

which converges if τ < ε/4.
Figure 8.6 compare the Sobolev inpainting and the TV inpainting for a small value of ε. The SNR is not

improved by the total variation, but the result looks visually slightly better.

8.5.3 Tomography Inversion

In medical imaging, a scanner device compute projection of the human body along rays ∆t,θ defined

x · τθ = x1 cos θ + x2 sin θ = t

146

Image f0 Observation y = Φf0

Sobolev f? TV f?

SNR=?dB SNR=?dB

Figure 8.6: Inpainting with Sobolev and TV regularization.

where we restrict ourself to 2D projection to simplify the exposition.
The scanning process computes a Radon transform, which compute the integral of the function to acquires

along rays

∀ θ ∈ [0, π),∀ t ∈ R, pθ(t) =

∫

∆t,θ

f(x) ds =

∫∫
f(x) δ(x · τθ − t) dx

see Figure (8.7)
The Fourier slice theorem relates the Fourier transform of the scanned data to the 1D Fourier transform

of the data along rays
∀ θ ∈ [0, π) , ∀ ξ ∈ R p̂θ(ξ) = f̂(ξ cos θ, ξ sin θ). (8.29)

This shows that the pseudo inverse of the Radon transform is computed easily over the Fourier domain using
inverse 2D Fourier transform

f(x) =
1

2π

∫ π

0

pθ ? h(x · τθ) dθ

with ĥ(ξ) = |ξ|.
Imaging devices only capture a limited number of equispaced rays at orientations {θk = π/k}06k<K .

This defines a tomography operator which corresponds to a partial Radon transform

Rf = (pθk)06k<K .

Relation (8.29) shows that knowing Rf is equivalent to knowing the Fourier transform of f along rays,

{f̂(ξ cos(θk), ξ sin(θk))}k.

147

Figure 8.7: Principle of tomography acquisition.

We thus simply the acquisition process over the discrete domain and model it as computing directly samples
of the Fourier transform

Φf = (f̂ [ω])ω∈Ω ∈ RP

where Ω is a discrete set of radial lines in the Fourier plane, see Figure 8.8, right.
In this discrete setting, recovering from Tomography measures y = Rf0 is equivalent in this setup to

inpaint missing Fourier frequencies, and we consider partial noisy Fourier measures

∀ω ∈ Ω, y[ω] = f̂ [ω] + w[ω]

where w[ω] is some measurement noise, assumed here to be Gaussian white noise for simplicity.
The peuso-inverse f+ = R+y defined in (8.7) of this partial Fourier measurements reads

f̂+[ω] =

{
y[ω] if ω ∈ Ω,
0 if ω /∈ Ω.

Figure 8.9 shows examples of pseudo inverse reconstruction for increasing size of Ω. This reconstruction
exhibit serious artifact because of bad handling of Fourier frequencies (zero padding of missing frequencies).

The total variation regularization (??) reads

f? ∈ argmin
f

1

2

∑

ω∈Ω

|y[ω]− f̂ [ω]|2 + λ||f ||TV.

It is especially suitable for medical imaging where organ of the body are of relatively constant gray value,
thus resembling to the cartoon image model introduced in Section 4.2.4. Figure 8.10 compares this total
variation recovery to the pseudo-inverse for a synthetic cartoon image. This shows the hability of the total
variation to recover sharp features when inpainting Fourier measures. This should be contrasted with the
difficulties that faces TV regularization to inpaint over the spacial domain, as shown in Figure 9.10.

148

Image f Radon sub-sampling Fourier domain

Figure 8.8: Partial Fourier measures.

Image f0 13 projections 32 projections.

Figure 8.9: Pseudo inverse reconstruction from partial Radon projections.

Image f0 Pseudo-inverse TV

Figure 8.10: Total variation tomography inversion.

149

150

Chapter 9

Sparse Regularization

Ref [21, 29, 27]

9.1 Sparsity Priors

9.1.1 Ideal sparsity prior.

As detailed in Chapter ??, it is possible to use an orthogonal basis B = {ψm}m to efficiently approximate
an image f in a given class f ∈ Θ with a few atoms from B.

To measure the complexity of an approximation with B, we consider the `0 prior, which counts the
number of non-zero coefficients in B

J0(f)
def.
= # {m ; 〈f, ψm〉 6= 0} where xm = 〈f, ψm〉.

One often also denote it as the `0 “pseudo-norm”

||x||0 def.
= J0(f).

which we treat here as an ideal sparsity measure for the coefficients x of f in B.
Natural images are not exactly composed of a few atoms, but they can be well approximated by a function

fM with a small ideal sparsity M = J0(f). In particular, the best M -term approximation defined in (4.3) is
defined by

fM =
∑

|〈f, ψm〉|>T
〈f, ψm〉ψm where M = # {m ; |〈f, ψm〉| > T} .

As detailed in Section 4.2, discontinuous images with bounded variation have a fast decay of the approxi-
mation error ||f − fM ||. Natural images f are well approximated by images with a small value of the ideal
sparsity prior J0.

Figure 9.1 shows an examples of decomposition of a natural image in a wavelet basis, ψm = ψωj,n m =
(j, n, ω). This shows that most 〈f, ψm〉 are small, and hence the decomposition is quite sparse.

9.1.2 Convex relaxation

Unfortunately, the ideal sparsity prior J0 is difficult to handle numerically because J0(f) is not a convex
function of f . For instance, if f and g have non-intersecting supports of there coefficients in B, then
J0((f + g)/2) = J0(f) + J0(g), which shows the highly non-convex behavior of J0.

This ideal sparsity J0 is thus not amenable to minimization, which is an issue to solve general inverse
problems considered in Section ??.

151

Image f Coefficients 〈f, ψm〉

Figure 9.1: Wavelet coefficients of natural images are relatively sparse.

We consider a family of `q priors for q > 0, intended to approximate the ideal prior J0

Jq(f) =
∑

m

|〈f, ψm〉|q.

As shown in Figure 14.1, the unit balls in R2 associated to these priors are shrinking toward the axes, which
corresponds to the unit ball for the `0 pseudo norm. In some sense, the Jq priors are becoming closer to J0

as q tends to zero, and thus Jq favors sparsity for small q.

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 9.2: `q balls {x ; Jq(x) 6 1} for varying q.

The prior Jq is convex if and only if q > 1. To reach the highest degree of sparsity while using a convex
prior, we consider the `1 sparsity prior J1, which is thus defined as

J1(f) = ||(〈f, ψm〉)||1 =
∑

m

|〈f, ψm〉|. (9.1)

In the following, we consider discrete orthogonal bases B = {ψm}N−1
m=0 of RN .

9.1.3 Sparse Regularization and Thresholding

Given some orthogonal basis {ψm}m of RN , the denoising by regularization (7.15) is written using the
sparsity J0 and J1 as

f? = argmin
g∈RN

1

2
||f − g||2 + λJq(f)

152

for q = 0 or q = 1. It can be re-written in the orthogonal basis as

f? =
∑

m

x?mψm

where x? = argmin
y∈RN

∑

m

1

2
|xm − ym|2 + λ|ym|q

where xm
def.
= 〈f, ψm〉, ym def.

= 〈g, ψm〉, and where we use the following slight abuse of notation for q = 0

∀u ∈ R, |u|0 =

{
0 if u = 0,
1 otherwise.

Each coefficients of the denoised image is the solution of a 1-D optimization problem

x?m = argmin
u∈R

1

2
|xm − u|2 + λ|u|q (9.2)

and the following proposition this optimization is solved exactly in closed form using thresholding.

Proposition 26. One has

x?m = SqT (xm) where

{
T =

√
2λ for q = 0,

T = λ for q = 1,
(9.3)

where

∀u ∈ R, S0
T (u)

def.
=

{
0 if |u| < T,
u otherwise

(9.4)

is the hard thresholding introduced in (6.6), and

∀u ∈ R, S1
T (u)

def.
= sign(u)(|u| − T)+ (9.5)

is the soft thresholding introduced in (6.7).

Proof. One needs to solve (9.2). Figure 14.2, left shows the function ||x − y||2 + T 2||x||0, and the minimum
is clearly at x = 0 when T > y, and at x = y otherwise. This is thus a hard thresholding with threshold
T 2 = 2λ. Figure (14.2), right, shows the evolution with λ of the function 1

2 ||x − y||2 + λ|x|. For x > 0, one
has F ′(x) = x− y + λ wich is 0 at x = y − λ. The minimum is at x = y − λ for λ 6 y, and stays at 0 for all
λ > y.

Figure 9.3: Leftmost: function || · −y||2 + T 2|| · ||0 . Others: evolution with λ of the function F (x)
def.
=

1
2 || · −y||2 + λ| · |.

One thus has
fλ,q =

∑

m

SqT (〈f, ψm〉)ψm.

As detailed in Section 6.3, these denoising methods has the advantage that the threshold is simple to set for
Gaussian white noise w of variance σ2. Theoretical values indicated that T =

√
2 log(N)σ is asymptotically

optimal, see Section 6.3.3. In practice, one should choose T ≈ 3σ for hard thresholding (`0 regularization),
and T ≈ 3σ/2 for soft thresholding (`1 regularization), see Figure 6.14.

153

9.2 Sparse Regularization of Inverse Problems

Sparse `1 regularization in an orthogonal basis {ψm}m of RN makes use of the J1 prior defined in (9.1),
so that the inversion is obtained by solving the following convex program

fλ ∈ argmin
f∈RN

1

2
||y − Φf ||2 + λ

∑

m

|〈f, ψm〉|. (9.6)

This corresponds to the basis pursuit denoising for sparse approximation introduced by Chen, Donoho and
Saunders in [12]. The resolution of (9.6) can be perform using an iterative thresholding algorithm as detailed
in Section 9.3.

Analysis vs. synthesis priors. When the set of atoms Ψ = {ψm}Qm=1 is non-orthognal (and might even
be redundant in the case Q > N), there is two distincts way to generalizes problem (9.6), which we formulate
as in (??), by introducing a generic convex prior J

fλ ∈ argmin
f∈RN

1

2
||y − Φf ||2 + λJ(f). (9.7)

In the following, with a slight abuse of notation, we denote the “analysis” and “synthesis” operator as

Ψ : x ∈ RQ 7→ Ψx =
∑

m

xmψm and Ψ∗ : f ∈ RN 7→ (〈f, ψm〉)Qm=1 ∈ RQ.

The so-called analysis-type prior is simply measuring the sparsity of the correlations with the atoms in
the dictionary

JA
1 (f)

def.
=
∑

m

|〈f, ψm〉| = ||Ψ∗f ||1. (9.8)

The so-called synthesis-type priori in contrast measure the sparsity of the sparsest expansion of f in Ψ, i.e.

JS
1 (f)

def.
= min

x∈Rq,Ψx=f
||x||1. (9.9)

While the analysis regularization (9.8) seems simpler to handle, it is actually the contrary. Solving (9.7) with
J = JA

1 is in fact quite involved, and necessitate typically primal-dual algorithm as detailed in Chapter 18.
Furthermore, the theoretical study of the performance of the resulting regularization method is mostly an
open problem.

We thus now focus on the synthesis regularization problem J = JS
1 , and we re-write (9.7) conveniently

as fλ = Ψxλ where xλ is any solution of the following Basis Pursuit Denoising problem

xλ ∈ argmin
x∈RQ

1

2λ
||y −Ax||2 + ||x||1 (9.10)

where we introduced the following matrix

A
def.
= ΦΨ ∈ RP×Q.

As λ→ 0, we consider the following limit constrained problem

x? = argmin
Ax=y

||x||1 (9.11)

and the signal is recovered as f? = Ψx? ∈ RN .

9.3 Iterative Soft Thresholding Algorithm

This section details an iterative algorithm that compute a solution of (9.10).

154

Φf =
y

f!

Φf =
y

f! f!||Φf − y|| !
ε

min
Φf=y

||Ψ∗f ||1 min
Φf=y

||f ||2 min
||Φf=y||6ε

||Ψ∗f ||1

Figure 9.4: Geometry of convex optimizations.

9.3.1 Noiseless Recovery as a Linear Program

Before detailing this methods, which only deal with the case λ > 0, let us note that in the noiseless
settig, λ = 0 and (9.11) is actually equivalent to a linear program. Indeed, decomposing a = x+ − x− with

(x+, x−) ∈ (RQ+)2, one has

x? = argmin
(x+,x−)∈(RQ+)2

{〈x+, 1Q〉+ 〈x−, 1Q〉 ; y = A(x+ − x−)} . (9.12)

which is a linear program. For small to medium scale problem (Q of the order of a few thousands) it can
be solved using the simplex algorithm or interior point methods. For large scale problems such as those
encountered in imaging or machine learning, this is not possible, and one has to ressort to simpler first order
schemes. A possible option is the Douglas-Rachford splitting scheme, which is detailed in Section ??. Let
us however stress that the constrained problem (9.11), because of its polyhedral (linear) nature, is in fact
harder to solve than the penalized problem (9.10) that we now target.

9.3.2 Projected Gradient Descent for `1.

As a first practical example to solve (9.10), we will show how to use the projected gradient descent method,
which is analyzed in detailed in Section 18.1.3. Similarly to (9.12), we remap (9.10) as the resolution of a
constraint minimization problem of the form (18.4) where here C is a positivity constraint and

u = (u+, u−) ∈ (RQ)2, C = (RQ+)2, and E(u) =
1

2
||Φ(u+ − u−)− y||2 + λ〈u+, 1Q〉+ λ〈u−, 1Q〉.

The projection on C is here simple to compute

Proj(RQ+)2(u+, u−) = ((u+)⊕, (u−)⊕) where (r)⊕
def.
= max(r, 0),

and the gradient reads

∇E(u+, u−) = (η + λ1Q,−η + λ1Q) where η = Φ∗(Φ(u+ − u−)− y)

Denoting u(`) = (u
(`)
+ , u

(`)
−) and x(`) def.

= u
(`)
+ − u(`)

− , the iterate of the projected gradient descent algo-
rithm (18.5) read

u
(`+1)
+

def.
=
(
u

(`)
+ − τ`(η(`) + λ)

)
⊕

and u
(`+1)
−

def.
=
(
u

(`)
− − τ`(−η(`) + λ)

)
⊕

155

where η(`) def.
= Φ∗(Φx(`) − y).

Theorem 32 ensures that u(`) → u? a solution to (18.4) if

∀ `, 0 < τmin < τ` < τmax <
2

||Φ||2 ,

and thus x(`) → x? = u?+ − u?− which is thus a solution to (9.10).

9.3.3 Iterative Soft Thresholding and Forward Backward

A drawback of this projected gradient descent scheme is that it necessitate to store 2Q coefficients. A
closely related method, which comes with exactly the same convergence guarantees and rate, is the so called
“iterative soft thresholding algorithm” (ISTA). This algorithm was derived by several authors, among which
[19, 16], and belongs to the general family of forward-backward splitting in proximal iterations [14], which
we detail in Section 18.4.2.

For the sake of simplicity, let us derive this algorithm in the special case of `1 by surrogate function
minimization. We aim at minimizing (9.6)

E(x)
def.
=

1

2
||y −Ax||2 + λ||x||1

and we introduce for any fixed x′ the function

Eτ (x, x′)
def.
= E(x)− 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2.

We notice that E(x, x) = 0 and one has

K(x, x′)
def.
= −1

2
||Ax−Ax′||2 +

1

2τ
||x− x′|| = 1

2
〈
(

1

τ
IdN −A∗A

)
(x− x′), x− x′〉.

This quantity K(x, x′) is positive if λmax(A∗A) 6 1/τ (maximum eigenvalue), i.e. τ 6 1/||A||2op, where we
recall that ||A||op = σmax(A) is the operator (algebra) norm. This shows that Eτ (x, x′) is a valid surrogate
functional, in the sense that

E(x) 6 Eτ (x, x′), Eτ (x, x′) = 0, and E(·)− Eτ (·, x′) is smooth.

This leads to define
x(`+1) def.

= argmin
x

Eτ`(x, x(`)) (9.13)

which by construction satisfies
E(x(`+1)) 6 E(x(`)).

Proposition 27. The iterates x(`) defined by (14.6) satisfy

x(`+1) = S1
λτ`

(
x(`) − τ`A∗(Ax(`) − y)

)
(9.14)

where S1
λ(x) = (S1

λ(xm))m where S1
λ(r) = sign(r)(|r| − λ)⊕ is the soft thresholding operator defined in (9.5).

Proof. One has

Eτ (x, x′) =
1

2
||Ax− y||2 − 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2 + λ||x||1

= C +
1

2
||Ax||2 − 1

2
||Ax||2 +

1

2τ
||x||2 − 〈Ax, y〉+ 〈Ax, Ax′〉 − 1

τ
〈x, x′〉+ λ||x||1

= C +
1

2τ
||x||2 + 〈x, −A∗y +AA∗x′ − 1

τ
x′〉+ λ||x||1

= C ′ +
1

τ

(
||x− (x′ − τA∗(Ax′ − y)) ||2 + τλ||x||1.

)

Proposition (26) shows that the minimizer of Eτ (x, x′) is thus indeed S1
λτ (x′ − τ`A∗(Ax′ − y)).

156

Of course, these iterations (14.7) are the same as the FB iterates (18.20), when, for the special case (9.6),
one can consider a splitting of the form (18.20) defining

F =
1

2
||A · −y||2 and G = λ|| · ||1. (9.15)

In the case (9.15), Proposition (26) shows that ProxρJ is the soft thresholding.

9.4 Example: Sparse Deconvolution

9.4.1 Sparse Spikes Deconvolution

Sparse spikes deconvolution makes use of sparsity in the spacial domain, which corresponds to the orthog-
onal basis of Diracs ψm[n] = δ[n−m]. This sparsity was first introduced in the seismic imaging community
[], where the signal f0 represent the change of density in the underground and is assumed to be composed
of a few Diracs impulse.

In a simplified linearized 1D set-up, ignoring multiple reflexions, the acquisition of underground data
f0 is modeled as a convolution y = h ? f0 + w, where h is a so-called “wavelet” signal sent in the ground.
This should not be confounded with the construction of orthogonal wavelet bases detailed in Chapter ??,
although the term “wavelet” originally comes from seismic imaging.

The wavelet filter h is typically a band pass signal that perform a tradeoff between space and frequency
concentration especially tailored for seismic exploration. Figure (9.5) shows a typical wavelet that is a second
derivative of a Gaussian, together with its Fourier transform. This shows the large amount of information
removed from f during the imaging process.

The sparse `1 regularization in the Dirac basis reads

f? = argmin
f∈RN

1

2
||f ? h− y||2 + λ

∑

m

|fm|.

Figure 9.5 shows the result of `1 minimization for a well chosen λ parameter, that was optimized in an oracle
manner to minimize the error ||f? − f0||.

The iterative soft thresholding for sparse spikes inversion iterates

f̃ (k) = f (k) − τh ? (h ? f (k) − y)

and
f (k+1)
m = S1

λτ (f̃ (k)
m)

where the step size should obeys
τ < 2/||Φ∗Φ|| = 2/max

ω
|ĥ(ω)|2

to guarantee convergence. Figure 9.6 shows the progressive convergence of the algorithm, both in term of
energy minimization and iterates. Since the energy is not strictly convex, we note that convergence in energy
is not enough to guarantee convergence of the algorithm.

9.4.2 Sparse Wavelets Deconvolution

Signal and image acquired by camera always contain some amount of blur because of objects being out
of focus, movements in the scene during exposure, and diffraction. A simplifying assumption assumes a
spatially invariant blur, so that Φ is a convolution

y = f0 ? h+ w.

In the following, we consider h to be a Gaussian filter of width µ > 0. The number of effective measurements
can thus be considered to be P ∼ 1/µ, since Φ nearly set to 0 large enough Fourier frequencies. Table ??
details the implementation of the sparse deconvolution algorithm.

157

h ĥ

f0 y = h ? f + w

f+ f?

Figure 9.5: Pseudo-inverse and `1 sparse spikes deconvolution.

Figures 9.7 and 9.8 shows examples of signal and image acquisition with Gaussian blur.
Sobolev regularization (7.17) improves over `2 regularization (??) because it introduces an uniform

smoothing that reduces noise artifact. It however fail to recover sharp edge and thus does a poor job
in inverting the operator. To recover sharper transition and edges, one can use either a TV regularization
or a sparsity in an orthogonal wavelet basis.

Figure 9.7 shows the improvement obtained in 1D with wavelets with respect to Sobolev. Figure 9.8 shows
that this improvement is also visible for image deblurring. To obtain a better result with fewer artifact, one
can replace the soft thresholding in orthogonal wavelets in during the iteration (??) by a thresholding in a
translation invariant tight frame as defined in (6.10).

Figure 9.9 shows the decay of the SNR as a function of the regularization parameter λ. This SNR is
computed in an oracle manner since it requires the knowledge of f0. The optimal value of λ was used in the
reported experiments.

9.4.3 Sparse Inpainting

This section is a follow-up of Section 8.5.2.
To inpaint using a sparsity prior without noise, we use a small value for λ. The iterative thresholding

algorithm (??) is written as follow for τ = 1,

f (k+1) =
∑

m

S1
λ(〈Py(f (k)), ψm〉)ψm

Figure 9.10 shows the improvevement obtained by the sparse prior over the Sobolev prior if one uses soft
thresholding in a translation invariant wavelet frame.

158

log10(E(f (k))/E(f?)− 1) log10(||f (k) − f?||/||f0||)

Figure 9.6: Decay of the energy and convergence through the iterative thresholding iterations.

Signal f0 Filter h

Observation y = h ? f0 + w `1 recovery f?

Figure 9.7: Sparse 1D deconvolution using orthogonal wavelets.

159

Image f0 Observations y = h ? f0 + w `2 regularization
SNR=?dB SNR=?dB

Sobolev regularization `1 regularization `1 invariant
SNR=?dB SNR=?dB SNR=?dB

Figure 9.8: Image deconvolution.

S
N

R

λλopt

S
N

R

λλopt

S
N

R

λλopt

`2 regularization Sobolev regularization `1 regularization

Figure 9.9: SNR as a function of λ.

160

Image f0 Observation y = Φf0

Sobolev f? Ortho. wav f? TI. wav f?

SNR=?dB SNR=?dB SNR=?dB

Figure 9.10: Inpainting with Sobolev and sparsity.

161

162

Chapter 10

Theory of Sparse Regularization

We now apply the basics elements of convex analysis from the previous chapter to perform a theoretical
analysis of the properties of the Lasso, in particular its performances to recover sparse vectors.

10.1 Existence and Uniqueness

10.1.1 Existence

We consider problems (9.10) and (9.11), that we rewrite here as

min
x∈RN

fλ(x)
def.
=

1

2λ
||y −Ax||2 + λ||x||1 (Pλ(y))

and its limit as λ→ 0
min
Ax=y

||x||1 = min
x

f0(x)
def.
= ιLy (x) + ||x||1. (P0(y))

where A ∈ RP×N , and Ly def.
=
{
x ∈ RN ; Ax = y

}
.

We recall that the setup is that one observe noise measures

y = Ax0 + w

and we would like conditions to ensure for x0 to solution to (P0(Ax0)) (i.e. when w = 0) and to be close (in
some sense to be defined, and in some proportion to the noise level ||w||) to the solutions of (P0(y = Ax0 +w))
when λ is wisely chosen as a function of ||w||.

First let us note that since (Pλ(y)) is unconstrained and coercive (because || · ||1 is), this problem always
has solutions. Since A might have a kernel and || · ||1 is not strongly convex, it might have non-unique
solutions. If y ∈ Im(A), the constraint set of (P0(y)) is non-empty, and it also has solutions, which might
fail to be unique.

Figure 10.1 gives the intuition of the theory that will be developed in this chapter, regarding the exact
or approximated recovery of sparse vectors x0, and the need for a careful selection of the λ parameter.

10.1.2 Polytope Projection for the Constraint Problem

The following proposition gives a geometric description of those vectors which are recovered by `1 mini-
mization when there is no noise.

Proposition 28. We denote B
def.
=
{
x ∈ RN ; ||x||1 6 1

}
. Then, assuming Im(A) = RP ,

x0 is a solution to P0(Ax0) ⇐⇒ A
x0

||x0||1
∈ ∂(AB) (10.1)

where “∂” denoted the boundary and AB = {Ax ; x ∈ B}.

163

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

s = 3 s = 6

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

10 20 30 40 50 60
−1

−0.5

0

0.5

s=3

10 20 30 40 50 60

−0.5

0

0.5

s=6

20 40 60 80 100

−0.5

0

0.5

1

s=13

20 40 60 80 100 120 140

−1.5

−1

−0.5

0

0.5

1

1.5

s=25

s = 13 s = 25

Figure 10.1: Display of the evolution λ 7→ xλ of the solutions of (Pλ(y)).

Proof. We first prove “⇒′′. We suppose that x0 is not a solution, and aim at showing thatA x0

||x0||1 ∈ int(ABρ).

Since it is not a solution, there exists z such that Ax0 = Az and ||z||1 = (1−δ)||x0||1 with δ > 0. Then for any
displacement h = Aε ∈ Im(A), where one can impose ε ∈ ker(A)⊥, i.e. ε = A+h, one has Ax0 +h = A(z+ε)
and

||z + ε||1 6 ||z||1 + ||Φ+h|| 6 (1− δ)||x0||1 + ||Φ+||1,1||h||1 <
δ

||A+||1,1
||x0||.

This means that choosing ||h||1 < δ
||A+||1,1 ||x0||1 implies that A x0

||x0||1 ∈ int(AB).

We now prove “⇐”. We suppose that A x0

||x0||1 ∈ int(AB). Then there exists z such that Ax0 = (1− δ)Az
and ||z||1 < ||x0||1. This implies ||(1 − δ)z||1 < ||x0||1 so that (1 − δ)z is better than x0 which is thus not a
solution.

Figure 10.2: Graphical display of the proof for the polytope analysis of `1 exact recovery.

164

x0

A

B

A
a1

a2a3

�a3�a2

�a1

Ax0

A(B)

C(0,1,1)

AC(0,1,1)

a1

a2a3

A

A
RN

ai

Cs

ak

A

A

A ∈ R2×3 A ∈ R2×3 A ∈ R3×N

Figure 10.3: Display of the action of the linear map A on the `1 ball B, and of the inverse non-linear map
A defined by the solution of (P0(y)).

This results state that “friendly” identifiable vectors (those recovered by `1) are those who gets projected
by A on the boundary of the polytope ||x0||1AB. Intuitively, if P is small in comparison to N , then this
projected polytope is small, and most vector will failed to be reconstructed by solving `1 minimization.
This also suggests why using random projections as in Chapter 11, because somehow they results in a low
distortion embedding of the `1 ball from RN to RP .

Note that if x0 is identifiable, so is λx0 for ρx0 for ρ > 0, and in fact, since the recovery condition only
depends on the geometry of the faces of B, the obtained condition (10.1) only depends on sign(x0). We denote
A : y 7→ x? the map from y to a solution of (P0(y)), which we assume is unique for simplicity of exposition.
Condition (10.1) thus shows that A and A are inverse bijection on a family of cones Cs = {x ; sign(x) = s}
and ACs for certain “friendly” sign patterns s. These cones ACs form a partition of the image space RP .
Assuming for simplicity that the columns (aj)j of A have unit norm, for P = 3, the interaction of these ACs
with the unit sphere of R3 for a so-called Delaunay triangulation of the sphere (this construction extends
to higher dimension by replacing triangle by simplexes), see also Figure 10.7. Such Delaunay triangulation
is characterized by the empty spherical cap property (each circumcircle associated to a triangle should not
contains any columns vector aj of the matrix). Figure 10.3 illustrate these conclusions in R2 and R3.

10.1.3 Optimality Conditions

In the following, given an index set I ⊂ {1, . . . , N}, denoting A = (ai)
N
i=1 the columns of A, we denote

AI
def.
= (ai)i∈I ∈ RP×|I| the extracted sub-matrix. Similarly, for x ∈ RN , we denote xI

def.
= (xi)i∈I ∈ R|I|.

The following proposition rephrases the first order optimality conditions in a handy way.

Proposition 29. xλ is a solution to (Pλ(y)) for λ > 0 if and only if

ηλ,I = sign(xλ,I) and ||ηλ,Ic || 6 λ

where we define

I
def.
= supp(xλ)

def.
= {i ; xλ,i 6= 0} , and ηλ

def.
=

1

λ
A∗(y −Axλ). (10.2)

Proof. Since (Pλ(y)) involves a sum of a smooth and a continuous function, its sub-differential reads

∂fλ(x) =
1

λ
A∗(Ax− y) + λ∂|| · ||1(x).

Thus xλ is solution to (Pλ(y)) if and only if 0 ∈ ∂fλ(xλ), which gives the desired result.

Note that one has in particular that supp(xλ) ⊂ sat(ηλ).
The following proposition studies the limit case λ = 0 and introduces the crucial concept of “dual

certificates”, which are the Lagrange multipliers of the constraint Ly.

Proposition 30. x? being a solution to (P0(y)) is equivalent to having Ax? = y and that

∃η ∈ D0(y, x?)
def.
= Im(A∗) ∩ ∂|| · ||1(x?). (10.3)

165

Proof. Since (P0(y)) involves a sum with a continuous function, one can also computes it sub-differential as

∂f0(x) = ∂ιLy (x) + ∂|| · ||1(x).

If x ∈ Ly, then ∂ιLy (x) is the linear space orthogonal to Ly, i.e. ker(A)⊥ = Im(A∗).

Note that one has in particular that supp(x?) ⊂ sat(η) for any valid vector η ∈ D0(y, x?).
Writing I = supp(x?), one thus has

D0(y, x?) = {η = A∗p ; ηI = sign(x?I), ||η||∞ 6 1} .
Although it looks like the definition of D0(y, x?) depends on the choice of a solution x?, convex duality
(studied in the next chapter) shows that it is not the case (it is the same set for all solutions).

10.1.4 Uniqueness

The following proposition shows that the Lasso selects a set of linearly independent regressors (columns
of A). This is why this method is also often called “basis pursuit”.

Proposition 31. For λ > 0, there is always a solution x? to (Pλ(y)) with I = supp(x?) such that ker(AI) =
{0}
Proof. Let x be a solution and denote I = supp(x). If ker(AI) 6= {0}, one selects hI ∈ ker(AI) and define

for t ∈ R the vector xt
def.
= x + th. We denote t0 the smallest |t| such that sign(xt) 6= sign(x), i.e. supp(xt)

is strictly included in I. For t < t0, since Axt = Ax and sign(xt) = sign(x), xt still satisfies the same first
order condition as x0, and one can apply either Proposition 30 (for λ = 0) or Proposition 29 (for λ > 0), so
that xt is a solution of (Pλ(y)). Since the minimized function are lower semi continuous, xt → xt0 is still a
solution. If ker(AJ) 6= {0} with J = supp(xt0), one is over, otherwise one can iterate this argument on xt0
in place of x and have a sequence of supports which is strictly decaying in size, so it must terminate.

Figure 10.4: Trajectory
(xt)t.

This results in particular that if columns of AI are not independent, then
the solution of (Pλ(y)) is necessarily non-unique.

Assuming that xλ is a solution such that ker(AI) = {0}, then from (Pλ(y)),
one obtains the following implicit expression for the solution

xλ,I = A+
I y − λ(A∗IAI)

−1 sign(xλ,I). (10.4)

This expression can be understood as a form of generalized soft thresholding
(one retrieve the soft thresholding when A = IdN).

The following useful lemma shows that while solutions xλ to (Pλ(y)) are
not necessarily unique, the associated “predictor” (i.e. denoised version of y)
Axλ is however always uniquely defined. Note that according to (10.5), one has

Φxλ = ProjIm(AI) y − λAI(A∗IAI)−1 sign(xλ,I). (10.5)

so up to a O(λ) bias, this predictor is an orthogonal projection on a low dimensional subspace indexed by I.

Lemma 3. For λ > 0, if (x1, x2) are solution to (Pλ(y)), then Ax1 = Ax2.

Proof. For λ = 0, this is trivial because Ax1 = Ax2 = y. Otherwise, let us assume Ax1 6= Ax2. Then for
x = (x1 + x2)/2, one has

||x||1 6 ||x1||1 + ||x2||2
2

and ||Ax− y||2 < ||Ax1 − y||2 + ||Ax2 − y||2
2

where the second inequality follows from the strict convexity of the square. This shows that

1

2λ
||Ax− y||2 + ||x||1 <

1

2λ
||Ax1 − y||2 + ||x1||1,

which is a contradiction to the optimality of x1.

166

Proposition 32. For λ > 0, let xλ be a solution to (Pλ(y)) and denote ηλ
def.
= 1

λA
∗(y − Axλ). We define

the “extended support” as

J
def.
= sat(ηλ)

def.
= {i ; |ηλ,i| = 1} .

If ker(AJ) = {0} then xλ is the unique solution of (Pλ(y)).

Proof. If x̃λ is also a minimizer, then by Lemma 3, Axλ = Ax̃λ, so that in particular they share the same
dual certificate

ηλ =
1

λ
A∗(y −Axλ) =

1

λ
A∗(y −Ax̃λ).

The first order condition, Proposition 29, shows that necessarily supp(xλ) ⊂ J and supp(x̃λ) ⊂ J . Since
AJxλ,J = AJ x̃λ,J , and since ker(AJ) = {0}, one has xλ,J = x̃λ,J , and thus xλ = x̃λ because of their supports
are included in J .

Proposition 33. Let x? be a solution to (P0(y)). If there exists η ∈ D0(y, x?) such that ker(AJ) = {0}
where J

def.
= sat(η) then x? is the unique solution of (P0(y)).

Proof. The proof is the same as for Proposition 32, replacing ηλ by η.

These propositions can be used to show that if A is drawn according to a distribution having a density
over Rp×n, then with probability 1 on the matrix A, the solution to (Pλ(y)) is unique. Note that this results
is not true if A is non random but y is.

10.1.5 Duality

We now related the first order conditions and “dual certificate” introduced above to the duality theory
detailed in Section 17.3. This is not strictly needed to derive the theory of sparse regularization, but this
offers an alternative point of view and allows to better grasp the role played by the certificates.

Theorem 11. For any λ > 0 (i.e. including λ = 0), one has strong duality between (Pλ(y)) and

sup
p∈RP

{
〈y, p〉 − λ

2
||p||2 ; ||A∗p||∞ 6 1

}
. (10.6)

One has for any λ > 0 that (x?, p?) are primal and dual solutions if and only if

A∗p? ∈ ∂|| · ||1(x?) ⇔ (I ⊂ sat(A∗p) and sign(x?I) = A∗Ip) , (10.7)

where we denoted I = supp(x?), and furthermore, for λ > 0,

p? =
y −Ax?

λ
.

while for λ = 0, Ax? = y.

Proof. There are several ways to derive the same dual. One can for instance directly use the Fenchel-
Rockafeller formula (??). But it is instructive to do the computations using Lagrange duality. One can first
consider the following re-writing of the primal problem

min
x∈RN

{f(z) + ||x||1 ; Ax = z} = min
x∈RN

sup
p∈Rp

L(x, z, p)
def.
= fλ(z) + ||x||1 + 〈z −Ax, p〉

where fλ(z)
def.
= 1

2λ ||z − y||2 if λ > 0 and f(z) = ι{y}(z) if λ = 0. For λ > 0 since fλ and || · ||1 are continuous,
strong duality holds. For λ = 0, since the constraint appearing in f0 is linear (actually a singleton), strong
duality holds also. Thus using Theorem 29, one can exchange the min and the max and obtains

max
p∈RP

(min z 〈z, p〉+ fλ(z)) + (minx ||x||1 − 〈x, A∗p〉) = max
p∈RP

− f∗λ(−p)− (|| · ||1)∗(A∗p).

167

Figure 10.5: Visualization of Bregman divergences.

Using (59), one has that (|| · ||∗1 = ι||·||∞61. For λ > 0, one has using Proposition 60 that

f∗λ = (
1

2λ
|| · −y||2)∗ =

1

λ
(
1

2
|| · −y||2)∗(λ·) =

1

2λ
||λ · ||2 + 〈·, y〉

which gives the desired dual problem. The first order optimality conditions read Ax? = z? and

0 ∈ ∂|| · ||1(x?)−A∗p? and 0 ∈ ∂fλ(z?) + p?.

The first condition is equivalent to (10.7). For λ > 0, fλ is smooth, and the second condition is equivalent
to

p? =
y −A∗x?

λ
and A∗p? ∈ ∂|| · ||1(x?)

which are the desired formula. For λ = 0, the second condition holds as soon as z? = Ax? = y.

Note that in the case λ > 0, (10.6) is strongly convex, and in fact the optimal solution pλ is computed
as an orthogonal projection

pλ ∈ argmin
p∈RP

{||p− y/λ|| ; ||A∗p||∞ 6 1} .

The sup in (10.6) is thus actually a max if λ > 0. If λ > 0, in case ker(A∗) = Im(A)⊥ = {0}, the constraint
set of the dual is bounded, so that the sup is also a max.

10.2 Consistency and Sparsitency

10.2.1 Bregman Divergence Rates for General Regularizations

Here we consider the case of a general regularization of the form

min
x∈RN

1

2λ
||Ax− y||2 + J(x) (10.8)

for a convex regularizer J .
For any η ∈ ∂J(x0), we define the associated Bregman divergence as

Dη(x|x0)
def.
= J(x)− J(x0)− 〈η, x− x0〉.

One has Dη(x0|x0), and since J is convex, one has Dη(x|x0) > 0 [ToDo: put here drawings].
In the case where J is differentiable, since ∂J(x0) = {∇J(x0)}, this divergence simply reads

D(x|x0)
def.
= J(x)− J(x0)− 〈∇J(x0), x− x0〉.

If furthermore J is strictly convex, then D(x|x0) = 0 if and only if x = x0, so that D(·|·) is similar to a
distance function (but it does not necessarily satisfies the triangular inequality.

168

If J = || · ||2, then D(x|x0) = ||x− x0||2 is the Euclidean norm. If J(x) =
∑
i xi(log(xi)− 1) + ιR+(xi) is

the entropy, then

D(x|x0) =
∑

i

xi log

(
xi
x0,i

)
+ x0,i − xi

is the so-called Kulback-Leibler divergence on RN+ .
The following theorem, which is due to Burger-Osher, state a linear rate in term of this Bregman diver-

gence.

Theorem 12. If there exists
η = A∗p ∈ Im(A∗) ∩ ∂J(x0), (10.9)

then one has for any xλ solution of (10.8)

Dη(xλ|x0) 6 1

2

(||w||√
λ

+
√
λ||p||

)2

. (10.10)

Futhermore, one has the useful bound

||Axλ − y|| 6 ||w||+ (
√

2 + 1)||p||λ. (10.11)

Proof. The optimality of xλ for (10.8) implies

1

2λ
||Axλ − y||2 + J(xλ) 6 1

2λ
||Ax0 − y||2 + J(x0) =

1

2λ
||w||2 + J(x0).

Hence, using 〈η, xλ − x0〉 = 〈p, Axλ −Ax0〉 = 〈p, Axλ − y + w〉, one has

Dη(xλ|x0) = J(xλ)− J(x0)− 〈η, xλ − x0〉 6
1

2λ
||w||2 − 1

2λ
||Axλ − y||2 − 〈p, Axλ − y〉 − 〈p, w〉

=
1

2λ
||w||2 − 1

2λ
||Axλ − y + λp||2 + λ||p||2 − 〈p, w〉

6 1

2λ
||w||2 +

λ

2
||p||2 + ||p||||w|| = 1

2

(||w||√
λ

+
√
λ||p||

)2

.

From the second line above, since Dη(xλ|x0) > 0, one has using Cauchy-Schwartz

||Axλ − y + λp||2 6 ||w||2 + 2λ2||p||2 + 2λ||p||||w|| 6 ||w||2 + 2
√

2||p||||w||λ+ 2λ2||p||2 =
(
||w||+

√
2λ||p||

)2

.

Hence
||Axλ − y|| 6 ||Axλ − y + λp||+ λ||p|| 6 ||w||+

√
2λ||p||+ λ||p||.

Choosing λ = ||w||/||p|| in (10.10), one thus obtain a linear rate in term of Bregman divergence Dη(xλ|x0) 6
2||w||||p||. For the simple case of a quadratic regularized J(x) = ||x||2/2, as used in Section ??, one sees that
the source conditions (10.9) simply reads

x0 ∈ Im(A∗)

which is equivalent to (8.12) with exponent β = 1
2 , and under this condition, (10.10) gives the following

sub-linear rate in term of the `2 norm

||x0 − xλ|| 6 2
√
||w||||p||.

[ToDo: This seems inconsistent, this should corresponds to β = 1 to obtain the same rates in
both theorems!]

Note that the “source condition” (10.9) is equivalent to x0 such that Ax0 = y is a solution to the
constraint problem

min
Ax=y

J(x).

So simply being a solution of the constraint noiseless problem thus implies a linear rate for the resolution of
the noisy problem in term of the Bregman divergence.

169

10.2.2 Linear Rates in Norms for `1 Regularization

The issue with the control (10.10) of the error in term of Bregman divergence is that it is not “distance-
like” for regularizers J which are not strictly convex. This is in particular the case for the `1 norm J = || · ||1
which we now study.

Figure 10.6: Controlling
Bregman divergence with
the `1 norm when η is not
saturating.

The following fundamental lemma shows however that this Bregman diver-
gence for `1 behave like a distance (and in fact controls the `1 norm) on the
indexes where η does not saturate.

Lemma 4. For η ∈ ∂|| · ||1(x0), let J
def.
= sat(η). Then

Dη(x|x0) > (1− ||ηJc ||∞)||(x− x0)Jc ||1. (10.12)

Proof. Note that x0,Jc = 0 since supp(x0) ⊂ sat(η) by definition of the sub-
differential of the `1 norm. Since the `1 norm is separable, each term in the
sum defining Dη(x|x0) is positive, hence

Dη(x|x0) =
∑

i

|xi| − |x0,i| − ηi(xi − x0,i) >
∑

i∈Jc
|x| − |x0| − ηi(xi − x0,i)

=
∑

i∈Jc
|xi| − ηixi >

∑

i∈Jc
(1− |ηi|)|xi| > (1− ||ηJc ||∞)

∑

i∈Jc
|xi| = (1− ||ηJc ||∞)

∑

i∈Jc
|xi − x0,i|.

The quantity 1 − ||ηJc ||∞ > 0 controls how much η is “inside” the sub-
differential. The larger this coefficients, the better is the control of the Bregman divergence.

The following theorem uses this lemma to state the convergence rate of the sparse regularized solution,
under the same hypothesis has Proposition 33 (with x? = x0).

Theorem 13. If there exists

η ∈ D0(Ax0, x0) (10.13)

and ker(AJ) = {0} where J
def.
= sat(η) then choosing λ = c||w||, there exists C (depending on c) such that any

solution xλ of P(Ax0 + w) satisfies

||xλ − x0|| 6 C||w||. (10.14)

Proof. We denote y = Ax0 + w. The optimality of xλ in (Pλ(y)) implies

1

2λ
||Axλ − y||2 + ||xλ||1 6 1

2λ
||Ax0 − y||2 + ||x0||1 =

1

2λ
||w||2 + ||x0||1

and hence

||Axλ − y||2 6 ||w||2 + 2λ||x0||1

Using the fact that AJ is injective, one has A+
JAJ = IdJ , so that

||(xλ − x0)J ||1 = ||A+
JAJ(xλ − x0)J ||1 6 ||A+

J ||1,2||AJxλ,J − y + w|| 6 ||A+
J ||1,2 (||AJxλ,J − y||+ ||w||)

6 ||A+
J ||1,2 (||Axλ − y||+ ||AJcxλ,Jc ||+ ||w||)

6 ||A+
J ||1,2 (||Axλ − y||+ ||AJc ||2,1||xλ,Jc − x0,Jc ||1 + ||w||)

6 ||A+
J ||1,2

(
||w||+ (

√
2 + 1)||p||λ+ ||AJc ||2,1||xλ,Jc − x0,Jc ||1 + ||w||

)

170

where we used x0,Jc = 0 and (10.11). One plug this bound in the decomposition, and using (10.12) and (10.10)

||xλ − x0||1 = ||(xλ − x0)J ||1 + ||(xλ − x0)Jc ||1
6 ||(xλ − x0)Jc ||1

(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)

6 Dη(x|x0)

1− ||ηJc ||∞
(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)

6
1
2

(
||w||√
λ

+
√
λ||p||

)2

1− ||ηJc ||∞
(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||λ+ 2||w||
)
.

Thus setting λ = c||w||, one obtains the constant

C
def.
=

1
2

(
1√
c

+
√
c||p||

)2

1− ||ηJc ||∞
(
1 + ||A+

J ||1,2||AJc ||2,1
)

+ ||A+
J ||1,2

(
(
√

2 + 1)||p||c+ 2
)
.

Note that this theorem does not imply that xλ is a unique solution, only x0 is unique in general. The
condition (10.13) is often called a “source condition”, and is strengthen by imposing a non-degeneracy
ker(AJ) = {0}. This non-degeneracy imply some stability in `2 sense (10.14). The result (10.14) shows a
linear rate, i.e. the (possibly multi-valued) inverse map y 7→ xλ is Lipschitz continuous.

It should be compared with Theorem 10 on linear methods for inverse problem regularization, which only
gives sub-linear rate. The sources conditions in the linear (8.12) and non-linear (10.13) cases are however
very different. In the linear case, for β = 1/2, it reads x0 ∈ Im(A∗) = ker(A)⊥, which is mandatory because
linear method cannot recover anything in ker(A). On contrary, the non-linear source condition only requires
that η to be in Im(A∗), and is able (in the favorable cases of course) to recover information in ker(A).

10.2.3 Sparsistency for Low Noise

Theorem 13 is abstract in the sense that it rely on hypotheses which are hard to check. The crux of the
problem, to be able to apply this theorem, is to be able to “construct” a valid certificate (10.13). We now
give a powerful “recipe” which – when it works – not only give a sufficient condition for linear rate, but also
provides “support stability”.

For any solution xλ of (Pλ(y)), as already done in (10.2), we define the (unique, independent of the
chosen solution) dual certificate

ηλ
def.
= A∗pλ where pλ

def.
=

y −Axλ
λ

.

The following proposition shows that pλ converge to a very specific dual certificate of the constrained problem,
which we coined “minimal norm” certificate.

Proposition 34. If y = Ax0 where x0 is a solution to (Pλ(y = Ax0)), one has

pλ → p0
def.
= argmin

p∈RP
{||p|| ; A∗p ∈ D0(y, x0)} . (10.15)

The vector η0
def.
= A∗p0 is called the “minimum norm certificate”.

Proof. This follows from the fact that pλ is the unique solution to (10.6) and then applying the same proof
as the one done in Proposition 25 to study the small λ limit of penalized problems.

171

ai

aj

pF
def.
= A+,⇤

I sI

akaj

ai

|hp
f
,
ai|

<
1

pF

Figure 10.7: Visualization of the condition that ||ηF ||∞ 6 1 as a spherical Delaunay triangulation constraint
that all Delaunay spherical caps indexes by identifiable vector should be empty of (±ai)i.

This proposition shows that, while dual certificate D0(y, x0) for λ = 0 are non-unique, taking the limit
as λ→ 0 singles-out a specific one, which is of paramount importance to study stability of the support when
the noise and λ are small.

A major difficulty in computing (10.24) is that it should satisfy the non-linear constraint ||η0||∞. One
thus can “simplify” this definition by removing this `∞ constraint and define the so-called “minimum norm
certificate”

ηF
def.
= A∗pF where pF

def.
= argmin

p∈RP
{||p|| ; A∗Ip = sign(x0,I)} . (10.16)

The notation “ηF ” refers to the “Fuchs” certificate, which we named in honour of J-J. Fuchs who first used
it to study `1 minimization.

We insists that pF is not necessarily a valid certificate (hence the naming “pre-certificate”) since one
does not have in general ||ηF ||∞ 6 1. The vector pF is a least square solution to the linear system A∗Ip =
sign(x0,I), and it can thus be compute in closed form using the pseudo-inverse pF = A∗,+I sign(x0,I) (see
Proposition (23)). In case ker(AI) = {0}, one has the simple formula

pF = AI(A
∗
IAI)

−1 sign(x0,I).

Denoting C
def.
= A∗A the “correlation” matrix, one has the nice formula

ηF = C·,IC
−1
I,I sign(x0,I). (10.17)

The following proposition relates ηF to η0, and shows that ηF can be used as a “proxy” for η0

Proposition 35. If ||ηF ||∞ 6 1, then pF = p0 and ηF = η0.

The condition ||ηF ||∞ 6 1 implies that x0 is solution to (P0(y)). The following theorem shows that if one
strengthen this condition to impose a non-degeneracy on ηF , then one has linear rate with a stable support
in the small noise regime.

Before proceeding to the proof, let us note that the constraint ||ηF ||∞ 6 1 corresponds to the definition of
the spherical Delaunay triangulation, as highlighted by Figure 10.7. This remark was made to us by Charles
Dossal.

Remark 1 (Operator norm). In the proof, we use the `p − `q matrix operator norm, which is defined as

||B||p,q def.
= max {||Bu||q ; ||u||p 6 1} .

For p = q, we denote ||B||p def.
= ||B||p,p. For p = 2, ||B||2 is the maximum singular value, and one has

||B||1 = max
j

∑

i

|Bi,j | and ||B||∞ = max
i

∑

j

|Bi,j |.

172

Theorem 14. If
||ηF ||∞ 6 1 and ||ηF,Ic ||∞ < 1,

and ker(AI) = {0}, then there exists C,C ′ such that if max(||w||, ||w||/λ) 6 C, then the solution xλ of (Pλ(y))
is unique, is supported in I, and in fact

xλ,I = x0,I +A+
I w − λ(A∗IAI)

−1 sign(x?0,I). (10.18)

In particular, ||xλ − x0|| = O(||A∗w||∞) = O(||w||).

Proof. In the following we denote T
def.
= mini∈I |x0,i| the signal level, and δ

def.
= ||A∗w||∞ which is the natural

way to measure the noise amplitude in the sparse setting. We define s
def.
= sign(x0), and consider the

“ansatz” (10.18) and thus define the following candidate solution

x̂I
def.
= x0,I +A+

I w − λ(A∗IAI)
−1sI , (10.19)

and x̂Ic = 0. The goal is to show that x̂ is indeed the unique solution of (Pλ(y)).
Step 1. The first step is to show sign consistency, i.e. that sign(x̂) = s. This is true if ||x0,I − x̂I ||∞ < T , and
is thus implied by

||x0,I − x̂I ||∞ 6 K||A∗Iw||∞ +Kλ < T where K
def.
= ||(A∗IAI)−1||∞, (10.20)

where we used the fact that A+
I = (A∗IAI)

−1A∗I .
Step 2. The second step is to check the first order condition of Proposition 32, i.e. ||η̂Ic ||∞ < 1, where
λη̂ = A∗(y −Ax̂). This implies indeed that x̂ is the unique solution of (Pλ(y)). One has

λη̂ = A∗(AIx0,I + w −AI
(
x0,I +A+

I w − λ(A∗IAI)
−1sI)

)

= A∗(AIA
+
I − Id)w + ληF .

The condition ||η̂Ic ||∞ < 1 is thus implied by

||A∗IcAI(A∗IAI)−1||∞||A∗Iw||∞ + ||A∗Icw||∞ + λ||ηF,Ic ||∞ 6 R||A∗Iw||∞ − Sλ < 0 (10.21)

R
def.
= KL+ 1 and S

def.
= 1− ||ηF,Ic ||∞ > 0

where we denoted L
def.
= ||A∗IcAI ||∞, and also we used the hypothesis ||ηF,Ic ||∞ < 1.

Conclusion. Putting (10.20) and (10.21) together shows that x̂ is the unique solution if (λ,w) are such that
the two linear inequations are satisfies

R =

{
(δ, λ) ; δ + λ <

T

K
and Rδ − Sλ < 0

}

This region R is trianglular-shaped, and includes the following “smaller” simpler triangle

R̃ =

{
(δ, λ) ;

δ

λ
<
S

R
and λ < λmax

}
where λmax

def.
=

T (KL+ 1)

K(R+ S)
. (10.22)

Figure 10.8: Zone in the
(λ, δ) where sign consis-
tency occurs.

It is important to realize that Theorem 14 operates in a “small noise” regime,
i.e. ||w|| (and hence λ) needs to be small enough for the support to be identifiable
(otherwise small amplitude comment of x0 will be killed by the regularization).
In contrast, Theorem 13 is “global” and holds for any noise level ||w||. The
price to pay is that one has no controls about the support (and one does not
even knows whether xλ is unique) and than the constant involved are more
pessimistic.

A nice feature of this proof is that it gives access to explicit constant, in-
volving the three key parameter K,L, S, which controls:

173

10 20 30 40 50 60

-1

-0.5

0

0.5

1

10 20 30 40 50 60

-1

-0.5

0

0.5

1

P = 4 P = 8

10 20 30 40 50 60

-1

-0.5

0

0.5

1

10 20 30 40 50 60

-1

-0.5

0

0.5

1

P = 16 P = 32

Figure 10.9: Display of certificate ηF for a A ∈ Rp×n, n = 64, with independent Gaussian entries.

K accounts for the conditionning of the operator on the support I ;

L accounts for the worse correlation between atoms inside and outside the
support ;

S accounts for how much the certificates ηF is non-degenerate.

The constant on ||A∗w||/λ and on λ are given by (10.22). Choosing (which is in
practice impossible, because it requires knowledge about the solution) the smallest possible λ gives λ = δ SR
and in this regime the error is bounded in `∞ (using other error norms would simply leads to using other
matrix norm)

||x0 − xλ||∞ 6
(

1 +
KL+ 1

S

)
Kδ.

The crux of the analysis of the performance (in term of support stability) of `1 regularization is to be
able to say wether, for some class of signal x0 of interest, ηF is a valid certificate, i.e. ||ηF ||∞ 6 1. Figure 10.9
displays numerically what one obtains when A is random. One see that ηF is non-degenerate when P is
large enough. Section 11.2 performs a mathematical analysis of this phenomena.

10.2.4 Sparsistency for Arbitrary Noise

A flow of the previous approach is that it provides only asymptotic sparsistency when the noise is small
enough with respect to the signal. In particular, it cannot be used to asses the performance of sparse recovery
for approximately sparse (e.g. compressible signal), for which the residual error is of the error of the signal
itself (and thus not small).

This can be aleviated by controlling all possible certificate associated to all the sign pattern of a given
support. This is equivalent to the ERC condition of Tropp. [ToDo: write me]

The proof proceeds by restricting the optimization to the support, which is still a convex program, and
then showing that this candidate solution is indeed the correct one. Since one does not know in advance the
sign of this candidate, this is why one needs to control all possible certificates.

10.3 Sparse Deconvolution Case Study

Chapter 11 studies the particular case where A is random, in which case it is possible to make very
precise statement about wether ηF is a valid certificate.

174

Figure 10.10: Convolution operator.

Another interesting case study, which shows the limitation of this approach, is the case of “super-
resolution”. It corresponds to inverse problems where the columns (ai)i of A are highly correlated, since
typically they are obtained by sampling a smooth kernel.

We thus consider the case where ai = ϕ(zi) where the (zi)i ⊂ X is a sampling grid of a domain X and
ϕ : X→ H is a smooth map. One has

Ax =
∑

i

xiϕ(zi).

Since we seek for sparse x, one can view x as representing the weights of a discrete measure mx
def.
=
∑N
i=1 xiδzi

where the dirac masses are constraint to be on the sampling grid.
The matrix A is a discretized version of an infinite dimensional operator mapping Radon measures to

vectors of observations A : m ∈M(X) 7→ y = Am ∈ H

A(m)
def.
=

∫

X
ϕ(x)dm(x).

Indeed, one has for discrete measure A(mx) = Ax.
A typical example is when using H = L2(X) with X = Rd or X = Td and ϕ(z) = ϕ̃(z − ·), which

corresponds to a convolution

(Am)(z) =

∫
ϕ̃(z − x)dm(x) = (ϕ̃ ? m)(z).

Note that here H is infinite dimensional, and to get finite dimensional observations, it suffices to sample the
output and consider ϕ(z) = (ϕ(z − rj))Pj=1 (note that the observation grid r ∈ XP can be different from the

recovery grid z ∈ XN).

Another example, actually very much related, is when using ϕ(z) = (eikz)fck=−fc on X = T, so that A
corresponds to computing the fc low-frequencies of the Fourier transform of the measure

A(m) =

(∫

T
eikxdm(x)

)fc

k=−fc
.

The operator A∗A is a convolution against an ideal low pass (Dirichlet) kernel. By weighting the Fourier
coefficients, one can this way model any low pass filtering on the torus.

Yet another interesting example on X = R+ is the Laplace transform

A(m) = z 7→
∫

R+

e−xzdm(x).

We denote the “continuous” covariance as

∀ (z, z′) ∈ X2, C(z, z′) def.
= 〈ϕ(z), ϕ(z′)〉H.

Note that this C is the kernel associated to the operator A∗A. The discrete covariance, defined on the
computational grid is C = (C(zi, z′i)))(i,i′) ∈ RN×N , while its restriction to some support set I is CI,I =
(C(zi, z′i)))(i,i′)∈I2 ∈ RI×I .

175

Using (10.17), one sees that ηF is obtained as a sampling on the grid of a “continuous’ ’ certificate η̃F

ηF = (η̃F (zi))
N
i=1 ∈ RN ,

where η̃F (x) =
∑

i∈I
biC(x, zi) where bI = C−1

I,I sign(x0,I), (10.23)

so that ηF is a linear combination of I basis functions (C(x, zi))i∈I .
The question is wether ||ηF ||`∞ 6 1. If the gris is fine enough, i.e. N large enough, this can only hold

if ||η̃F ||L∞ 6 1. The major issue is that η̃F is only constrained by construction to interpolate sign(x0,i)
are points z0,i for i ∈ I. So nothing prevents η̃F to go outside [−1, 1] around each interpolation point.
Figure 10.11 illustrates this fact.

In order to guarantee this property of “local” non-degeneracy around the support, one has to impose on
the certificate the additional constraint η′(zi) = 0 for i ∈ I. This leads to consider a minimum pre-certificate
with vanishing derivatives

ηV
def.
= A∗pV where pV argmin

p∈L2(R)

{
||p||L2(R) ; η̃(zI) = sign(x0,I), η̃

′(zI) = 0I
}
. (10.24)

where we denoted η̃ = ψ̄ ? p. Similarly to (10.23), this vanishing pre-certificate can be written as a linear
combination, but this time of 2|I| basis functions

η̃V (x) =
∑

i∈I
biC(x, zi) + ci∂2C(x, zi),

where ∂2C is the derivative of C with respect to the second variable, and (b, c) are solution of a 2|I| × 2|I|
linear system (

b
c

)
=

(
(C(xi, xi′))i,i′∈I2 (∂2C(xi, xi′))i,i′∈I2

(∂1C(xi, xi′))i,i′∈I2 (∂1∂2C(xi, xi′))i,i′∈I2

)−1(
sign(x0,I)

0I

)
.

The associated continuous pre-certificate is η̃V = ψ̄ ? pV , and ηV is a sampling on the grid of η̃V . Fig-
ure 10.9 shows that this pre-certificate ηV is much better behaved than ηF . If ||ηV ||∞ 6 1, one can
apply (13) and thus obtain a linear convergence rate with respect to the `2 norm on the grid. But for very
fine grid, since one is interested in sparse solution, the `2 norm becomes meaningless (because the L2 norm is
not defined on measures). Since ηV is different from ηF , one cannot directly applies Theorem 14: the support
is not stable on discrete grids, which is a fundamental property of super-resolution problems (as opposed to
compressed sensing problems). The way to recover interesting results is to use and analyze methods without
grids. Indeed, after removing the grid, one can show that ηV becomes the minimum norm certificate (and is
the limit of ηλ).

176

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1
η

V

η
F

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1
η

V

η
F

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1
η

V

η
F

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1
η

V

η
F

Figure 10.11: Display of “continuous” certificate ηF and ηV for A being a convolution operator.

177

178

Chapter 11

Compressed Sensing

This chapter details an important class of inverse problems, which corresponds to using “random” forward
operators Φ. This is interesting from an applicative point of view since it allows to model a novel class of
imaging devices which can potentially have improved resolution with respect to traditional operators (e.g.
low-pass filters for usual cameras) when using in conjunction with sparse regularization technics. This is
also interesting from a theoretical point of view, since the mathematical analysis becomes much simpler than
with deterministic operators, and one can have good recovery and stability performances. Let us however
stress that the “physical” creation of hardware that fulfils the theoretical hypothesis, in particular in medical
imaging, is still largely open (put aside some restricted areas), although the theory gives many insightful
design guides to improve imaging devices.

The main references for this chapter are [21, 20, 27].

11.1 Motivation and Potential Applications

11.1.1 Single Pixel Camera

In order to illustrate the exposition, we will discuss the “single pixel camera” prototype developed at
Rice University [?], and which is illustrated by the figure 11.1 (left). It is an important research problem of
developing a new class of cameras allowing to obtain both the sampling and the compression of the image.
Instead of first sampling very finely (ie with very large Q) the analog signal f̃ to obtain a f ∈ RQ image
then compressing enormously (ie with M small) using (??), we would like to dispose directly of an economic
representation y ∈ RP of the image, with a budget P as close to M and such that one is able to “decompress”
y to obtain a good approximation of the image f0.

The “single-pixel” hardware performs the compressed sampling of an observed scene f̃0 (the letter “R”
in Figure 11.1), which is a continuous function indicating the amount of light f̃0(s) reaching each point
s ∈ R2 of the focal plane of the camera. To do this, the light is focused against a set of Q micro-mirrors
aligned on the focal plane. These micro-mirrors are not sensors. Unlike conventional sampling (described in
Section ??), they do not record any information, but they can each be positioned to reflect or absorb light.
To obtain the complete sampling/compression process, one very quickly changes P times the configurations
of the micro-mirrors. For p = 1, . . . , P , one sets Φp,q ∈ {0, 1}, depending on whether the micromirror at
position q has been placed in the absorbing (0) or reflective (value 1) position at step p of the acquisition.
The total light reflected at step p is then accumulated into a single sensor (hence the name “single pixel”,
in fact it is rather a “single sensor”), which achieves a linear sum of the reflected intensities to obtain the
recorded yp ∈ R value. In the end, if the light intensity arriving on the surface cq of the mirror indexed by

fq =
∫
cq
f̃0(s)ds is denoted (as in the ?? section) as q, the equation that links the discrete image f ∈ RQ

179

Diagram of the device f f?, P/Q = 6

Figure 11.1: Left: diagram of the single-pixel acquisition method. Center: image f0 ∈ RQ “ideal” observed
in the focal plane of the micro-mirrors. Right: image f?0 = Ψx? reconstructed from observation y ∈ RP with
a compression factor P/Q = 6 using `1-type regularization.

“seen through the mirrors” to the P measures y ∈ RP is

∀ p = 1, . . . , P, yp ≈
∑

q

Φp,n

∫

cn

f̃0(s)ds = (Φf0)p,

(here ≈ accounts for some noise), which corresponds to the usual forward model of inverse problems

y = Φf0 + w ∈ RP

where w is the noise vector. It is important to note that the mirrors do not record anything, so in particular
the f0 discrete image is never calculated or recorded, since the device directly calculates the compressed
representation y from the analog signal f̃0. The term w models here the acquisition imperfections (measure-
ment noise). The compressed sampling therefore corresponds to the transition from the observed scene f̃0 to
the compressed vector y. The “decompression” corresponds to the resolution of an inverse problem, whose
goal is to find a good approximation of f0 (the discrete image “ideal” as seen by the micro-mirrors) from y.

11.1.2 Sparse Recovery

In order to reconstruct an approximation of the (unknown) image f0, following Section 9.2, we assume it

is sparse in some dictionary Ψ. Denoting A
def.
= ΨΦ ∈ RP×N , this leads us to consider the usual `1 regularized

poblem (9.10)

xλ ∈ argmin
x∈RN

1

2λ
||y −Ax||2 + ||x||1, (Pλ(y))

so that the reconstructed image is fλ = Ψxλ. We also sometimes consider the constraint problem

xε ∈ argmin
||Ax−y||6ε

||x||1, (Pε(y))

where, for the sake of simplicity, we set ε = ||w|| (which we assume is known). From a mathematical point
of view, these problem are equivalent in the sense that there exists a bijection between λ and ε which links
it solution. But in practice, this bijection is not explicitly known and depends on y.

Here, it is important to remember that A is drawn from a random matrix ensemble. For an arbitrary
Ψ, it is hard to analyze this random distribution. If Ψ is orthogonal, and the distribution of the columns
of Φ are invariant by rotation (which is the case if the entries are i.i.d. Gaussian), then A has the same
distribution as Φ. In the following, we thus directly models the distribution of A and assumes it has some
nice property (typically it is close to being Gaussian i.i.d.).

180

11.2 Dual Certificate Theory and Non-Uniform Guarantees

11.2.1 Random Projection of Polytopes

When there is no noise, w = 0 a way to tackle the problem is to use the caracterization of solutions
of (P0(Ax0)) = (P0(Ax0)) given in Section 10.1.2. According to Proposition 28, identifiable vectors with
sparsity ||x0||0 = s corresponds to s-dimensional faces of the `1 balls B1 which are mapped to face of the
projected polytope AB1. This leads to a combinatorial problems to count the number of face of random
polytope. Donoho and Tanner were able to perform a sharp analysis of this problem. They showed the
existence of two regimes, using two functions CA, CM so that, with high probability (i.e. a probability
converging exponentially fast to 1 with (n, p)) on the matrix A

All x0 so that ||x0||0 6 CA(P/N)P are identifiable.

Most x0 so that ||x0||0 6 CM (P/N)P are identifiable.

For instance, they show that CA(1/4) = 0.065 and CM (1/4) = 0.25. Figure 11.5 illustrates numeri-
cally these two phase transitions. This analysis can be shown to be sharp in high dimension, i.e. when
||x0||0 > CM (P/N)P , then x0 is not identifiable with high probability (this corresponds to a phase transition
phenomena). For large dimensions (N,P), the scaling given by CM describe very well what one observe in
practice. For P = N/4 (compression of a factor 4), one retrieve in practice all vector with sparsity smaller
than P/N . The function CM can be computed numerically, and it can be shown to have a logarithmic grows
CM (r) ∼ log(r) for small r. This suggests that for high compression regime, one recovers with `1 minimiza-
tion almost all vector with a sparsity ||x0||0 proportional (up to log factor) to the number of measurements
P .

11.2.2 Random Matrices

The analysis of the performance `1 minimization to solve compressed sensing problem is made possible
because of the very precise understanding of the distribution of the singular values of certain random ensemble
let us illustrate this in the Gaussian case, which is the simplest, and is very illustrative.

An important part of the recovery proof relies on controlling the correlation matrix A∗IAI of selected
columns, and even more importantly, its inverse (AIAI)

−1. These random matrices are called Wishart
matrices and inverse Wishart matrices. Such a matrix B = AI is of size (P, s) and is also drawn from the
Gaussian ensemble. Fixing s and letting P → +∞, one has thanks to the low of large numbers B∗B → Ids
almost surely. This is however not a very realistic setting, since in general, one hope to have s almost equal,
up to log factor, to P .

Linear growth P = s/β. A quite extreme setting is when s grows proportionally to P , and impose
s/P = β. In this case, the eigenvalues of B∗B are, for large p, essentially contained in the interval [λ−, λ+]

where λ± = (1±√β)2, β
def.
= s/p, in the sense that the probability distribution of eigenvalues converges (in

the weak sense of measures) toward the Marcenko-Pastur law

∀ (u, v) ∈ R2
+, P(eig(B>B) ∈ [u, v])

p→+∞−→
∫ v

u

fβ(λ)dλ

where one fix the ratio β = s/P , and the Marcenko-Pastur law is

fβ(λ)
def.
=

1

2πβλ

√
(λ− λ−)+(λ+ − λ)1[λ−,λ+](λ).

Figure (11.3) illustrates this convergence.

Super-linear grows P = s log(. . .). In order to have a better concentration of the singular values of
A∗IAI around 1, one needs to have a slightly super-linear growth of P with s. In this setting one has that
A∗IAI . In order to derive non-asymptotic (i.e. with explicit constants) results, one can use a celebrated

181

0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5
s=2

s=5

s=10

s=100

0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

s=2

s=5

s=10

s=100

β = 1/2 β = 1/4

0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

s=2

s=5

s=10

s=100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

1

2

3

4
s=2

s=5

s=10

s=100

β = 1/10 β = 1/50

Figure 11.2: Illustration of the convergence toward the Marcenko-Pastur law.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

β=1/1

β=1/2

β=1/4

β=1/10

β=1/50

β=1/100

Figure 11.3: Display of the Marcenko-Pastur distribution fβ for various β.

182

concentration inequality due to Talagrand, which assert that one has a fast concentration of this randomized
covariance A∗IAI toward its expectation Ids.

P

(
||A∗IAI − Ids||op > t+

√
s

P

)
6 e−

t2s
2 . (11.1)

11.2.3 Dual Certificates

In order to analyze recovery performance, one can looks not only for `2 stability (||xλ − x0|| ∼ ||w||) but
also that xλ has the same support as x0 when ||w|| is small. As detailed in Section 10.2.3, this requires to
ensure that the pre-certificate ηF defined in (10.24) is non-degenerated, i.e.

||ηF ||∞ 6 1 where ηF = A∗AI(A
∗
IAI)

−1 sign(x0,I). (11.2)

Figure 10.9 suggests that this should be the case if P is large enough with respect to ||x0||. This theorem
backup this observation.

Coherence-based analysis. We first perform a crude analysis using the so-called coherence of the matrix
A = (aj)

N
j=1 where the aj ∈ RP are the columns of A, which we assume to be normalized ||aj || = 1

µ
def.
= = max

i 6=j
|〈ai, aj〉| = ||A∗A− IdN ||∞ (11.3)

where ||C||∞ = maxi,j |Ci,j |. The coherence is 0 for an orthogonal matrix, and is always smaller than 1,
µ ∈ [0, 1]. The smaller the coherence, the better conditioned the inverse problem Ax = y is, and the more
likely is the certificate ηF to be non-degenerate, as shown by the following proposition.

Proposition 36. One has, denoting s = ||x0||0 = |I| where I = supp(x0), for µ < 1
s−1 ,

||ηF,Ic ||∞ 6 sµ

1− (s− 1)µ
and ||pF ||2 6 s

1− (s− 1)µ
. (11.4)

In particular, if s < 1
2

(
1 + 1

µ

)
, ||ηF,Ic ||∞ < 1 and one can thus apply the recovery Theorem 14.

Proof. We recall that the `∞ operator norm (see Remark 1) is

||B||∞ = max
i

∑

j

|Bi,j |.

We denote C = A∗A. One has

||A∗IcAI ||∞ = max
j∈Ic

∑

i∈I
Ci,j 6 sµ and ||Ids −A∗IAI ||∞ = max

j∈I

∑

i∈I,i6=j
Ci,j 6 (s− 1)µ

One also has

||(A∗IAI)−1||∞ = ||((Ids −A∗IAI)− Ids)
−1||∞ = ||

∑

k>0

(Ids −A∗IAI)k||∞

6
∑

k>0

||Ids −A∗IAI ||k∞ 6
∑

k>0

((s− 1)µ)k =
1

1− (s− 1)µ

which is legit because the matrix series indeed converge since (s− 1)µ < 1. Using these two bounds, one has

||ηF,Ic ||∞ = ||A∗IcAI(A∗IAI)−1 sign(x0,I)||∞ 6 ||A∗IcAI ||∞||(A∗IAI)−1||∞|| sign(x0,I)||∞ 6 (sµ)× 1

1− (s− 1)µ
×1.

183

One has
sµ

1− (s− 1)µ
⇐⇒ 2sµ < 1 + µ

which gives the last statement. One also has

||pF ||2 = 〈(A∗IAI)−1sI , sI〉 6 ||(A∗IAI)−1||∞||s||1 6 s

1− (s− 1)µ

Note that this proof actually shows that if s < 1
2

(
1 + 1

µ

)
, all certificate ηF are valid, for any sign pattern

sign(x0). This actually implies a much stronger stability in the sense that whatever the noise w (which might
not be small), the support of xλ is included (not necessarily equal) in the one of x0.

One can show that one always has

µ >
√

N − P
P (N − 1)

(11.5)

which is equivalent to 1/
√
P for N � P . For Gaussian matrix A ∈ RP×N , one has for large (N,P)→ +∞

µ ∼
√

log(PN)/P

which shows that Gaussian matrix are close to being optimal for the bound (11.5) if N � P . Applying
Proposition 36 thus shows that `1 regularization is able to recover with a stable support vector with less
than s ∼ O(

√
P) (ignoring log terms) non-zero coefficients. In face, we will show now that it does much

better and recover a proportional number s ∼ O(P). This is because the coherence bound (11.4) is very
pessimistic.

Randomized analysis of the Fuchs certificate. We consider here a class of sufficiently “random”
matrices.

Definition 1 (sub-Gaussian random matrix). A random matrix
√
P A is said to be sub-Gaussian if its

entries are independent such that E(Ai,j) = 0 (zero mean) E(A2
i,j) = 1/P and

P(|
√
P Ai,j | > t) 6 βe−κt

2

.

Note that its entries does not needs to be identically distributed, but the sub-Gaussiannity parameter (β, κ)
should not depend on (i, j). Note also the presence of the normalization factor

√
P , which is here to ensure

E(||aj ||2) = 1 where aj are the columns of A.

Typical example of sub-Gaussian random matrix are Gaussian or Bernoulli matrices.

Theorem 15. For a given x0 ∈ RN , denoting s = ||x0||0, and assuming A is sub-Gaussian, then for for any
0 < ε < 1 provided that

P > 4c

1− δ s log(2N/ε) where δ2 def.
=

C

4c

(
7

log(2N/ε)
+

2

s

)

condition (11.2) holds with probability 1−ε, so that xλ has the same support and sign as x0 when (||w||, ||w||/λ)

is small enough. The constant C, c, C = 2
3c̃ where c̃

def.
= κ2

4β+2κ only depends on the sub-Gaussianity parameter

(β, κ) appearing (1), and for Gaussian or Benoulli matrices, c = 1/2.

For a Gaussian matrix, the scaling is that one should have P > (2 + δ)s log(N) with a high probability.

184

Figure 11.4: Graphical display of how the maximum of N i.i.d. gaussians concentrates tightly just below
the

√
2 log(N) dashed curve.

Proof. We only give the main insight for the proof. Its crux relies on the fact that ||A∗IcpF ||∞ 6 1 reads

max
j /∈I
|〈aj , pF 〉| 6 1

where pF = A∗+I s0,I is independent from the vectors (aj)j /∈I it is correlated against. This allows one to check
this condition by first controlling ||pF || and then making as if pF was a fixed deterministic vector. Noticing

||pF ||2 = 〈AI(A∗IAI)−1s0,I , AI(A
∗
IAI)

−1s0,I〉 = 〈(A∗IAI)−1s0,I , s0,I〉,

the heuristic reasoning is that, following what we said in Section (11.2.2), if P grows slightly (logarithmically)
faster than s, A∗IAI is close to Ids (see Talagrand inequality (11.1)), so that

||pF ||2 ∼ ||s0,I ||2 = s (11.6)

For a fixed pF , one has that 〈aj , pF 〉 is Gaussian distributed with variance ||pF ||2/P , and we use the well
known fact (already encountered for denoising using thresholding) that the maximum of P − s such vectors
concentrates just below the universal threshold ||pF ||

√
2 log(N − s)/P . Using the estimate (11.6), one sees

that ||pF ||∞ 6 1 is implied by 2 log(N)s/P 6 1, which gives the sharp scaling P > 2 log(N)s.
In order to get robustness to noise, one needs to impose that ||A∗IcpF || < 1, which can be achieve by using

a slightly stronger scaling P > 2(1 + δ) log(N)s for a small δ.
One can actually make this reasoning very precise, because quite surprisingly, it turns out that Ps/||pF ||2

is actually distributed according to a χ2 variable with P − s+ 1 degrees of freedom (i.e. the sum of P − s+ 1
squares of Gaussian variables). Indeed, for s = 1, one immediately sees that P/||pF ||2 is χ2 with P degrees
of freedom. The general case is more involved, and the proof relies on the fact that the isotropy of the
distribution implies that p − P/||pF ||2 is the square of the distance between the first column of AI and
the linear space spanned by the other columns (hence P − s + 1 degrees of freedom). Since one has a
very good understanding of the clustering of such a χ2 variable around its means, one can thus show that
||pF || 6 (1− δ)√s with high precision for arbitrary small δ > 0.

For (N, s)→ +∞, one has δ → 0, so that informally, the scaling is

P > 2s log(2N/ε). (11.7)

This theorem states a non-uniform recovery guarantee, in the sense that one first choose a vector x0, then
draws the matrix A, and the recovery results holds with high probability. This should be contrasted with
the RIP theory developed in Section 11.3 which provides stronger uniform guarantees.

185

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ll

M
os

t

R
IP

P
/N

0

1

s/N

THE GEOMETRY OF PHASE TRANSITIONS IN CONVEX OPTIMIZATION 7

0 25 50 75 100
0

25

50

75

100

0 10 20 30
0

300

600

900

FIGURE 2.2: Phase transitions for linear inverse problems. [left] Recovery of sparse vectors. The empirical
probability that the `1 minimization problem (2.6) identifies a sparse vector x0 2 R100 given random linear
measurements z0 = Ax0. [right] Recovery of low-rank matrices. The empirical probability that the S1
minimization problem (2.7) identifies a low-rank matrix X0 2 R30£30 given random linear measurements
z0 =A (X0). In each panel, the colormap indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the empirical phase transition.

fixed dimensions. This calculation gives the exact (asymptotic) location of the phase transition for the S1

minimization problem (2.7) with random measurements.
To underscore these achievements, we have performed some computer experiments to compare the

theoretical and empirical phase transitions. Figure 2.2[left] shows the performance of (2.6) for identifying
a sparse vector in R100; Figure 2.2[right] shows the performance of (2.7) for identifying a low-rank matrix
in R30£30. In each case, the colormap indicates the empirical probability of success over the randomness in
the measurement operator. The empirical 5%, 50%, and 95% success isoclines are determined from the
data. We also draft the theoretical phase transition curve, promised by Theorem II, where the number m of
measurements equals the statistical dimension of the appropriate descent cone, which we compute using the
formulas from Sections 4.5 and 4.6. See Appendix A for the experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(

p
d) values of m, as promised.

Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well. See the discussion after Theorem 7.1 for more information.

2.4. Demixing problems. In a demixing problem [MT12], we observe a superposition of two structured
vectors, and we aim to extract the two constituents from the mixture. More precisely, suppose that we measure
a vector z0 2Rd of the form

z0 = x0 +U y0 (2.8)
where x0, y0 2 Rd are unknown and U 2 Rd£d is a known orthogonal matrix. If we wish to identify the pair
(x0, y0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

To solve the demixing problem (2.8), we describe a convex programming technique proposed in [MT12].
Suppose that f and g are proper convex functions on Rd that promote the structures we expect to find in x0

1 0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

s

Figure 11.5: Phase transitions. For the figure on the right shows probability as function of sparsity that
certain criteria hold true, blue: w-ERC, black: ERC, green |ηF | 6 1, red: identifiability.

11.3 RIP Theory for Uniform Guarantees

11.3.1 Restricted Isometry Constants

The Restricted Isometry constant δs of a matrix A ∈ RP×N is defined as

∀ z ∈ RN , ||z||0 6 s =⇒ (1− δs)||z||2 6 ||Az||2 6 (1 + δs)||z||2, (11.8)

and one usually chose the smallest δs so that these relation hold.
A related concept is the (s, s′) restricted orthogonality constant θs,s′ , which is such that for all (x, x′)

with ||x||0 6 s, ||x′||0 6 s′ and disjoint support , one has

|〈Ax, Ax′〉| 6 θs,s′ ||x||||x′||
The following lemma shows that RI and RO constants are tightly related.

Lemma 5. One has
θs,s′ 6 δs+s′ 6 θs,s′ + max(δs, δs′).

Proof. We prove the first inequality (which is the most important). We prove that if z and z′ have disjoints
supports and ||z|| 6 s and ||z′||0 6 s,

|〈Az, Az′〉| 6 δ2s||z||||z′||.
Using the RIP (11.8) since z± z′ has support of size s+ s′ and the fact that ||z± z′||2 = ||z||2 + ||z′||2, one has

(1− δs+s′)
(
||z||2 + ||z′||2

)
6 ||Az ±Az′||2 6 (1 + δs+s′)

(
||z||2 + ||z′||2

)
.

One thus has using the parallelogram equality

|〈Az, Az′〉| = 1

4
|||Az +Az′||2 − ||Az −Az′||2| 6 δs+s′ ||z||||z′||.

The following theorem states that for a sub-Gaussian random matrix, these RIP constants grow slowly
with s. Let us stress that, although this is an abuse of notation, here we assume that A is a random matrix,
and not a deterministic one as previously considered.

Theorem 16. If A is a sub-Gaussian random matrix, then provided

P > Cδ−2s log(eN/s) (11.9)

it satisfies δs 6 δ with probability 1 − 2e−δ
2 m

2C , where C only depends on the sub-Gaussianity parameters
appearing in (1).

186

�
2� 1

k

�̂2k

�̂2k

Figure 11.6: Left: evolution of lower bounds δ̂k on the RIP constant.

We do not prove this Theorem, and simply give the main intuition. The proof of this theorem relies on re-
sults regarding the distribution of the singular values of Gaussian matrices. Indeed, the RIP condition (11.8)
is equivalent to having the bound eig(A∗IAI) ⊂ [1− δs, 1 + δs] for all Gaussian matrices AI extracted from A.
In the Gaussian case (actually this holds for any random matrix with i.i.d. entries and unit covariance), one
has a very good understanding of the distribution of the singular values of covariance matrices B∗B ∈ Rs×s

of a Gaussian matrix B of size (P, s), B ∼ randn(P, s)/
√
P , as detailed in Section 11.2.2. In particular,

using Talagrand concentration inequality (11.1), one obtains the desired controls over the δs constants. The
intuition is that, if we assume that s/P = β is constant and P is large, then one has that the eigenvalue of
A∗IAI , and for instance its smaller one should be of the order of 2

√
s/P−s/P , so that δs should be a function

of s/P , and hence P should scale proportionally to the s. The log term comes from the exponential number
of such matrix to control, and one need to use a non-asymptotic lower bound in place of the Marcenko-Pastur
asymptotic law.

11.3.2 RIP implies dual certificates

The following theorem ensures that having small enough restricted isometry constant implies the existence
of a valid dual certificates. This means that one can apply Theorem 13, which in turn ensures that one has
a stable recovery of sparse signals.

Theorem 17. If δs + θs,s + θs,2s < 1, then for any x0 with ||x0|| 6 s, there exists η ∈ D0(Ax0, x0), i.e.
η ∈ Im(A∗) ∩ ∂||x0||1. More precisely, one has, denoting I = supp(x0), ηI = sign(x0,I) and

||ηIc ||∞ 6 θs,s
1− δs − δs,2s

< 1 and ||p|| 6 δs,s
1− δs − θs,2s

√
s√

1− δs
.

Note that thanks to Lemma 5, condition

δs + θs,s + θs,2s 6 δs + δ2s + δ3s 6 3δ3s

so that condition δs + θs,s + θs,2s < 1 is implied by δ3s < 1/3. It is furthermore possible to refine the proof
of this theorem to obtain alternative (often much sharper) sufficient condition such as δ2d 6

√
2− 1. These

sufficient conditions involving RI constants are often called “Restricted Isometry Properties” (RIP). As we
will illustrate next, however, the constant involved on the sufficient sparsity to guarantee that such uniform
RIP conditions holds are large, of the order of a few hundred.

To prove this theorem, it is not enough to directly consider the pre-certificate ηF defined in (11.2).
Indeed, using such a certificate leads to slightly suboptimal log-factors in the asymptotic. The proof strategy,
developed by Candes and Tao (in “Decoding with Linear Programming”) consists in iteratively “improving”

187

this certificate by removing a vector interpolating the largest s entries outside I. In order to study ηF and to
perform the improvement, it is crucial the behavior of least square solution of interpolation problems using
random matrices.

Lemma 6. We assume δs < 1. Let c ∈ Rn with ||c||0 6 s and supp(c) = J . Let η = A∗p be the least square
solution of ηJ = A∗Jp = cJ , i.e.

p
def.
= A∗,+J cJ = AJ(A∗JAJ)−1cJ

(note that AJ is full rank because δs < 1). Then, denoting K ⊂ Jc the s′ largest entries in magnitude of
ηJc , one has

||η(J∪K)c ||∞ 6 θs,s′ ||c||
(1− δs)

√
s

and ||ηK || 6
θs,s′ ||c||
1− δs

and ||p|| 6 ||c||√
1− δs

Proof. Since |J | 6 s, one has that λmin(A∗JAJ) > 1− δs and hence

||(AJA∗J)−1|| 6 1

1− δs
One has

||p||2 = 〈AJ(A∗JAJ)−1cJ , AJ(A∗JAJ)−1cJ〉 = 〈(A∗JAJ)−1cJ , cj〉 6
||c||2

1− δs
.

Let L be any set with L ∩ J = ∅ and |L| 6 s′. One has

||ηL||2 = |〈ηL, ηL〉| = |〈AJ(A∗JAJ)−1cJ , ALηL〉| 6 θs,s′ ||(A∗JAJ)−1cJ ||||ηL|| 6
θs,s′

1− δs
||cJ ||||ηL||.

so that this gives

||ηL|| 6
θs,s′

1− δs
||cJ ||. (11.10)

Let us denote K̄ = {k ∈ Jc ; |ηk| > T} where T
def.
=

θs,s′

(1−δs)
√
s′
||cJ ||. One necessarily has |K̄| 6 s′, otherwise

one would have, taking K ⊂ K̄ the s′ largest entries (in fact any s′ entries)

||ηK || >
√
s′T 2 =

θs,s′

1− δs
||cJ ||

which contradicts (11.10). This shows that the entries in ηJc after the rank s′ are smaller than T .

We can now prove the Theorem 17.

Proof. We denote I0 = supp(x0). We first consider η1 = ηF , p1 = pF , and we use (6) with cI = σI
def.
=

sign(x0,I), J = I, s′ = s, to control this first pre-certificate. This lemma defines a second set I1 (denoted K
in the lemma) which are the s largest entries of η1,Ic1

, with

I0 ∩ I1 = ∅, |I1| 6 s, η1,I0 = sI , ||η1,(I0∪I1)c ||∞ 6 θs,s
1− δs

, ||ηI1 || 6
θs,s
√
s

1− δs
, ||p1|| 6

√
s√

1− δs
.

Now we proceed recursively. Having defined the vectors (η1 = A∗p1, . . . , ηn = A∗pn) with associated sets
(I1, . . . , In), we define ηn+1 = A∗pn+1 and In+1 by applying (6) to J = I0 ∪ In with c = (0I0 , ηn,In) (and
thus (2s, s) in place of (s, s′)), which hence satisfy

In+1 ∩ (I0 ∪ In) = ∅, |In+1| 6 s, ηn+1,I0∪In = (0I0 , ηn,In), and

||ηn+1,(I0∪In∪In+1)c ||∞ 6 θs,s
1− δs

Qn, ||ηn+1,In+1 || 6
θs,s
√
s

1− δs
Qn, (11.11)

188

where we denoted Q
def.
=

θs,2s
1−δs , and we have

||pn+1|| 6
||ηn,In ||√

1− δs
6 1√

1− δs
θs,s
√
s

1− δs
Qn−1.

Since δs + θs,s < 1, one has that Q < 1, and thus setting

p =

+∞∑

n=1

(−1)n−1pn and η = A∗p

defines a convergent series. By construction, since η1,I = σ and ηn,I = 0 for n > 1, one has ηI = σI , thus

this vector interpolates the sign vector σ. Now consider j ∈ Ic and define Ej
def.
= {n > 1 ; j ∈ In} = {n1 6

n2 6 n3 6 . . .}. Since In ∩ In+1 = ∅, necessary nk+1 > nk + 2 (j cannot belong to two consecutive In).
Furthermore, if n ∈ Ej ⇔ j ∈ In, then by construction

ηn,j = ηn+1,j

so that these two consecutive terms cancels out in the sum defining η [ToDo: make a drawing], which in
turn can thus be written in the form

η =
∑

n∈H
(−1)n−1ηn.

The index set H is composed of n /∈ Ej such that n − 1 /∈ Ej (because otherwise one could cancel ηn from
the sum). So this means that for n ∈ H, one has j /∈ (I0 ∪ In ∪ In+1), thus applying the property (11.11),
one has

∀n ∈ H, |ηj,n| 6
θs,s

1− δs
Qn−1,

so that

|ηj | 6
∑

n∈H
|ηj,n| 6

+∞∑

n=1

θs,s
1− δs

Qn−1 =
θs,s

1− δs
1

1− θs,2s(1− δs)−1
=

θs,s
1− δs − θs,2s

.

Note that one also has the bound

||p|| 6
∑

n

||pn|| 6
∑

n

1√
1− δs

θs,s
√
s

1− δs
Qn−1 =

δs,s
1− δs − θs,2s

√
s√

1− δs
.

11.3.3 RIP implies stable recovery

Putting together Theorems 16 and ??, and using the general inverse prolem stability theorem ??, one
obtains the following recovery guarantee.

Theorem 18. If A is a sub-Gaussian random matrix, then there exists constants (C,C ′) such that provided

P > Cs log(N/s) (11.12)

with probability 1− 2e−C
′P on the draw of A, one has that for every s-sparse signal x0,

||xλ − x0|| = O(||w||)

where xλ is the unique solution of (9.10) with measurements y = Ax0 + w when choosing λ ∼ ||w||.

189

It is possible to extend this theorem when x0 is not exactly s-sparse but only approximately. Defining x0,s

the best s-term approximation, the easiest way to go is to write y = Ax0,s + w̃ where w̃ = w +A(x0 − x0,s)
and applying the previous result to obtain

||xλ − x0,s|| = O(||w||+ ||A||||x0 − x0,s||).

It is possible to obtain better scaling in term of the non-linear approximation error ||x0 − x0,s|| by doing a
more careful proof.

This theorem provides a uniform recovery guarantee, in the sense that it means

P(∀ s− sparse x0, x
? = x0) goes fast to 1 when P → +∞.

In contrast, theorem 15 proves a weaker non-uniform guarantee, in the sense that it means

∀ s− sparse x0,P(x? = x0) goes fast to 1 when P → +∞.

The recovery performance analysis based on RIP constants proves a better scaling in term of log-factors.
This is because the analysis using ηF does not only imply stable recovery, it also provides stability of the
support (sparsistency). Note however that the constants involved in the RIP analysis are very large (of the
order of a few hundreds, as highlighted by Figure 11.6, left, and by Figure 11.5, right), while the constant
appearing in (11.7) are small and known to be sharp.

Also, one can show that having small enough RIP constant implies the existence of a valid dual certificate
(but this certificate is not necessarily ηF).

11.3.4 Fourier sampling RIP

A practical issue is that doing hardware implementing random operators A is very difficult, specially
if this operator is “fully” random, i.e. if its entries are i.i.d. A more practical option is to use structured
sampling operator, which are in some sense “less random”. A possibility is to consider a random sub-sampling
of orthogonal projection of the signal in some ortho-basis Ξ = (ξω)Nω=1 of RN , so that

Ax
def.
= (〈x, ξω〉)ω∈Ω ∈ RP (11.13)

where Ω ⊂ {1, . . . , N} is drawn uniformly at random among all sets of size P . The following theorem ensure
that such an operator satisfies the RIP properties for large s (proportional to P up to log factors) is the
atomes ϕω are “spread enough”, i.e. have a small magnitude, as measured by

ρ(Ξ)
def.
=
√
N max

16ω6N
||ξω||∞.

Theorem 19 (Rudelson-Vershinyn). For any 0 < c < 1, there exists C, such that provided that

P > Cρ(Ξ)2s log(N)4 (11.14)

with high probability on Ω, then A defined as in (11.13) satisfies δ2s 6 c.

One always has 1 6 ρ(Ξ)2 6 N . The worse case is ξω to be Sirac atoms (i.e. Ξ = IdN), having
ρ(Ξ)2 = N , in which case P needs to be as large as N . In sharp contrast, optimal sampling bases are

for instance Fourier atoms ξω = (e
2iπ
N ωn)Nn=1 ∈ CN , for which ρ(Ξ) = 1 (it is also possible to consider a

Hadamard basis for instance). In this case, up to log-factors, the scaling (11.14) is similar to the one for
sub-Gaussian matrices (11.12).

Theorem 19 deals with cases where the data x0 to recover is sparse in the Dirac basis. If the data f0 is
sparse in another basis Ψ = (ψm)Nm=1, one can do a change of variable x = Ψ∗f (x being the coefficients
of f in the basis Ψ), in which case ρ(Ξ) appearing in (11.14) should be replaced by the mutual coherence
between the sampling and the sparsity bases

ρ(Ψ∗Ξ)
def.
=
√
N max

16ω,m6N
|〈ψm, ξω〉|.

190

Good recovery performances are thus reached by (sampling,sparsity) pairs which are incoherent. The
(Fourier,Dirac) pair is maximally incoherent. In contrast, Wavelet and Fourier are highly coherent. There
exists explicit construction of “noiselets” bases which are almost maximally incoherent with wavelets. Note
however that in contrast to Gaussian matrices, these structured measurement matrices are not universal, in
the sense that there compressed sensing recovery performances depend on the sparsity basis Ψ which is used.

191

192

Chapter 12

Basics of Machine Learning

This chapter gives a rapid overview of the main concepts in machine learning. The goal is not to be
exhaustive, but to highlight representative problems and insist on the distinction between unsupervised
(vizualization and clustering) and supervised (regression and classification) setups. We also shed light on
the tight connexions between machine learning and inverse problems.

While imaging science problems are generally concern with processing a single data (e.g. an image),
machine learning problem is rather concern with analysing large collection of data. The focus (goal and
performance measures) is thus radically different, but quite surprisingly, it uses very similar tools and
algorithm (in particular linear models and convex optimization).

12.1 Unsupervised Learning

In unsupervised learning setups, one observes n points (xi)
n
i=1. The problem is now to infer some

properties for this points, typically for vizualization or unsupervised classication (often called clustering).
For simplicity, we assume the data are points in Euclidean space xi ∈ Rp (p is the so-called number of
features). These points are conveniently stored as the rows of a matrix X ∈ Rn×d.

12.1.1 Dimensionality Reduction and PCA

Dimensionality reduction is useful for vizualization. It can also be understood as the problem of feature
extraction (determining which are the relevant parameters) and this can be later used for doing other tasks
more efficiently (faster and/or with better performances). The simplest method is the Principal Component
Analysis (PCA), which performs an orthogonal linear projection on the principal axes (eigenvectors) of the
covariance matrix.

Presentation of the method. The empirical mean is defined as

m̂
def.
=

1

n

n∑

i=1

xi ∈ Rp

and covariance

Ĉ
def.
=

1

n

n∑

i=1

(xi − m̂)(xi − m̂)∗ ∈ Rp×p. (12.1)

Denoting X̃
def.
= X − 1pm̂

∗, one has Ĉ = X̃∗X̃/n.
Note that if the points (xi)i are modelled as i.i.d. variables, and denoting x one of these random variables,

one has, using the law of large numbers, the almost sure convergence as n→ +∞

m̂→ m
def.
= E(x) and Ĉ → C

def.
= E((x−m)(x−m)∗). (12.2)

193

C SVD of C

Figure 12.1: Empirical covariance of the data and its associated singular values.

Denoting µ the distribution (Radon measure) on Rp of x, one can alternatively write

m =

∫

Rp
xdµ(x) and C =

∫

Rp
(x−m)(x−m)∗dµ(x).

Figure 12.2: PCA main
axes capture variance

The PCA ortho-basis, already introduced in Section 22, corresponds to the
right singular vectors of the centred data matrix, as defined using the (reduced)
SVD decomposition

X̃ =
√
nU diag(σ)V ∗

where U ∈ Rn×r and V ∈ Rp×r, and where r = rank(X̃) 6 min(n, p). We
denote V = (vk)rk=1 the orthogonal columns (which forms an orthogonal system

of eigenvectors of Ĉ = V diag(σ2)V >), vk ∈ Rp. The intuition is that they are
the main axes of “gravity” of the point cloud (xi)i in Rp. We assume the
singular values are ordered, σ1 > . . . > σr, so that the first singular values
capture most of the variance of the data.

Figure 12.1 displays an example of covariance and its associated spectrum σ. The points (xi)i correspond
to the celebrated IRIS dataset1 of Fisher. This dataset consists of 50 samples from each of three species
of Iris (Iris setosa, Iris virginica and Iris versicolor). The dimensionality of the features is p = 4, and the
dimensions corresponds to the length and the width of the sepals and petals.

The PCA dimensionality reduction embedding xi ∈ Rp 7→ zi ∈ Rd in dimension d 6 p is obtained by
projecting the data on the first d singular vector

zi
def.
= (〈xi −m, vk〉)dk=1 ∈ Rd. (12.3)

From these low-dimensional embedding, one can reconstruct back an approximation as

x̃i
def.
= m+

∑

k

zi,kvk ∈ Rp. (12.4)

One has that x̃i = ProjT̃ (xi) where T̃
def.
= m+ Spandk=1(vk) is an affine space.

Figure 12.3 shows an example of PCA for 2-D and 3-D vizualization.

Optimality analysis. We now show that among all possible linear dimen-
sionality reduction method, PCA is optimal in sense of `2 error. To simplify,
without loss of generality (since it can be subtracted from the data) we assume
that empirical mean is zero m̂ = 0 so that X = X̃.

1https://en.wikipedia.org/wiki/Iris_flower_data_set

194

https://en.wikipedia.org/wiki/Iris_flower_data_set

Figure 12.3: 2-D and 3-D PCA vizualization of the input clouds.

We recall that X =
√
nU diag(σ)V > and Ĉ = 1

nX
>X = UΛU> where

Λ = diag(λi = σ2
i), where λ1 > . . . > λr.

The following proposition shows that PCA is optimal in term of `2 distance
if one consider only affine spaces. This means that we consider the following
compression/decompression to a dimension k (i.e. dimensionality reduction and then expansion)

min
R,S

{
f(R,S)

def.
=
∑

i

||xi −RS>xi||2Rp ; R,S ∈ Rp×k
}

(12.5)

Note that this minimization is a priori not trivial to solve because, although f(·, S) and f(R, ·) are convex,
f is not jointly convex. So iteratively minimizing on R and S might fail to converge to a global minimizer.
This section aims at proving the following theorem.

Theorem 20. A solution of (12.5) is S = R = V1:k
def.
= [v1, . . . , vk].

Note that using such a compressor R and decompressor R = S corresponds exactly
to the PCA method (12.3) and (12.4).

We first prove that one can restrain its attention to orthogonal projection matrix.

Lemma 7. One can assume S = R and S>S = Idk×k.

Proof. We consider an arbitrary pair (R,S). Since the matrix RS> has rank k′ 6 k,
let W ∈ Rp×k

′
be an ortho-basis of Im(RS>), so that W>W = Idk′×k′ . We remark

that

argmin
z

||x−Wz||2 = W>x

because the first order condition for this problem reads W>(Wz − x) = 0. Hence, denoting RS>xi = Wzi
for some zi ∈ Rk

′

f(R,S) =
∑

i

||xi −RS>xi||2 =
∑

i

||xi −Wzi||2 >
∑

i

||xi −WW>xi||2 > f(W̃ , W̃).

were we have extended W in an orthogonal matrix W̃ ∈ Rp×k where W̃1:k′ = W .

Lemma 8. Denoting C
def.
= XX> ∈ Rp×p, an optimal S is obtained by solving

max
S∈Rp×k

{
tr(S>CS>) ; S>S = Idk

}
.

Proof. Using the previous lemma, one can consider only R = S with S>S = Idk so that one needs to solve

f(S, S) =
∑

i

||xiSS>xi||2 =
∑

i

||xi||2 − 2x>i SS
>xi + x>i S(S>S)S>xi.

195

Figure 12.4: Left: proof of the rightmost inequality in (12.6). Middle: matrix B, right: matrix B̃.

Using that S>S = Idk, one has

f(S, S) = cst−
∑

i

x>i SS
>xi = −

∑

i

tr(x>i SS
>xi) = −

∑

i

tr(S>xix
>
i S) = − tr(S>(

∑

i

xix
>
i)S).

The next lemma provides an upper bound on the quantity being minimized as the solution of a convex
optimization problem (a linear program). The proof of the theorem follows by showing that this upper
bound is actually reached, which provides a certificate of optimality.

Lemma 9. Denoting C = V ΛV >, one has

tr(S>CS) 6 max
β∈Rp

{
p∑

i=1

λiβi ; 0 6 β 6 1,
∑

i

βi 6 k

}
=

k∑

i=1

λi (12.6)

i.e. the maximum on the right hand size is β = (1, . . . , 1, 0, . . . , 0).

Proof. We extend V ∈ Rp×k into an orthogonal matrix Ṽ ∈ Rp×p (i.e. Ṽ1:r = V) such that Ṽ Ṽ > = Ṽ >V =
Idp. Similarly we extend Λ into Λ̃ by adding zeros, so that C = Ṽ Λ̃Ṽ >. One has

tr(S>CS) = tr(S>Ṽ Λ̃Ṽ >S) = tr(B>ΛB) = tr(ΛBB>) =

p∑

i=1

λi||bi||2 =
∑

i

λiβi

where we denoted B
def.
= V >S ∈ Rp×k, (bi)

p
i=1 with bi ∈ Rk are the rows of B and βi

def.
= ||bi||2 > 0. One has

B>B = S>Ṽ Ṽ >S = S>S = Idk,

so that the columns of B are orthogonal, and thus
∑

i

βi =
∑

i

||bi||2 = ||B||2Fro = tr(B>B) = tr(B>B) = k.

We extend the k columns of b into an orthogonal basis B̃ ∈ Rp×p such that B̃B̃> = B̃>=̃Idp, so that

0 6 βi = ||bi||2 6 ||b̃i||2 = 1

and hence (βi)
p
i=1 satisfies the constraint of the considered optimization problem, hence tr(S>CS) is neces-

sarily smaller than the maximum possible value.
For the proof of the second upper bound, we only verify it in 2D and 3D using a drawing, see Figure 12.4,

left.

Proof of Theorem 20. Setting S = V1:k = [v1, . . . , vk], it satisfies CS = V ΛV >V1:k = V1:k diag(λi)
k
i=1 and

hence

tr(S>CS) = tr(S>S diag(λi)i=1k) = tr(Idk diag(λi)i=1k) =

k∑

i=1

λi.

This value matches the right-most upper bound of Lemma 9, which shows that this S is optimal.

196

12.1.2 Clustering and k-means

A typical unsupervised learning task is to infer a class label yi ∈ {1, . . . , k} for each input point xi, and
this is often called a clustering problem (since the set of points associated to a given label can be thought
as a cluster).

k-means A way to infer these labels is by assuming that the clusters are compact, and optimizing some
compactness criterion. Assuming for simplicity that the data are in Euclidean space (which can be relaxed
to an arbitrary metric space, although the computations become more complicated), the k-means approach
minimizes the distance between the points and their class centroids c = (c`)

k
`=1, where each c` ∈ Rp. The

corresponding variational problem becomes

min
(y,c)
E(y, c)

def.
=

k∑

`=1

∑

i:yi=`

||xi − c`||2.

Figure 12.5: k-means clus-
ters according to Vornoi
cells.

The k-means algorithm can be seen as a block coordinate relaxation, which
alternatively updates the class labels and the centroids. The centroids c are
first initialized (more on this later), for instance, using a well-spread set of
points from the samples. For a given set c of centroids, minimizing y 7→ E(y, c)
is obtained in closed form by assigning as class label the index of the closest
centroids

∀ i ∈ {1, . . . , n}, yi ← argmin
16`6k

||xi − c`||. (12.7)

For a given set y of labels, minimizing c 7→ E(y, c) is obtained in closed form
by computing the barycenter of each class

∀ ` ∈ {1, . . . , k}, c` ←
∑
i:yi=`

xi

| {i ; yi = `} | (12.8)

If during the iterates, one of the cluster associated to some c` becomes empty, then one can either decide to
destroy it and replace k by k − 1, or try to “teleport” the center c` to another location (this might increase
the objective function E however).

Since the energy E is decaying during each of these two steps, it is converging to some limit value.
Since there is a finite number of possible labels assignments, it is actually constant after a finite number of
iterations, and the algorithm stops.

Of course, since the energy is non-convex, little can be said about the property of the clusters output
by k-means. To try to reach lower energy level, it is possible to “teleport” during the iterations centroids
c` associated to clusters with high energy to locations within clusters with lower energy (because optimal
solutions should somehow balance the energy).

Figure 12.6 shows an example of k-means iterations on the Iris dataset.

k-means++ To obtain good results when using k-means, it is crucial to have an efficient initialization
scheme. In practice, the best results are obtained by seeding them as far as possible from one another (a
greedy strategy works great in practice).

Quite surprisingly, there exists a randomized seeding strategy which can be shown to be close to optimal
in term of value of E , even without running the k-means iterations (although in practice it still needs to be
used to polish the results). The corresponding k-means++ initialization is obtained by selecting c1 uniformly
at random among the xi, and then assuming c` has been seeded, drawing c`+1 among the sample according
to the probability π(`) on {1, . . . , n} proportional to the squared inverse of the distance to the previously
seeded points

∀ i ∈ {1, . . . , n}, π
(`)
i

def.
=

1/d2
i∑n

j=1 1/d2
j

where dj
def.
= min

16r6`−1
||xi − cr||.

197

Iter #1 Iter #2

Iter #3 Iter #16

1 2 3

0

0.5

1

1 2 3

0

0.5

1

1 2 3

0

0.5

1

Figure 12.6: Left: iteration of k-means algorithm. Right: histogram of points belonging to each class after
the k-means optimization.

This means that points which are located far away from the preciously seeded centers are more likely to be
picked.

The following results, due to David Arthur and Sergei Vassilvitskii, shows that this seeding is optimal
up to log factor on the energy. Note that finding a global optimum is known to be NP-hard.

Theorem 21. For the centroids c? defined by the k-means++ strategy, denoting y? the associated nearest
neighbor labels defined as in (12.7), one has

E(E(y?, c?)) 6 8(2 + log(k))min
(y,c)
E(y, v),

where the expectation is on the random draws performed by the algorithm.

Lloyd algorithm and continuous densities. The k-means iterations are also called “Lloyd” algorithm,
which also find applications to optimal vector quantization for compression. It can also be used in the
“continuous” setting where the empirical samples (xi)i are replaced by an arbitrary measure over Rp. The
energy to minimize becomes

min
(V,c)

k∑

`=1

∫

V`
||x− c`||2dµ(x)

where (V`)` is a partition of the domain. Step (12.7) is replaced by the computation of a Voronoi cell

∀ ` ∈ {1, . . . , k}, V` def.
= {x ; ∀ `′ 6= `, ||x− c`|| 6 ||x− c`′ ||} .

These Voronoi cells are polyhedra delimited by segments of mediatrix between centroids, and this Voronoi
segmentation can be computed efficiently using tools from algorithmic geometry in low dimension. Step (12.8)
are then replaced by

∀ ` ∈ {1, . . . , k}, c` ←
∫
C` xdµ(x)∫
C` dµ(x)

.

In the case of µ being uniform distribution, optimal solution corresponds to the hexagonal lattice. Figure 12.7
displays two examples of Lloyd iterations on 2-D densities on a square domain.

12.2 Empirical Risk Minimization

Before diving into the specifics of regression and classification problems, let us give describe a generic
methodology which can be applied in both case (possibly with minor modification for classification, typically
considering class probabilities instead of class labels).

198

Figure 12.7: Iteration of k-means algorithm (Lloyd algorithm) on continuous densities µ. Top: uniform.
Bottom: non-uniform (the densities of µ with respect to the Lebesgue measure is displayed as a grayscale
image in the background).

In order to make the problem tractable computationally, and also in order to obtain efficient prediction
scores, it is important to restrict the fit to the data yi ≈ f(xi) using a “small enough” class of functions.
Intuitively, in order to avoid overfitting, the “size” of this class of functions should grows with the number
n of samples.

12.2.1 Empirical Risk

Denoting Fn some class of functions (which depends on the number of available samples), one of the
most usual way to do the learning is to perform an empirical risk minimization (ERM)

f̂ ∈ argmin
f∈Fn

1

n

n∑

i=1

L(f(xi), yi). (12.9)

Here L : Y2 → R+ is the so-called loss function, and it should typically satisfies L(y, y′) = 0 if and only if
y = y′. The specifics of L depend on the application at hand (in particular, one should use different losses

for classification and regression tasks). To highlight the dependency of f̂ on n, we occasionally write f̂n.

12.2.2 Prediction and Consistency

When doing a mathematically analysis, one usually assumes that (xi, yi) are drawn from a distribution
π on X × Y, and the large n limit defines the ideal estimator

f̄ ∈ argmin
f∈F∞

∫

X×Y
L(f(x), y)dπ(x, y) = E(x,y)∼π(L(f(x),y). (12.10)

Intuitively, one should have f̂n → f̄ as n → +∞, which can be captured in expectation of the prediction
error over the samples (xi, yi)i, i.e.

En
def.
= E(L̃(f̂n(x), f̄(x))) −→ 0.

One should be careful that here the expectation is over both x (distributed according to the marginal πX
of π on X), and also the n i.i.d. pairs (xi, yi) ∼ π used to define f̂n (so a better notation should rather be

199

(xi,yi)i. Here L̄ is some loss function on Y (one can use L̄ = L for instance). One can also study convergence
in probability, i.e.

∀ ε > 0, Eε,n
def.
= P(L̃(f̂n(x), f̄(x)) > ε)→ 0.

If this holds, then one says that the estimation method is consistent (in expectation or in probability). The
question is then to derive convergence rates, i.e. to upper bound En or Eε,n by some explicitly decay rate.

Note that when L̃(y, y′) = |y−y′|r, then convergence in expectation is stronger (implies) than convergence
in probability since using Markov’s inequality

Eε,n = P(|f̂n(x)− f(x)|r > ε) 6 1

ε
E(|f̂n(x)− f(x)|r) =

En
ε
.

12.2.3 Parametric Approaches and Regularization

Instead of directly defining the class Fn and using it as a constraint, it is possible to rather use a
penalization using some prior to favor “simple” or “regular” functions. A typical way to achieve this is by
using a parametric model y ≈ f(x, β) where β ∈ B parametrizes the function f(·, β) : X → Y. The empirical
risk minimization procedure (12.9) now becomes

β̂ ∈ argmin
β∈B

1

n

n∑

i=1

L(f(xi, β), yi) + λnJ(β). (12.11)

where J is some regularization function, for instance J = || · ||22 (to avoid blowing-up of the parameter) or
J = || · ||1 (to perform model selection, i.e. using only a sparse set of feature among a possibly very large
pool of p features). Here λn > 0 is a regularization parameter, and it should tend to 0 when n→ +∞.

Then one similarly defines the ideal parameter β̄ as in (12.10) so that the limiting estimator as n→ +∞
is of the form f̄ = f(·, β̄) for β̄ defined as

β̄ ∈ argmin
β

∫

X×Y
L(f(x, β), y)dπ(x, y) = E(x,y)∼π(L(f(x, β),y). (12.12)

Prediction vs. estimation risks. In this parametric approach, one could be interested in also studying
how close θ̂ is to θ̄. This can be measured by controlling how fast some estimation error ||β̂ − β̄|| (for some
norm || · ||) goes to zero. Note however that in most cases, controlling the estimation error is more difficult
than doing the same for the prediction error. In general, doing a good parameter estimation implies doing
a good prediction, but the converse is not true.

12.2.4 Testing Set and Cross-validation

It is not possible to access En or Eε,n because the optimal f̄ is unknown. In order to tune some
parameters of the methods (for instance the regularization parameter λ), one rather wants to minimize the

risk E(L(f̂(x),y)), but this one should not be approximated using the training samples (xi, yi)i.
One thus rather ressorts to a second set of data (x̄j , ȳj)

n̄
j=1, called “testing set”. From a modelling

perspective, this set should also be distributed i.i.d. according to π. The validation (or testing) risk is then

Rn̄ =
1

n̄

n̄∑

j=1

L(f̂(x̄j), ȳj) (12.13)

which converges to E(L(f̂(x),y)) for large n̄. Minimizing Rn̄ to setup to some meta-parameter of the method
(for instance the regularization parameter λn) is called “cross validation” in the literature.

12.3 Supervised Learning: Regression

200

Figure 12.9: Conditional expectation.

Figure 12.8: Probabilistic
modelling.

In supervised learning, one has access to training data, consisting in pairs
(xi, yi) ∈ X × Y. Here X = Rp for simplicity. The goal is to infer some
relationship, typically of the form yi ≈ f(xi) for some deterministic function
f : X → Y, in order, when some un-observed data x without associated value
in Y is given, to be able to “predict” the associated value using y = f(x).

If the set Y is discrete and finite, then this problem is called a supervised
classification problem, and this is studied in Section 12.4. The simplest example
being the binary classification case, where Y = {0, 1}. It finds applications for
instance in medical diagnosis, where yi = 0 indicates a healthy subject, why
yi = 0 a pathological one. If Y is continuous (the typical example being Y = R),
then this problem is called a regression problem.

12.3.1 Linear Regression

We now specialize the empirical risk minimization approach to regression problems, and even more
specifically, we consider Y = R and use a quadratic loss L(y, y′) = 1

2 |y − y′|2.
Note that non-linear regression can be achieved using approximation in dictionary (e.g. polynomial

interpolation), and this is equivalent to using lifting to a higher dimensional space, and is also equivalent to
kernelization technics studied in Section 12.5.

Least square and conditional expectation. If one do not put any constraint on f (beside being mea-
surable), then the optimal limit estimator f̄(x) defined in (12.10) is simply averaging the values y sharing
the same x, which is the so-called conditional expectation. Assuming for simplicity that π has some density

dπ
dxdy with respect to a tensor product measure dxdy (for instance the Lebegues mesure), one has

∀x ∈ X , f̄(x) = E(y|x = x) =

∫
Y y

dπ
dxdy (x, y)dy

∫
Y

dπ
dxdy (x, y)dy

where (x,y) are distributed according to π.
In the simple case where X and Y are discrete, denoting πx,y the probability of (x = x,y = y), one has

∀x ∈ X , f̄(x) =

∑
y yπx,y∑
y πx,y

and it is unspecified if the marginal of π along X vanishes at x.
The main issue is that this estimator f̂ performs poorly on finite samples, and f(x) is actually undefined

if there is no sample xi equal to x. This is due to the fact that the class of functions is too large, and one
should impose some regularity or simplicity on the set of admissible f .

201

Figure 12.10: Linear re-
gression.

Penalized linear models. A very simple class of models is obtained by
imposing that f is linear, and set f(x, β) = 〈x, β〉, for parameters β ∈ B =
Rp. Note that one can also treat this way affine functions by remarking that
〈x, β〉 + β0 = 〈(x, 1), (β, β0)〉 and replacing x by (x, 1). So in the following,
without loss of generality, we only treat the vectorial (non-affine) case.

Under the square loss, the regularized ERM (12.11) is conveniently rewritten
as

β̂ ∈ argmin
β∈B

1

2
〈Ĉβ, β〉 − 〈û, β〉+ λnJ(β) (12.14)

where we introduced the empirical correlation (already introduced in (12.1)) and observations

Ĉ
def.
=

1

n
X∗X =

1

n

n∑

i=1

xix
∗
i and û

def.
=

1

n

n∑

i=1

yixi =
1

n
X∗y ∈ Rp.

As n→ 0, under weak condition on π, one has with the law of large numbers the almost sure convergence

Ĉ → C
def.
= E(x∗x) and û→ u

def.
= E(yx). (12.15)

When considering λn → 0, in some cases, one can shows that in the limit n → +∞, one retrieves the
following ideal parameter

β̄ ∈ argmin
β

{J(β) ; Cβ = u} .

Problem (12.14) is equivalent to the regularized resolution of inverse problems (8.9), with Ĉ in place of Φ
and û in place of Φ∗y. The major, and in fact only difference between machine learning and inverse problems
is that the linear operator is also noisy since Ĉ can be viewed as a noisy version of C. The “noise level”, in
this setting, is 1/

√
n in the sense that

E(||Ĉ − C||) ∼ 1√
n

and E(||û− u||) ∼ 1√
n
,

under the assumption that E(y4) < +∞, E(||x||4) < +∞ so ensure that one can use the central limit theorem
on x2 and xy. Note that, although we use here linear estimator, one does not need to assume a “linear”
relation of the form y = 〈x, β〉 + w with a noise w independent from x, but rather hope to do “as best as
possible”, i.e. estimate a linear model as close as possible to β̄.

The general take home message is that it is possible to generalize Theorems 10, 12 and 13 to cope with
the noise on the covariance matrix to obtain prediction convergence rates of the form

E(|〈β̂, x〉 − 〈β̄, x〉|2) = O(n−κ)

and estimation rates of the form

E(||β̂ − β̄||2) = O(n−κ
′
),

under some suitable source condition involving C and u. Since the noise level is roughly n−
1
2 , the ideal cases

are when κ = κ′ = 1, which is the so-called linear rate regime. It is also possible to derive sparsistency
theorems by extending theorem 14. For the sake of simplicity, we now focus our attention to quadratic
penalization, which is by far the most popular regression technic. It is fair to say that sparse (e.g. `1 type)
methods are not routinely used in machine learning, because they typically do not improve the estimation
performances, and are mostly useful to do model selection (isolate a few useful coordinates in the features).
This is in sharp contrast with the situation for inverse problems in imaging sciences, where sparsity is a key
feature because it corresponds to a modelling assumption on the structure of the data to recover.

202

Ridge regression (quadratic penalization). For J = || · ||2/2, the estimator (12.14) is obtained in closed
form as

β̂ = (X∗X + nλnIdp)
−1X∗y = (Ĉ + nλnId)−1û. (12.16)

This is often called ridge regression in the literature. Note that thanks to the Woodbury formula, this
estimator can also be re-written as

β̂ = X∗(XX∗ + nλnIdn)−1y. (12.17)

If n� p (which is the usual setup in machine learning), then (12.17) is preferable. In some cases however (in
particular when using RKHS technics), it makes sense to consider very large p (even infinite dimensional),
so that (12.16) must be used.

If λn → 0, then using (12.15), one has the convergence in expectation and probability

β̂ → β̄ = C+u.

Theorems 10 and 12 can be extended to this setting and one obtains the following result.

Theorem 22. If
β̄ = Cγz where ||z|| 6 ρ (12.18)

for 0 < γ 6 2, then

E(||β̂ − β̄||2) 6 Cρ2 1
γ+1n−

γ
γ+1 (12.19)

for a constant C depending only on γ.

It is important to note that, since β̄ = C+u, the source condition (12.18) is always satisfied. What trully
matters here is that the rate (12.19) does not depend on the dimension p of the features, but rather only on
ρ, which can be much smaller. This theoretical analysis actually works perfectly fine in infinite dimension
p =∞ (which is the setup considered when dealing with RKHS below).

12.4 Supervised Learning: Classification

We now focus on the case of discrete labels yi ∈ Y = {1, . . . , k}, which is the classification setup. We
now detail two popular classification methods: nearest neighbors and logistic classification. It is faire to say
that a significant part of successful applications of machine learning technics consists in using one of these
two approaches, which should be considered as baselines. Note that the nearest neighbors approach, while
popular for classification could as well be used for regression.

12.4.1 Nearest Neighbors Classification

Probably the simplest method for supervised classification is R nearest neighbors (R-NN), where R is
a parameter indexing the number of neighbors. Increasing R is important to cope with noise and obtain
smoother decision boundaries, and hence better generalization performances. It should typically decreases as
the number of training samples n increases. Despite its simplicity, k-NN is surprisingly successful in practice,
specially in low dimension p.

The class f̂(x) ∈ Y predicted for a point x is the one which is the most represented among the R points

(xi)i which are the closed to x. This is a non-parametric method, and f̂ depends on the numbers n of
samples (its “complexity” increases with n).

Figure 12.11: Nearest
neighbors.

One first compute the Euclidean distance between this x and all other xi in
the training set. Sorting the distances generates an indexing σ (a permutation
of {1, . . . , n}) such that

||x− xσ(1)|| 6 ||x− xσ(2)|| 6 . . . 6 ||x− xσ(n)||.

203

R=1 R=5

R=10 R=40

R=1 R=5

R=10 R=40

R=1 R=5

R=10 R=40

R=1 R=5

R=10 R=40

k = 1 k = 5 k = 10 k = 40

Figure 12.12: k-nearest-neighbor classification boundary function.

For a given R, one can compute the “local” histogram of classes around x

h`(x)
def.
=

1

R

{
i ; yσ(i) ∈ {1, . . . , R}

}
.

The decision class for x is then a maximum of the histogram

f̂(x) ∈ argmax
`

h`(x).

In practice, the parameter R can be setup through cross-validation, by minimizing the testing risk Rn̄
defined in (12.13), which typically uses a 0-1 loss for counting the number of mis-classifications

Rn̄
def.
=

n̄∑

j=1

δ(ȳj − f̂(xi))

where δ(0) = 0 and δ(s) = 1 if s 6= 0. Of course the method extends to arbitrary metric space in place of
Euclidean space Rp for the features. Note also that instead of explicitly sorting all the Euclidean distance,
one can use fast nearest neighbor search methods.

Figure 12.12 shows, for the IRIS dataset, the classification domains (i.e. {x ; f(x) = `} for ` = 1, . . . , k)
using a 2-D projection for vizualization. Increasing R leads to smoother class boundaries.

12.4.2 Two Classes Logistic Classification

The logistic classification method (for 2 classes and multi-classes) is one of the most popular (maybe
“the” most) popular machine learning technics. This is due in large part of both its simplicity and because
it also outputs a probability of belonging to each class (in place of just a class membership), which is useful
to (somehow . . .) quantify the “uncertainty” of the estimation. Note that logistic classification is actually
called “logistic regression” in the literature, but it is in fact a classification method.

Another very popular (and very similar) approach is support vector machine (SVM). SVM is both more
difficult to train (because the loss is non-smooth) and does not give class membership probability, so the
general rule of thumb is that logistic classification is preferable.

To simplify the expression, classes indexes are set to yi ∈ Y = {−1, 1} in the following. Note that for
logistic classification, the prediction function f(·, β) ∈ [0, 1] outputs the probability of belonging to the first
class, and not the class indexes. With a slight abuse of notation, we still denote it as f .

Approximate risk minimization. The hard classifier is defines from a linear predictor 〈x, β〉 as sign(〈x, β〉) ∈
{−1,+1}. The 0-1 loss error function (somehow the “ideal” loss) counts the number of miss-classifications,
and can ideal classifier be computed as

min
β

n∑

i=1

`0(−yi〈xi, β〉) (12.20)

204

Figure 12.13: 1-D and 2-D logistic classification, showing the impact of ||β|| on the sharpness of the
classification boundary.

where `0 = 1R+ . Indeed, miss classification corresponds to 〈xi, w〉 and yi having different signs, so that in
this case `0(−yi〈xi, w〉) = 1 (and 0 otherwise for correct classification).

The function `0 is non-convex and hence problem (12.20) is itself non-convex, and in full generality, can
be shown to be NP-hard to solve. One thus relies on some proxy, which are functions which upper-bounds
`0 and are convex (and sometimes differentiable).

The most celebrated proxy are

`(u) = (1 + u)+ and `(u) = log(1 + exp(u))/ log(2)

which are respectively the hinge loss corresponds to support vector machine (SVM, and is non-smooth) and
the logistic loss (which is smooth). The 1/ log(2) is just a constant which makes `0 6 `. AdaBoost is using
`(u) = eu. Note that least square corresponds to using `(u) = (1 + u)2, but this is a poor proxy for `0 for
negative values, although it might works well in practice. Note that SVM is a non-smooth problem, which
can be cast as a linear program minimizing the co-called classification margin

min
u>0,β

{∑

i

ui ; 1 + ui = yi〈xi, β〉
}
.

Logistic loss probabilistic interpretation. Logistic classification can be understood as a linear model
as introduced in Section 12.3.1, although the decision function f(·, β) is not linear. Indeed, one needs
to “remap” the linear value 〈x, β〉 in the interval [0, 1]. In logistic classification, we define the predicted
probability of x belonging to class with label −1 as

f(x, β)
def.
= θ(〈x, β〉) where θ(s)

def.
=

es

1 + es
= (1 + e−s)−1, (12.21)

which is often called the “logit” model. Using a linear decision model might seems overly simplistic, but in
high dimension p, the number of degrees of freedom is actually enough to reach surprisingly good classification
performances. Note that the probability of belonging to the second class is 1 − f(x, β) = θ(−s). This
symmetry of the θ function is important because it means that both classes are treated equally, which makes
sense for “balanced” problem (where the total mass of each class are roughly equal).

Intuitively, β/||β|| controls the separating hyperplane direction, while 1/||β|| is roughly the fuzziness of the
the separation. As ||β|| → +∞, one obtains sharp devision boundary, and logistic classification ressembles
SVM.

Note that f(x, β) can be interpreted as a single layer perceptron with a logistic (sigmoid) rectifying unit,
more details on this in Chapter 16.

205

-3 -2 -1 0 1 2 3
0

1

2

3
Binary

Logistic

Hinge

Figure 12.14: Comparison of loss functions. [ToDo: Re-do the figure, it is not correct, they should
upper bound `0]

Since the (xi, yi) are modeled as i.i.d. variables, it makes sense to define β̂ from the observation using
a maximum likelihood, assuming that each yi conditioned on xi is a Bernoulli variable with associated
probability (pi, 1 − pi) with pi = f(xi, β). The probability of observing yi ∈ {0, 1} is thus, denoting
si = 〈xi, β〉

P(y = yi|x = xi) = p1−ȳi
i (1− pi)ȳi =

(
esi

1 + esi

)1−ȳi (1

1 + esi

)ȳi

where we denoted ȳi = yi+1
2 ∈ {0, 1}.

One can then minimize minus the sum of the log of the likelihoods, which reads

β̂ ∈ argmin
β∈Rp

−
n∑

i=1

log(P(y = yi|x = xi)) =

n∑

i=1

−(1− ȳi) log
esi

1 + esi
− ȳi log

1

1 + esi

Some algebraic manipulations shows that this is equivalent to an ERM-type form (12.11) with a logistic loss
function

β̂ ∈ argmin
β∈Rp

E(β) =
1

n

n∑

i=1

L(〈xi, β〉, yi) (12.22)

where the logistic loss reads

L(s, y)
def.
= log(1 + exp(−sy)). (12.23)

Problem (12.22) is a smooth convex minimization. If X is injective, E is also strictly convex, hence it has a
single global minimum.

Figure (12.14) compares the binary (ideal) 0-1 loss, the logistic loss and the hinge loss (the one used for
SVM).

Gradient descent method. Re-writing the energy to minimize

E(β) = L(Xβ, y) where L(s, y) =
1

n

∑

i

L(si, yi),

its gradient reads

∇E(β) = X∗∇L(Xβ, y) where ∇L(s, y) =
y

n
� θ(−y � s),

where � is the pointwise multiplication operator, i.e. .* in Matlab. Once β(`=0) ∈ Rp is initialized (for
instance at 0p), one step of gradient descent (18.2) reads

β(`+1) = β(`) − τ`∇E(β(`)).

To understand the behavior of the method, in Figure 12.15 we generate synthetic data distributed ac-
cording to a mixture of Gaussian with an overlap governed by an offset ω. One can display the data overlaid
on top of the classification probability, this highlight the separating hyperplane {x ; 〈β, x〉 = 0}.

206

Figure 12.15: Influence on the separation distance between the class on the classification probability.

12.4.3 Multi-Classes Logistic Classification

The logistic classification method is extended to an arbitrary number k of classes by considering a family
of weight vectors β = (β`)

k
`=1, which are conveniently stored as columns of a matrix β ∈ Rp×k.

This allows one to model probabilistically the belonging of a point x ∈ Rp to the classes using the logit
model

f(x, β) =

(
e−〈x, β`〉∑
m e
−〈x, βm〉

)

`

This vector h(x) ∈ [0, 1]k describes the probability of x belonging to the different classes, and
∑
` h(x)` = 1.

The computation of β is obtained by solving a maximum likelihood estimator

max
β∈Rp×k

1

n

n∑

i=1

log(f(xi, β)yi)

where we recall that yi ∈ Y = {1, . . . , k} is the class index of the point xi.
This is conveniently rewritten as

min
β∈Rp×k

E(β)
def.
=
∑

i

LSE(Xβ)i − 〈Xβ, D〉

where D ∈ {0, 1}n×k is the binary class index matrices

Di,` =

{
1 if yi = `,
0otherwise.

and LSE is the log-sum-exp operator

LSE(S) = log

(∑

`

exp(Si,`)

)
∈ Rn.

Note that in the case of k = 2 classes Y = {−1, 1}, this model can be shown to be equivalent to the
two-classes logistic classifications methods exposed in Section (12.4.2), with a solution vector being equal to
β1 − β2 (so it is computationally more efficient to only consider a single vector as we did).

The computation of the LSE operator is unstable for large value of Si,` (numerical overflow, producing
NaN), but this can be fixed by subtracting the largest element in each row, since

LSE(S + a) = LSE(S) + a

207

Figure 12.16: 2-D and 3-D PCA vizualization of the digits images.

Figure 12.17: Results of digit classification Left: probability h(x)` of belonging to each of the 9 first classes
(displayed over a 2-D PCA space). Right: colors reflect probability h(x) of belonging to classes.

if a is constant along the rows. This is often referred to as the “LSE trick” and is very important to use
in practice (in particular if some classes are well separated, since the corresponding β` vector might become
large).

The gradient of the LSE operator is the soft-max operator

∇LSE(S) = SM(S)
def.
=

(
eSi,`∑
m e

Si,m

)

Similarly to the LSE, it needs to be stabilized by subtracting the maximum value along rows before compu-
tation.

Once D matrix is computed, the gradient of E is computed as

∇E(β) =
1

n
X∗(SM(Xβ)−D).

and one can minimize E using for instance a gradient descent scheme.
To illustrate the method, we use a dataset of n images of size p = 8× 8, representing digits from 0 to 9

(so there are k = 10 classes). Figure 12.16 displays a few representative examples as well as 2-D and 3-D
PCA projections. Figure (12.17) displays the “fuzzy” decision boundaries by vizualizing the value of h(x)
using colors on an image regular grid.

12.5 Kernel Methods

Linear methods are parametric and cannot generate complex regression or decision functions. The lin-
earity assumption is often too restrictive and in some case the geometry of the input functions or classes is

208

not well capture by these models. In many cases (e.g. for text data) the input data is not even in a linear
space, so one cannot even apply these model.

Kernel method is a simple yet surprisingly powerful remedy for these issues. By lifting the features to
a high dimensional embedding space, it allows to generate non-linear decision and regression functions, but
still re-use the machinery (linear system solvers or convex optimization algorithm) of linear models. Also,
by the use of the so-called “kernel-trick”, the computation cost does not depends on the dimension of the
embedding space, but of the number n of points. It is the perfect example of so-called “non-parametric”
methods, where the number of degrees of freedom (number of variables involved when fitting the model)
grows with the number of samples. This is often desirable when one wants the precisions of the result to
improve with n, and also to mathematically model the data using “continuous” models (e.g. functional
spaces such as Sobolev).

The general rule of thumb is that any machine learning algorithm which only makes use of inner products
(and not directly of the features xi themselves) can be “kernelized” to obtain a non-parametric algorithm.
This is for instance the case for linear and nearest neighbor regression, SVM classification, logistic classifica-
tion and PCA dimensionality reduction. We first explain the general machinery, and instantiate this in two
representative setup (ridge regression, nearest-neighbor regression and logistic classification)

12.5.1 Feature Map and Kernels

We consider a general lifting ϕ : x ∈ X → ϕ(x) ∈ H where H is a Hilbert space, possibly of infinite
dimension. The space X can thus be arbitrary, it does not need to be a vector space (but of course, if X = Rp,
one could use ϕ(x) = x and retrieve the usual linear methods). For regression, we consider predictions which
are linear function over this lifted space, i.e. of the form x 7→ 〈ϕ(x), β〉H for some weight vector β ∈ H. For
binary classification, one uses x 7→ sign(〈ϕ(x), β〉H).

A typical example of lift for 1 −D values p = 1 is ϕ(x) = (1, x, x2, . . . , xk) ∈ Rk to perform polynomial
regression (this can be extended to any dimension p using higher dimensional polynomials). We denote
Φ = (ϕ(xi)

∗)ni=1 the “matrix” where each row is a lifted feature ϕ(xi). For instance, if H = Rp̄ is finite
dimensional, one can view this as a matrix Φ ∈ Rn×p̄, but the rows of the matrix can be infinite dimensional
vectors.

We consider the empirical risk minimization procedure

min
β∈H

n∑

i=1

`(yi, 〈ϕ(xi), β〉) +
λ

2
||β||2H = L(Φβ, y) +

λ

2
||β||2H (12.24)

As a warmup, we start with the regression using a square loss, `(y, z) = 1
2 (y − z)2, so that

β? = argmin
β∈H

||Φβ − y||2Rn + λ||β||2H.

which is the ridge regression problem studied in Section 12.3.1. In this case, the solution is obtained from
the annulation of the gradient as

β? = (Φ∗Φ + λIdH)−1Φ∗y.

It cannot be computed because a priori H can be infinite dimensional. Fortunately, the following Woodbury
matrix identity comes to the rescue. Note that this is exactly the formula (12.17) when using K in place of
Ĉ

Proposition 37. One has

(Φ∗Φ + λIdH)−1Φ∗ = Φ∗(ΦΦ∗ + λIdRn)−1.

Proof. Denoting U = (Φ∗Φ + λIdH)−1Φ∗ and V = Φ∗(ΦΦ∗ + λIdRn)−1, one has

(Φ∗Φ + λIdH)U = Φ∗

209

and

(Φ∗Φ + λIdH)V = (Φ∗ΦΦ∗ + λΦ∗)(ΦΦ∗ + λIdRn)−1 = Φ∗(ΦΦ∗ + λIdRn)(ΦΦ∗ + λIdRn)−1 = Φ∗.

Since (Φ∗Φ + λIdH) is invertible, one obtains the result.

Using this formula, one has the alternate formulation of the solution as

β? = Φ∗c? where c?
def.
= (K + λIdRn)−1y

where we introduced the so-called empirical kernel matrix

K = Φ∗Φ = (κ(xi, xj))
n
i,j=1 ∈ Rn×n where κ(x, x′)

def.
= 〈ϕ(x), ϕ(x′)〉.

This means that c? ∈ Rn can be computed from the knowledge of k alone, without the need to actually
compute the lifted features ϕ(x). If the kernel k can be evaluated efficiently, this means that K requires
only n2 operator and the computation of c? can be done exactly in O(n3) operation, and approximately in
O(n2) (which is the typical setup in machine learning where computing exact solutions is overkill).

From this optimal c?, one can compute the predicted value for any x ∈ X using once gain only kernel
evaluation, since

〈β?, ϕ(x)〉H = 〈
∑

i

c?iϕ(xi), ϕ(x)〉H =
∑

i

c?i κ(x, xi). (12.25)

12.5.2 Kernel Design

More importantly, one can reverse the process, and instead of starting from a lifting ϕ, directly consider
a kernel κ(x, x′). This is actually the way this is done in practice, since it is easier to design kernel and
think in term of their geometrical properties (for instance, one can sum kernels). In order for this to make
sense, the kernel needs to be positive definite, i.e. one should have that (κ(xi, xj))i,j should be symmetric
positive definite for any choice of sampling points (xi)i. This can be shown to be equivalent to the existence
of a lifting function ϕ generating the kernel. Note that such a kernel can be defined on arbitrary space (not
necessarily Euclidean).

When using the linear kernel κ(x, y) = 〈x, y〉, one retrieves the linear models studied in the previous
section, and the lifting is trivial ϕ(x) = x. A family of popular kernels are polynomial ones, κ(x, x′) =
(〈x, y〉+ c)a for a ∈ N∗ and c > 0, which corresponds to a lifting in finite dimension. For instance, for a = 2
and p = 2, one has a lifting in dimension 6

κ(x, x′) = (x1x
′
1 + x1x

′
1 + c)

2
= 〈ϕ(x), ϕ(x′)〉 where ϕ(x) = (x2

1, x
2
2,
√

2x1x2,
√

2cx1,
√

2cx2, c)
∗ ∈ R6.

In Euclidean spaces, the gaussian kernel is the most well known and used kernel

κ(x, y)
def.
= e−

||x−y||2

2σ2 . (12.26)

The bandwidth parameter σ > 0 is crucial and controls the locality of the model. It is typically tuned

through cross validation. It corresponds to an infinite dimensional lifting x 7→ e
− ||x−·||

2

2(σ/2)2 ∈ L2(Rp). Another
related popular kernel is the Laplacian kernel exp(−||x−y||/σ). More generally, when considering translation

invariant kernels κ(x, x′) = k(x− x′) on Rp, being positive definite is equivalent to k̂(ω) > 0 where k̂ is the

Fourier transform, and the associated lifting is obtained by considering ĥ =
√
κ̂ and ϕ(x) = h(x−·) ∈ L2(Rp).

Figure 12.18 shows an example of regression using a Gaussian kernel.

210

σ = 0.1 σ = 0.5 σ = 1 σ = 5

Figure 12.18: Regression using a Gaussian kernel.

Kernel on non-Euclidean spaces. One can define kernel κ on general space X . A valid kernel should
satisfy that for any set of distinct points (xi)i, the associated kernel matrix K = (κ(xi, xj))i,j should be
positive definite (i.e. strictly positive eigenvalues). This is equivalent to the existence of an embedding
Hilbert space H and a feature map ϕ : X → H such that κ(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

For instance, if X = P(M) is the set of measurable ensembles of some measured space (M, µ), one
can define κ(A,B) = µ(A ∩ B) which corresponds to the lifting ϕ(A) = 1A so that 〈ϕ(A), ϕ(B)〉 =∫

1A(x)1B(x)dµ(x) = µ(A ∩ B). It is also possible to define kernel on strings or between graphs, but
this is more involved.

Note that in practice, it is often desirable to normalize the kernel so that it has a unit diagonal (for
translation invariant kernel over Rp, this is automatically achieved because k(x, x) = k(0, 0) is constant).

This corresponds to replacing ϕ(x) by ϕ(x)/||ϕ(x)||K and thus replacing κ(x, x′) by κ(x,x′)√
κ(x,x)

√
κ(x′,x′)

.

12.5.3 General Case

This result obtained for least squares can be generalized to any loss, as stated in the following proposition,
which is the crux of the RKHS approaches. When using a regularization which is a squared Euclidean norm,
|| · ||2H, it states that the solutions actually belongs to a data-driven linear sub-space of dimension n. Although
the proof is straightforward, its implications are very profound, since it leads to tractable algorithms even
when using an infinite dimensional lifting space H. It is often called the “representer” theorem in RKHS
theory.

Proposition 38. The solution β? ∈ H of

min
β∈H

n∑

i=1

`(yi, 〈ϕ(xi), β〉) +
λ

2
||β||2H = L(Φβ, y) +

λ

2
||β||2H (12.27)

is unique and can be written as

β = Φ∗c? =
∑

i

c?iϕ(xi) ∈ H (12.28)

where q ∈ RN is a solution of

min
c∈Rn

L(Kc, y) +
λ

2
〈Kc, c〉Rn (12.29)

where we defined

K
def.
= Φ∗Φ = (〈ϕ(xi), ϕ(xj)〉H)ni,j=1 ∈ Rn×n.

Proof. The first order condition of (12.27) reads

0 ∈ Φ∗∂L(Φ∗β?, y) + λβ? = 0

211

-1

1

Figure 12.19: Non-linear classification using a Gaussian kernel.

i.e. there exists u? ∈ ∂L(Φ∗β?, y) such that

β? = − 1

λ
Φ∗u? ∈ Im(Φ∗)

which is the desired result.

Equation (12.28) expresses the fact that the solution only lives in the n dimensional space spanned
by the lifted observed points ϕ(xi). On contrary to (12.27), the optimization problem (12.29) is a finite
dimensional optimization problem, and in many case of practical interest, it can be solved approximately
in O(n2) (which is the cost of forming the matrix c). For large scale application, this complexity can be
further reduced by computing a low-rank approximation of K ≈ Φ̃∗Φ̃ (which is equivalent to computing an
approximate embedding space of finite dimension).

For classification applications, one can use for ` a hinge or a logistic loss function, and then the decision
boundary is computed following (12.25) using kernel evaluations only as

sign(〈β?, ϕ(x)〉H) = sign(
∑

i

c?i κ(x, xi)).

Figure 12.19 illustrates such a non-linear decision function on a simple 2-D problem. Note that while the
decision boundary is not a straight line, it is a linear decision in a higher (here infinite dimensional) lifted
space H (and it is the projection of this linear decision space which makes it non-linear).

It is also possible to extend nearest neighbors classification (as detailed in Section 12.4.1) and regression
over a lifted space by making use only of kernel evaluation, simply noticing that

||ϕ(xi)− ϕ(xj)||2H = κ(xi, xi) + κ(xj , xj)− 2κ(xi, xj).

12.6 Probably approximately correct learning theory

This section is a short presentation of the main results in Probably Approximately Correct (PAC) learn-
ing. Its goal is to asses the generalization performance of learning method without putting any assumption
on the distribution of the data. The main reference (and in particular the proofs of the mentioned results)
for this section is the book “Foundations of Machine Learning” by Mehryar Mohri, Afshin Rostamizadeh,
and Ameet Talwalkar https://cs.nyu.edu/~mohri/mlbook/.

The underlying assumption is that the data D def.
= (xi, yi)

n
i=1 ⊂ X × Y are independent realizations of a

random vector (X,Y). The goal is to learn from D alone a function f : X → Y which is as close a possible
of minimizing the risk

L(f)
def.
= E(`(Y, f(X))) =

∫

X×Y
`(y, f(x))dPX,Y (x, y)

212

https://cs.nyu.edu/~mohri/mlbook/

where ` : Y × Y → R is some loss function. In order to achieve this goal, the method selects a class of
functions F and minimizes the empirical risk

f̂
def.
= argmin

f∈F
L̂(f)

def.
=

1

n

n∑

i=1

`(yi, f(xi)).

This is thus a random function (since it depends on D).

Example 1 (Regression and classification). In regression, Y = R and the most common choice of loss is
`(y, z) = (y− z)2. For binary classification, Y = {−1,+1} and the ideal choice is the 0-1 loss `(y, z) = 1y 6=z.
Minimizing L̂ for the 0-1 loss is often NP hardÂ for most choice of F . So one uses other loss functions of the
form `(y, z) = Γ(−yz) where Γ is a convex function upper-bounding 1R+ , which makes min

f
L̂(f) a convex

optimization problem.

The goal of PAC learning is to derive, with probability at least 1− δ (intended to be close to 1), a bound

on the generalization error L(f̂)− inf(L) > 0 (also called excess risk), and this bound depends on n and δ.
In order for this generalization error to go to zero, one needs to put some hypothesis on the distribution of
(X,Y).

12.6.1 Non parametric setup and calibration

If F is the whole set of measurable functions, the minimizer f? of L is often called “Bayes estimator”
and is the best possible estimator.

Risk decomposition Denoting

α(z|x)
def.
= EY (`(Y, z)|X = x) =

∫

Y
`(y, f(x))dPY |X(y|x)

the average error associate to the choice of some predicted value z ∈ Y at location x ∈ X , one has the
decomposition of the risk

L(f) =

∫

X

[∫

Y
`(y, f(x))dPY |X(y|x)

]
dPX(x) =

∫

X
α(f(x)|x)dPX(x)

so that computing f? can be done independently at each location x by solving

f?(x) = argmin
z

α(z|x).

Example 2 (Regression). For regression applications, where Y = R, `(y, z) = (y − z)2, one has f?(x) =
E(Y |X = x) =

∫
Y ydPY |X(y|x), which is the conditional expectation.

Example 3 (Classification). For classification applications, where Y = {−1, 1}, it is convenient to introduce

η(x)
def.
= PY |X(y = 1|x) ∈ [0, 1]. If the two classes are separable, then η(x) ∈ {0, 1} on the support of X

(it is not defined elsewhere). For the 0-1 loss `(y, z) = 1y=z = 1R+(−yz), one has f? = sign(2η − 1) and
L(f?) = EX(min(η(X), 1− η(X))). In practice, computing this η is not possible from the data D alone, and
minimizing the 0-1 loss is NP hard for most F . Considering a loss of the form `(y, z) = Γ(−yz), one has
that the Bayes estimator then reads in the fully non-parametric setup

f?(x) = argmin
z

(
α(z|x) = η(x)Γ(−z) + (1− η(x))Γ(z)

)
,

so that it is non-linear function of η(x).

213

Calibration in the classification setup A natural question is to ensure that in this (non realistic . . .)
setup, the final binary classifier sign(f?) is equal to sign(2η − 1), which is the Bayes classifier of the (non-
convex) 0-1 loss. In this case, the loss is said to be calibrated. Note that this does not mean that f? is itself
equal to 2η − 1 of course. One has the following result.

Proposition 39. A loss ` associated to a convex Γ is calibrated if and only if Γ is differentiable at 0 and
Γ′(0) > 0.

In particular, the hinge and logistic loss are thus calibrated. Denoting LΓ the loss associated to `(y, z) =
Γ(−yz), and denoting Γ0 = 1R+ the 0-1 loss, stronger quantitative controls are of the form

0 6 LΓ0
(f)− inf LΓ0

6 Ψ(LΓ(f)− inf LΓ) (12.30)

for some increasing function Ψ : R+ → R+. Such a control ensures in particular that if f? minimize LΓ, it
also minimizes LΓ0

and hence sign(f?) = sign(2η − 1) and the loss is calibrated. One can show that the
hinge loss enjoys such a quantitative control with Ψ(r) = r and that the logistic loss has a worse control
since it requires Ψ(s) =

√
s.

12.6.2 PAC bounds

Bias-variance decomposition. For a class F of functions, the excess risk of the empirical estimator

f̂
def.
= argmin

f∈F
L̂(f)

is decomposed as the sum of the estimation (random) error and the approximation (deterministic) error

L(f̂)− inf L =
[
L(f̂)− inf

F
L
]

+A(F) where A(F)
def.
=
[

inf
F
L− inf L

]
. (12.31)

This splitting is a form of variance/bias separation.
As the size of F increases, the estimation error increases but the approximation error decreases, and the

goal is to optimize this trade-off. This size should thus depend on n to avoid over-fitting (selecting a too
large class F).

Approximation error. Bounding the approximation error fundamentally requires some hypothesis on
f?. This is somehow the take home message of “no free lunch” results, which shows that learning is not
possible without regularity assumption on the distribution of (X,Y). We only give here a simple example.

Example 4 (Linearly parameterized functionals). A popular class of functions are linearly parameterized
maps of the form

f(x) = fw(x) = 〈ϕ(x), w〉H
where ϕ : X → H somehow “lifts” the data features to a Hilbert space H. In the particular case where
X = Rp is already a (finite dimensional) Hilbert space, one can use ϕ(x) = x and recovers usual linear
methods. One can also consider for instance polynomial features, ϕ(x) = (1, x1, . . . , xp, x

2
1, x1x2, . . .), giving

rise to polynomial regression and polynomial classification boundaries. One can then use a restricted class
of functions of the form F = {fw ; ||w||H 6 R} for some radius R, and if one assumes for simplicity that
f? = fw? is of this form, and that the loss `(y, ·) is Q-Lipschitz, then the approximation error is bounded by
an orthogonal projection on this ball

A(F) 6 QE(||ϕ(x)||H) max(||w?||H −R, 0).

Remark 2 (Connexions with RKHS). Note that this lifting actually corresponds to using functions f in a
reproducing Hilbert space, denoting

||f ||k def.
= inf

w∈H
{||w||H ; f = fw}

and the associated kernel is k(x, x′)
def.
= 〈ϕ(x), ϕ(x′)〉H. But this is not important for our discussion here.

214

Estimation error. The estimation error can be bounded for arbitrary distributions by leveraging concen-
tration inequalities (to controls the impact of the noise) and using some bound on the size of F .

The first simple but fundamental inequality bounds the estimator error by some uniform distance between
L and L̂. Denoting g ∈ F an optimal estimator such that L(g) = infF L (assuming for simplicity it exists)
one has

L(f̂)− inf
F
L =

[
L(f̂)− L̂(f̂)

]
+
[
L̂(f̂)− L̂(g)

]
+
[
L̂(g)− L(ĝ)

]
6 2 sup

f∈F
|L̂(f)− L(f)| (12.32)

since L̂(f̂) − L̂(g) 6 0. So the goal is “simply” to control ∆(D)
def.
= supF |L̂ − L|, which is a random value

(depending on the data D).
The following proposition, which is a corollary of McDiarmid inequality, bounds with high probability

the deviation of ∆(D) from its mean.

Proposition 40 (McDiarmid control to the mean). If `(Y, f(X)) is almost surely bounded by `∞ for any
f ∈ F , then with probability 1− δ,

∆(D)− ED(∆(D)) 6 `∞

√
2 log(1/δ)

n
. (12.33)

Now we need to control ED(∆(D)) which requires to somehow bound the size of F . This can be achieved
by the so-called Vapnik-Chervonenkis (VC) dimension, but this leads to overly pessimistic (dimension-
dependent) bounds for linear models. A more refined analysis makes use of the so-called Rademacher
complexity of a set of functions G from X × Y to R

Rn(G)
def.
= Eε,D

[
sup
g∈G

1

n

n∑

i=1

εig(xi, yi)
]

where εi are independent Bernoulli random variable (i.e. P(εi = ±1) = 1/2). Note that Rn(G) actually
depends on the distribution of (X,Y) . . .

Here, one needs to apply this notion of complexity to the functions G = `[F] defined as

`[F]
def.
= {(x, y) ∈ X × Y 7→ `(y, f(x)) ; f ∈ F} ,

and that one has the following control, which can be proved using a simple but powerful symmetrization
trick.

Proposition 41. One has
E(∆(D)) 6 2Rn(`[F]).

If ` is Q-Lipschitz with respect to its second variable, one furthermore has Rn(`[F]) 6 QRn(F) (here the
class of functions only depends on x).

Putting (12.31), (12.32), Propositions 40 and 41 together, one obtains the following final result.

Theorem 23. Assuming ` is Q-Lipschitz and bounded by `∞ on the support of (Y, f(X)), one has with
probability 1− δ

0 6 L(f̂)− inf L 6 2`∞

√
2 log(1/δ)

n
+ 4QRn(F) +A(F). (12.34)

Example 5 (Linear models). In the case where F = {〈ϕ(·), w〉H ; ||w|| 6 R} where || · || is some norm on H,
one has

Rn(F) 6 R

n
||
∑

i

εiϕ(xi)||∗

where || · ||∗ is the so-called dual norm

||u||∗ def.
= sup
||w||61

〈u, w〉H.

215

In the special case where || · || = || · ||H is Hilbertian, then one can further simplify this expression since
||u||∗ = ||u||H and

Rn(F) 6 R
√

E(||ϕ(x)||2H)√
n

.

This result is powerful since the bound does not depend on the feature dimension (and can be even applied
in the RKHS setting where H is infinite dimensional). In this case, one sees that the convergence speed
in (12.34) is of the order 1/

√
n (plus the approximation error). One should keep in mind that one needs also

to select the “regularization” parameter R to obtain the best possible trade-off. In practice, this is done by
cross validation on the data themselves.

Example 6 (Application to SVM classification). One cannot use the result (12.34) in the case of the 0-1
loss `(y, z) = 1z 6=y since it is not Lipschitz (and also because minimizing L̂ would be intractable). One can
however applies it to a softer piece-wise affine upper-bounding loss `ρ(z, y) = Γρ(−zy) for

Γρ(s)
def.
= min (1,max (0, 1 + s/ρ)) .

This function is 1/ρ Lipschitz, and it is sandwiched between the 0-1 loss and a (scaled) hinge loss

Γ0 6 Γρ 6 ΓSVM(·/ρ) where ΓSVM(s)
def.
= max(1 + s, 0).

This allows one, after a change of variable w 7→ w/ρ, to bound with probability 1 − δ the 0-1 risk using a
SVM risk by applying (12.34)

LΓ0(f̂)− inf
f∈Fρ

LΓSVM(f) 6 2

√
2 log(1/δ)

n
+ 4

√
E(||ϕ(x)||2H)/ρ√

n

where Fρ def.
= {fw = 〈ϕ(·), w〉H ; ||w|| 6 1/ρ}. In practice, one rather solves a penalized version of the above

risk (in its empirical version)
min
w

L̂ΓSVM(fw) + λ||w||2H (12.35)

which corresponds to the so-called kernel-SVM method.

Remark 3 (Resolution using the kernel trick). The kernel trick allows one to solve problem such as (12.35)
having the form

min
w∈H

1

n

n∑

i=1

`(yi, 〈w, ϕ(xi)〉) + λ||w||2H (12.36)

by recasting this possibly infinite dimensional problem into a problem of finite dimension n by observing
that the solution necessarily has the form w? =

∑n
i=1 c

?
iϕ(xi) for some c? ∈ Rn (this can be seen from the

first order optimality conditions of the problem). Plugging this expression in (12.36) only necessitates the

evaluation of the empirical kernel matrix K = (k(xi, xj)
def.
= 〈ϕ(xi), ϕ(xj)〉)ni,j=1 ∈ Rn×n since it reads

min
c∈Rn

1

n

n∑

i=1

`(yi, (Kc)i) + λ〈Kc, c〉

From the optimal c? solving this strictly convex program, the estimator is evaluated as fw?(x) = 〈w?, ϕ(x)〉 =∑
i c
?
i k(xi, x).

216

Chapter 13

Optimization & Machine Learning:
Smooth Optimization

13.1 Motivation in Machine Learning

13.1.1 Unconstraint optimization

In most part of this Chapter, we consider unconstrained convex optimization problems of the form

inf
x∈Rp

f(x), (13.1)

and try to devise “cheap” algorithms with a low computational cost per iteration to approximate a minimizer
when it exists. The class of algorithms considered are first order, i.e. they make use of gradient information.
In the following, we denote

argmin
x

f(x)
def.
= {x ∈ Rp ; f(x) = inf f} ,

to indicate the set of points (it is not necessarily a singleton since the minimizer might be non-unique) that
achieve the minimum of the function f . One might have argmin f = ∅ (this situation is discussed below),
but in case a minimizer exists, we denote the optimization problem as

min
x∈Rp

f(x). (13.2)

In typical learning scenario, f(x) is the empirical risk for regression or classification, and p is the number
of parameter. For instance, in the simplest case of linear models, we denote (ai, yi)

n
i=1 where ai ∈ Rp are the

features. In the following, we denote A ∈ Rn×p the matrix whose rows are the ai.

Figure 13.1: Left: linear regression, middle: linear classifier, right: loss function for classification.

217

Figure 13.2: Left: non-existence of minimizer, middle: multiple minimizers, right: uniqueness.

13.1.2 Regression

For regression, yi ∈ R, in which case

f(x) =
1

2

n∑

i=1

(yi − 〈x, ai〉)2 =
1

2
||Ax− y||2, (13.3)

is the least square quadratic risk function (see Fig. 13.1). Here 〈u, v〉 =
∑p
i=1 uivi is the canonical inner

product in Rp and || · ||2 = 〈·, ·〉.

13.1.3 Classification

For classification, yi ∈ {−1, 1}, in which case

f(x) =

n∑

i=1

`(−yi〈x, ai〉) = L(−diag(y)Ax) (13.4)

where ` is a smooth approximation of the 0-1 loss 1R+ . For instance `(u) = log(1 + exp(u)), and diag(y) ∈
Rn×n is the diagonal matrix with yi along the diagonal (see Fig. 13.1, right). Here the separable loss function
L = Rn → R is, for z ∈ Rn, L(z) =

∑
i `(zi).

13.2 Basics of Convex Analysis

13.2.1 Existence of Solutions

In general, there might be no solution to the optimization (18.1). This is of course the case if f is
unbounded by below, for instance f(x) = −x2 in which case the value of the minimum is −∞. But this
might also happen if f does not grow at infinity, for instance f(x) = e−x, for which min f = 0 but there is
no minimizer.

In order to show existence of a minimizer, and that the set of minimizer is bounded (otherwise one
can have problems with optimization algorithm that could escape to infinity), one needs to show that one
can replace the whole space Rp by a compact sub-set Ω ⊂ Rp (i.e. Ω is bounded and close) and that f is
continuous on Ω (one can replace this by a weaker condition, that f is lower-semi-continuous, but we ignore
this here). A way to show that one can consider only a bounded set is to show that f(x) → +∞ when
x → +∞. Such a function is called coercive. In this case, one can choose any x0 ∈ Rp and consider its
associated lower-level set

Ω = {x ∈ Rp ; f(x) 6 f(x0)}

which is bounded because of coercivity, and closed because f is continuous. One can actually show that for
convex function, having a bounded set of minimizer is equivalent to the function being coercive (this is not
the case for non-convex function, for instance f(x) = min(1, x2) has a single minimum but is not coercive).

218

Figure 13.3: Coercivity condition for least squares.

Figure 13.4: Convex vs. non-convex functions ; Strictly convex vs. non strictly convex functions.

Example 7 (Least squares). For instance, for the quadratic loss function f(x) = 1
2 ||Ax−y||2, coercivity holds

if and only if ker(A) = {0} (this corresponds to the overdetermined setting). Indeed, if ker(A) 6= {0} if x?

is a solution, then x? + u is also solution for any u ∈ ker(A), so that the set of minimizer is unbounded. On
contrary, if ker(A) = {0}, we will show later that the set of minimizer is unique, see Fig. 13.3. If ` is strictly
convex, the same conclusion holds in the case of classification.

13.2.2 Convexity

Convex functions define the main class of functions which are somehow “simple” to optimize, in the sense
that all minimizers are global minimizers, and that there are often efficient methods to find these minimizers
(at least for smooth convex functions). A convex function is such that for any pair of point (x, y) ∈ (Rp)2,

∀ t ∈ [0, 1], f((1− t)x+ ty) 6 (1− t)f(x) + tf(y) (13.5)

which means that the function is below its secant (and actually also above its tangent when this is well
defined), see Fig. 13.4. If x? is a local minimizer of a convex f , then x? is a global minimizer, i.e. x? ∈
argmin f .

Convex function are very convenient because they are stable under lots of transformation. In particular,
if f , g are convex and a, b are positive, af + bg is convex (the set of convex function is itself an infinite
dimensional convex cone!) and so is max(f, g). If g : Rq → R is convex and B ∈ Rq×p, b ∈ Rq then
f(x) = g(Bx+ b) is convex. This shows immediately that the square loss appearing in (13.3) is convex, since
|| · ||2/2 is convex (as a sum of squares). Also, similarly, if ` and hence L is convex, then the classification
loss function (13.4) is itself convex.

Strict convexity. When f is convex, one can strengthen the condition (13.5) and impose that the in-
equality is strict for t ∈]0, 1[(see Fig. 13.4, right), i.e.

∀ t ∈]0, 1[, f((1− t)x+ ty) < (1− t)f(x) + tf(y). (13.6)

In this case, if a minimum x? exists, then it is unique. Indeed, if x?1 6= x?2 were two different minimizer, one

would have by strict convexity f(
x?1+x?2

2) < f(x?1) which is impossible.

219

Figure 13.5: Comparison of convex functions f : Rp → R (for p = 1) and convex sets C ⊂ Rp (for p = 2).

Example 8 (Least squares). For the quadratic loss function f(x) = 1
2 ||Ax− y||2, strict convexity is equivalent

to ker(A) = {0}. Indeed, we see later that its second derivative is ∂2f(x) = A>A and that strict convexity
is implied by the eigenvalues of A>A being strictly positive. The eigenvalues of A>A being positive, it is
equivalent to ker(A>A) = {0} (no vanishing eigenvalue), and A>Az = 0 implies 〈A>Az, z〉 = ||Az||2 = 0 i.e.
z ∈ ker(A).

13.2.3 Convex Sets

A set Ω ⊂ Rp is said to be convex if for any (x, y) ∈ Ω2, (1 − t)x + ty ∈ Ω for t ∈ [0, 1]. The
connexion between convex function and convex sets is that a function f is convex if and only if its epigraph

epi(f)
def.
=
{

(x, t) ∈ Rp+1 ; t > f(x)
}

is a convex set.

Remark 4 (Convexity of the set of minimizers). In general, minimizers x? might be non-unique, as shown on
Figure 13.3. When f is convex, the set argmin(f) of minimizers is itself a convex set. Indeed, if x?1 and x?2 are
minimizers, so that in particular f(x?1) = f(x?2) = min(f), then f((1− t)x?1 + tx?2) 6 (1− t)f(x?1) + tf(x?2) =
f(x?1) = min(f), so that (1− t)x?1 + tx?2 is itself a minimizer. Figure 13.5 shows convex and non-convex sets.

13.3 Derivative and gradient

13.3.1 Gradient

If f is differentiable along each axis, we denote

∇f(x)
def.
=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xp

)>
∈ Rp

the gradient vector, so that ∇f : Rp → Rp is a vector field. Here the partial
derivative (when they exits) are defined as

∂f(x)

∂xk

def.
= lim

η→0

f(x+ ηδk)− f(x)

η

where δk = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rp is the kth canonical basis vector.
Beware that ∇f(x) can exist without f being differentiable. Differentiability of f at each reads

f(x+ ε) = f(x) + 〈ε, ∇f(x)〉+ o(||ε||). (13.7)

Here R(ε) = o(||ε||) denotes a quantity which decays faster than ε toward 0, i.e. R(ε)
||ε|| → 0 as ε→ 0. Existence

of partial derivative corresponds to f being differentiable along the axes, while differentiability should hold

220

for any converging sequence of ε → 0 (i.e. not along along a fixed direction). A counter example in 2-D is

f(x) = 2x1x2(x1+x2)
x2
1+x2

2
with f(0) = 0, which is affine with different slope along each radial lines.

Also, ∇f(x) is the only vector such that the relation (13.7). This means that a possible strategy to both
prove that f is differentiable and to obtain a formula for ∇f(x) is to show a relation of the form

f(x+ ε) = f(x) + 〈ε, g〉+ o(||ε||),

in which case one necessarily has ∇f(x) = g.
The following proposition shows that convexity is equivalent to the graph of the function being above its

tangents.

Proposition 42. If f is differentiable, then

f convex ⇔ ∀(x, x′), f(x) > f(x′) + 〈∇f(x′), x− x′〉.

Proof. One can write the convexity condition as

f((1− t)x+ tx′) 6 (1− t)f(x) + tf(x′) =⇒ f(x+ t(x′ − x))− f(x)

t
6 f(x′)− f(x)

hence, taking the limit t→ 0 one obtains

〈∇f(x), x′ − x〉 6 f(x′)− f(x).

For the other implication, we apply the right condition replacing (x, x′) by (x, xt
def.
= (1 − t)x + tx′) and

(x′, (1− t)x+ tx′)

f(x) > f(xt) + 〈∇f(xt), x− xt〉 = f(xt)− t〈∇f(xt), x− x′〉
f(x′) > f(xt) + 〈∇f(xt), x

′ − xt〉 = f(xt) + (1− t)〈∇f(xt), x− x′〉,

multiplying these inequality by respectively 1− t and t, and summing them, gives

(1− t)f(x) + tf(x′) > f(xt).

13.3.2 First Order Conditions

The main theoretical interest (we will see later that it also have algorithmic interest) of the gradient
vector is that it is a necessarily condition for optimality, as stated below.

Proposition 43. If x? is a local minimum of the function f (i.e. that f(x?) 6 f(x) for all x in some ball
around x?) then

∇f(x?) = 0.

Proof. One has for ε small enough and u fixed

f(x?) 6 f(x? + εu) = f(x?) + ε〈∇f(x?), u〉+ o(ε) =⇒ 〈∇f(x?), u〉 > o(1) =⇒ 〈∇f(x?), u〉 > 0.

So applying this for u and −u in the previous equation shows that 〈∇f(x?), u〉 = 0 for all u, and hence
∇f(x?) = 0.

Note that the converse is not true in general, since one might have ∇f(x) = 0 but x is not a local
mininimum. For instance x = 0 for f(x) = −x2 (here x is a maximizer) or f(x) = x3 (here x is neither a
maximizer or a minimizer, it is a saddle point), see Fig. 13.6. Note however that in practice, if ∇f(x?) = 0
but x is not a local minimum, then x? tends to be an unstable equilibrium. Thus most often a gradient-based
algorithm will converge to points with∇f(x?) = 0 that are local minimizers. The following proposition shows
that a much strong result holds if f is convex.

221

Figure 13.6: Function with local maxima/minima (left), saddle point (middle) and global minimum (right).

Proposition 44. If f is convex and x? a local minimum, then x? is also a global minimum. If f is
differentiable and convex,

x? ∈ argmin
x

f(x) ⇐⇒ ∇f(x?) = 0.

Proof. For any x, there exist 0 < t < 1 small enough such that tx+ (1− t)x? is close enough to x?, and so
since it is a local minimizer

f(x?) 6 f(tx+ (1− t)x?) 6 tf(x) + (1− t)f(x?) =⇒ f(x?) 6 f(x)

and thus x? is a global minimum.
For the second part, we already saw in (43) the ⇐ part. We assume that ∇f(x?) = 0. Since the graph

of x is above its tangent by convexity (as stated in Proposition 42),

f(x) > f(x?) + 〈∇f(x?), x− x?〉 = f(x?).

Thus in this case, optimizing a function is the same a solving an equation ∇f(x) = 0 (actually p
equations in p unknown). In most case it is impossible to solve this equation, but it often provides interesting
information about solutions x?.

13.3.3 Least Squares

The most important gradient formula is the one of the square loss (13.3), which can be obtained by
expanding the norm

f(x+ ε) =
1

2
||Ax− y +Aε||2 =

1

2
||Ax− y||+ 〈Ax− y, Aε〉+

1

2
||Aε||2

= f(x) + 〈ε, A>(Ax− y)〉+ o(||ε||).

Here, we have used the fact that ||Aε||2 = o(||ε||) and use the transpose matrix A>. This matrix is obtained
by exchanging the rows and the columns, i.e. A> = (Aj,i)

j=1,...,p
i=1,...,n, but the way it should be remember and

used is that it obeys the following swapping rule of the inner product,

∀ (u, v) ∈ Rp × Rn, 〈Au, v〉Rn = 〈u, A>v〉Rp .

Computing gradient for function involving linear operator will necessarily requires such a transposition step.
This computation shows that

∇f(x) = A>(Ax− y). (13.8)

This implies that solutions x? minimizing f(x) satisfies the linear system (A>A)x? = A>y. If A?A ∈ Rp×p

is invertible, then f has a single minimizer, namely

x? = (A>A)−1A>y. (13.9)

222

Figure 13.7: Left: point clouds (ai)i with associated PCA directions, right: quadratic part of f(x).

This shows that in this case, x? depends linearly on the data y, and the corresponding linear operator
(A>A)−1A? is often called the Moore-Penrose pseudo-inverse of A (which is not invertible in general, since
typically p 6= n). The condition that A>A is invertible is equivalent to ker(A) = {0}, since

A>Ax = 0 =⇒ ||Ax||2 = 〈A>Ax, x〉 = 0 =⇒ Ax = 0.

In particular, if n < p (under-determined regime, there is too much parameter or too few data) this can
never holds. If n > p and the features xi are “random” then ker(A) = {0} with probability one. In this
overdetermined situation n > p, ker(A) = {0} only holds if the features {ai}ni=1 spans a linear space Im(A>)
of dimension strictly smaller than the ambient dimension p.

13.3.4 Link with PCA

Let us assume the (ai)
n
i=1 are centered, i.e.

∑
i ai = 0. If this is not the case, one needs to replace

ai by ai − m where m
def.
= 1

n

∑n
i=1 ai ∈ Rp is the empirical mean. In this case, C

n = A>A/n ∈ Rp×p is
the empirical covariance of the point cloud (ai)i, it encodes the covariances between the coordinates of the
points. Denoting ai = (ai,1, . . . , ai,p)

> ∈ Rp (so that A = (ai,j)i,j) the coordinates, one has

∀ (k, `) ∈ {1, . . . , p}2, Ck,`
n

=
1

n

n∑

i=1

ai,kai,`.

In particular, Ck,k/n is the variance along the axis k. More generally, for any unit vector u ∈ Rp, 〈Cu, u〉/n >
0 is the variance along the axis u.

For instance, in dimension p = 2,

C

n
=

1

n

(∑n
i=1 a

2
i,1

∑n
i=1 ai,1ai,2∑n

i=1 ai,1ai,2
∑n
i=1 a

2
i,2

)
.

Since C is a symmetric, it diagonalizes in an ortho-basis U = (u1, . . . , up) ∈ Rp×p. Here, the vectors
uk ∈ Rp are stored in the columns of the matrix U . The diagonalization means that there exist scalars (the
eigenvalues) (λ1, . . . , λp) so that (1

nC)uk = λkuk. Since the matrix is orthogononal, UU> = U>U = Idp, and
equivalently U−1 = U>. The diagonalization property can be conveniently written as 1

nC = U diag(λk)U>.
One can thus re-write the covariance quadratic form in the basis U as being a separable sum of p squares

1

n
〈Cx, x〉 = 〈U diag(λk)U>x, x〉 = 〈diag(λk)(U>x), (U>x)〉 =

p∑

k=1

λk〈x, uk〉2. (13.10)

Here (U>x)k = 〈x, uk〉 is the coordinate k of x in the basis U . Since 〈Cx, x〉 = ||Ax||2, this shows that all
the eigenvalues λk > 0 are positive.

If one assumes that the eigenvalues are ordered λ1 > λ2 > . . . > λp, then projecting the points ai on the
first m eigenvectors can be shown to be in some sense the best linear dimensionality reduction possible (see

223

next paragraph), and it is called Principal Component Analysis (PCA). It is useful to perform compression
or dimensionality reduction, but in practice, it is mostly used for data visualization in 2-D (m = 2) and 3-D
(m = 3).

The matrix C/n encodes the covariance, so one can approximate the point cloud by an ellipsoid whose
main axes are the (uk)k and the width along each axis is ∝

√
λk (the standard deviations). If the data

are approximately drawn from a Gaussian distribution, whose density is proportional to exp(−1
2 〈C−1a, a〉),

then the fit is good. This should be contrasted with the shape of quadratic part 1
2 〈Cx, x〉 of f(x), since the

ellipsoid
{
x ; 1

n 〈Cx, x〉 6 1
}

has the same main axes, but the widths are the inverse 1/
√
λk. Figure 13.7

shows this in dimension p = 2.

13.3.5 Classification

We can do a similar computation for the gradient of the classification loss (13.4). Assuming that L is
differentiable, and using the Taylor expansion (13.7) at point −diag(y)Ax, one has

f(x+ ε) = L(−diag(y)Ax− diag(y)Aε)

= L(−diag(y)Ax) + 〈∇L(−diag(y)Ax), −diag(y)Aε〉+ o(|| diag(y)Aε||).

Using the fact that o(|| diag(y)Aε||) = o(||ε||), one obtains

f(x+ ε) = f(x) + 〈∇L(−diag(y)Ax), −diag(y)Aε〉+ o(||ε||)
= f(x) + 〈−A> diag(y)∇L(−diag(y)Ax), ε〉+ o(||ε||),

where we have used the fact that (AB)> = B>A> and that diag(y)> = diag(y). This shows that

∇f(x) = −A> diag(y)∇L(−diag(y)Ax).

Since L(z) =
∑
i `(zi), one has ∇L(z) = (`′(zi))ni=1. For instance, for the logistic classification method,

`(u) = log(1 + exp(u)) so that `′(u) = eu

1+eu ∈ [0, 1] (which can be interpreted as a probability of predicting
+1).

13.3.6 Chain Rule

One can formalize the previous computation, if f(x) = g(Bx) with B ∈ Rq×p and g : Rq → R, then

f(x+ ε) = g(Bx+Bε) = g(Bx) + 〈∇g(Bx), Bε〉+ o(||Bε||) = f(x) + 〈ε, B>∇g(Bx)〉+ o(||ε||),

which shows that
∇(g ◦B) = B> ◦ ∇g ◦B (13.11)

where “◦” denotes the composition of functions.
To generalize this to composition of possibly non-linear functions, one needs to use the notion of differ-

ential. For a function F : Rp → Rq, its differentiable at x is a linear operator ∂F (x) : Rp → Rq, i.e. it can
be represented as a matrix (still denoted ∂F (x)) ∂F (x) ∈ Rq×p. The entries of this matrix are the partial
differential, denoting F (x) = (F1(x), . . . , Fq(x)),

∀ (i, j) ∈ {1, . . . , q} × {1, . . . , p}, [∂F (x)]i,j
def.
=

∂Fi(x)

∂xj
.

The function F is then said to be differentiable at x if and only if one has the following Taylor expansion

F (x+ ε) = F (x) + [∂F (x)](ε) + o(||ε||). (13.12)

where [∂F (x)](ε) is the matrix-vector multiplication. As for the definition of the gradient, this matrix is the
only one that satisfies this expansion, so it can be used as a way to compute this differential in practice.

224

Figure 13.8: Left: First order Taylor expansion in 1-D and 2-D. Right: orthogonality of gradient and level
sets and schematic of the proof.

For the special case q = 1, i.e. if f : Rp → R, then the differential ∂f(x) ∈ R1×p and the gradient
∇f(x) ∈ Rp×1 are linked by equating the Taylor expansions (13.12) and (13.7)

∀ ε ∈ Rp, [∂f(x)](ε) = 〈∇f(x), ε〉 ⇔ [∂f(x)](ε) = ∇f(x)>.

The differential satisfies the following chain rule

∂(G ◦H)(x) = [∂G(H(x))]× [∂H(x)]

where “×” is the matrix product. For instance, if H : Rp → Rq and G = g : Rq 7→ R, then f = g ◦H : Rp → R
and one can compute its gradient as follow

∇f(x) = (∂f(x))> = ([∂g(H(x))]× [∂H(x)])
>

= [∂H(x)]> × [∂g(H(x))]> = [∂H(x)]> ×∇g(H(x)).

When H(x) = Bx is linear, one recovers formula (13.11).

13.4 Gradient Descent Algorithm

13.4.1 Steepest Descent Direction

The Taylor expansion (13.7) computes an affine approximation of the function f near x, since it can be
written as

f(z) = Tx(z) + o(||x− z||) where Tx(z)
def.
= f(x) + 〈∇f(x), z − x〉,

see Fig. 13.8. First order methods operate by locally replacing f by Tx.
The gradient ∇f(x) should be understood as a direction along which the function increases. This means

that to improve the value of the function, one should move in the direction −∇f(x). Given some fixed x,
let us look as the function f along the 1-D half line

τ ∈ R+ = [0,+∞[7−→ f(x− τ∇f(x)) ∈ R.

If f is differentiable at x, one has

f(x− τ∇f(x)) = f(x)− τ〈∇f(x), ∇f(x)〉+ o(τ) = f(x)− τ ||∇f(x)||2 + o(τ).

So there are two possibility: either ∇f(x) = 0, in which case we are already at a minimum (possibly a local
minimizer if the function is non-convex) or if τ is chosen small enough,

f(x− τ∇f(x)) < f(x)

which means that moving from x to x− τ∇f(x) has improved the objective function.

225

Figure 13.9: Influence of τ on the gradient descent (left) and optimal step size choice (right).

Remark 5 (Orthogonality to level sets). The level sets of f are the sets of point sharing the same value of
f , i.e. for any s ∈ R

Ls def.
= {x ; f(x) = s} .

At some x ∈ Rp, denoting s = f(x), then x ∈ Ls (x belong to its level set). The gradient vector ∇f(x)
is orthogonal to the level set (as shown on Fig. 13.8 right), and points toward level set of higher value
(which is consistent with the previous computation showing that it is a valid ascent direction). Indeed, lets
consider around x inside Ls a smooth curve of the form t ∈ R 7→ c(t) where c(0) = x. Then the function

h(t)
def.
= f(c(t)) is constant h(t) = s since c(t) belong to the level set. So h′(t) = 0. But at the same time, we

can compute its derivate at t = 0 as follow

h(t) = f(c(0) + tc′(0) + o(t)) = h(0) + δ〈c′(0), ∇f(c(0))〉+ o(t)

i.e. h′(0) = 〈c′(0), ∇f(x)〉 = 0, so that ∇f(x) is orthogonal to the tangent c′(0) of the curve c, which lies
in the tangent plane of Ls (as shown on Fig. 13.8, right). Since the curve c is arbitrary, the whole tangent
plane is thus orthogonal to ∇f(x).

Remark 6 (Local optimal descent direction). One can prove something even stronger, that among all possible

direction u with ||u|| = r, r ∇f(x)
||∇f(x)|| becomes the optimal one as r → 0 (so for very small step this is locally

the best choice), more precisely,
1

r
argmin
||u||=r

f(x+ u)
r→0−→ − ∇f(x)

||∇f(x)|| .

Indeed, introducing a Lagrange multiplier λ ∈ R for this constraint optimization problem, one obtains that

the optimal u satisfies ∇f(x + u) = λu and ||u|| = r. Thus u
r = ± ∇f(x+u)

||∇f(x+u)|| , and assuming that ∇f is

continuous, when ||u|| = r → 0, this converges to u
||u|| = ± ∇f(x)

||∇f(x)|| . The sign ± should be +1 to obtain a

maximizer and −1 for the minimizer.

13.4.2 Gradient Descent

The gradient descent algorithm reads, starting with some x0 ∈ Rp

xk+1
def.
= xk − τk∇f(xk) (13.13)

where τk > 0 is the step size (also called learning rate). For a small enough τk, the previous discussion shows
that the function f is decaying through the iteration. So intuitively, to ensure convergence, τk should be
chosen small enough, but not too small so that the algorithm is as fast as possible. In general, one use a fix
step size τk = τ , or try to adapt τk at each iteration (see Fig. 13.9).

Remark 7 (Greedy choice). Although this is in general too costly to perform exactly, one can use a “greedy”
choice, where the step size is optimal at each iteration, i.e.

τk
def.
= argmin

τ
h(τ)

def.
= f(xk − τ∇f(xk)).

226

Here h(τ) is a function of a single variable. One can compute the derivative of h as

h(τ + δ) = f(xk − τ∇f(xk)− δ∇f(xk)) = f(xk − τ∇f(xk))− 〈∇f(xk − τ∇f(xk)), ∇f(xk)〉+ o(δ).

One note that at τ = τk, ∇f(xk − τ∇f(xk)) = ∇f(xk+1) by definition of xk+1 in (18.2). Such an optimal
τ = τk is thus characterized by

h′(τk) = −〈∇f(xk), ∇f(xk+1)〉 = 0.

This means that for this greedy algorithm, two successive descent direction ∇f(xk) and ∇f(xk+1) are
orthogonal (see Fig. 13.9).

Remark 8 (Armijo rule). Instead of looking for the optimal τ , one can looks for an admissible τ which
guarantees a large enough decay of the functional, in order to ensure convergence of the descent. Given some
parameter 0 < α < 1 (which should be actually smaller than 1/2 in order to ensure a sufficient decay), one
consider a τ to be valid for a descent direction dk (for instance dk = −∇f(xk)) if it satisfies

f(xk + τdk) 6 f(xk) + ατ〈dk, ∇f(xk)〉 (13.14)

For small τ , one has f(xk + τdk) = f(xk) + τ〈dk, ∇f(xk)〉, so that, assuming dk is a valid descent direction
(i.e 〈dk, ∇f(xk)〉 < 0), condition (13.14) will always be satisfied for τ small enough (if f is convex, the set
of allowable τ is of the form [0, τmax]). In practice, one perform gradient descent by initializing τ very large,
and decaying it τ ← βτ (for β < 1) until (13.14) is satisfied. This approach is often called “backtracking”
line search.

13.5 Convergence Analysis

13.5.1 Quadratic Case

Convergence analysis for the quadratic case. We first analyze this algorithm in the case of the
quadratic loss, which can be written as

f(x) =
1

2
||Ax− y||2 =

1

2
〈Cx, x〉 − 〈x, b〉+ cst where

{
C

def.
= A>A ∈ Rp×p,

b
def.
= A>y ∈ Rp.

We already saw that in (13.9) if ker(A) = {0}, which is equivalent to C being invertible, then there exists a
single global minimizer x? = (A>A)−1A>y = C−1u.

Note that a function of the form 1
2 〈Cx, x〉 − 〈x, b〉 is convex if and only if the symmetric matrix C is

positive semi-definite, i.e. that all its eigenvalues are non-negative (as already seen in (13.10)).

Proposition 45. For f(x) = 〈Cx, x〉 − 〈b, x〉 (C being symmetric semi-definite positive) with the eigen-
values of C upper-bounded by L and lower-bounded by µ > 0, assuming there exists (τmin, τmax) such that

0 < τmin 6 τ` 6 τ̃max <
2

L

then there exists 0 6 ρ̃ < 1 such that

||xk − x?|| 6 ρ̃`||x0 − x?||. (13.15)

The best rate ρ̃ is obtained for

τ` =
2

L+ µ
=⇒ ρ̃

def.
=

L− µ
L+ µ

= 1− 2ε

1 + ε
where ε

def.
= µ/L. (13.16)

227

Figure 13.10: Contraction constant h(τ) for a quadratic function (right).

Proof. One iterate of gradient descent reads

xk+1 = xk − τ`(Cxk − b).

Since the solution x? (which by the way is unique by strict convexity) satisfy the first order condition
Cx? = b, it gives

xk+1 − x? = xk − x? − τ`C(xk − x?) = (Idp − τ`C)(xk − x?).
If S ∈ Rp×p is a symmetric matrix, one has

||Sz|| 6 ||S||op||z|| where ||S||op
def.
= max

k
|λk(S)|,

where λk(S) are the eigenvalues of S and σk(S)
def.
= |λk(S)| are its singular values. Indeed, S can be

diagonalized in an orthogonal basis U , so that S = U diag(λk(S))U>, and S>S = S2 = U diag(λk(S)2)U>

so that

||Sz||2 = 〈S>Sz, z〉 = 〈U diag(λk)U>z, z〉 = 〈diag(λ2
k)U>z, U>z〉

=
∑

i

λ2
k(U>z)2

k 6 max
k

(λ2
k)||U>z||2 = max

k
(λ2
k)||z||2.

Applying this to S = Idp − τ`C, one has

h(τ)
def.
= ||Idp − τ`C||op = max

k
|λk(Idp − τ`C)| = max

k
|1− τ`λk(C)| = max(|1− τ`σmax(C)|, |1− τσmin(C)|)

For a quadratic function, one has σmin(C) = µ, σmax(C) = L. Figure 13.10, right, shows a display of h(τ).
One has that for 0 < τ < 2/L, h(τ) < 1. The optimal value is reached at τ? = 2

L+µ and then

h(τ?) =

∣∣∣∣1−
2L

L+ µ

∣∣∣∣ =
L− µ
L+ µ

.

Note that when the condition number ξ
def.
= µ/L � 1 is small (which is the typical setup for ill-posed

problems), then the contraction constant appearing in (13.16) scales like

ρ̃ ∼ 1− 2ξ. (13.17)

The quantity ε in some sense reflects the inverse-conditioning of the problem. For quadratic function, it
indeed corresponds exactly to the inverse of the condition number (which is the ratio of the largest to
smallest singular value). The condition number is minimum and equal to 1 for orthogonal matrices.

228

The error decay rate (13.15), although it is geometrical O(ρk) is called a “linear rate” in the optimization
literature. It is a “global” rate because it hold for all k (and not only for large enough k).

If ker(A) 6= {0}, then C is not definite positive (some of its eigenvalues vanish), and the set of solution is
infinite. One can however still show a linear rate, by showing that actually the iterations xk are orthogonal to
ker(A) and redo the above proof replacing µ by the smaller non-zero eigenvalue of C. This analysis however
leads to a very poor rate ρ (very close to 1) because µ can be arbitrary close to 0. Furthermore, such a proof
does not extends to non-quadratic functions. It is thus necessary to do a different theoretical analysis, which
only shows a sublinear rate on the objective function f itself rather than on the iterates xk.

Proposition 46. For f(x) = 〈Cx, x〉 − 〈b, x〉, assuming the eigenvalue of C are bounded by L, then if
0 < τk = τ < 1/L is constant, then

f(xk)− f(x?) 6 dist(x0, argmin f)2

τ8k
.

where
dist(x0, argmin f)

def.
= min

x?∈argmin f
||x0 − x?||.

Proof. We have Cx? = b for any minimizer x? and xk+1 = xk − τ(Cxk − b) so that as before

xk − x? = (Idp − τC)k(x0 − x?).

Now one has
1

2
〈C(xk − x?), xk − x?〉 =

1

2
〈Cxk, xk〉 − 〈Cxk, x?〉+

1

2
〈Cx?, x?〉

and we have 〈Cxk, x?〉 = 〈xk, Cx?〉 = 〈xk, b〉 and also 〈Cx?, x?〉 = 〈x?, b〉 so that

1

2
〈C(xk − x?, xk − x?〉 =

1

2
〈Cxk, xk〉 − 〈xk, b〉+

1

2
〈x?, b〉 = f(xk) +

1

2
〈x?, b〉.

Note also that

f(x?) =
1

2

Cx?

x?
− 〈x?, b〉 =

1

2
〈x?, b〉 − 〈x?, b〉 = −1

2
〈x?, b〉.

This shows that
1

2
〈C(xk − x?, xk − x?〉 = f(xk)− f(x?).

This thus implies

f(xk)− f(x?) =
1

2
〈(Idp − τC)kC(Idp − τC)k(x0 − x?), x0 − x?〉 6

σmax(Mk)

2
||x0 − x?||2

where we have denoted
Mk

def.
= (Idp − τC)kC(Idp − τC)k.

Since x? can be chosen arbitrary, one can replace ||x0 − x?|| by dist(x0, argmin f). One has, for any `, the
following bound

σ`(Mk) = σ`(C)(1− τσ`(C))2k 6 1

τ4k

since one can show that (setting t = τσ`(C) 6 1 because of the hypotheses)

∀ t ∈ [0, 1], (1− t)2kt 6 1

4k
.

Indeed, one has

(1− t)2kt 6 (e−t)2kt =
1

2k
(2kt)e−2kt 6 1

2k
sup
u>0

ue−u =
1

2ek
6 1

4k
.

229

13.5.2 General Case

We detail the theoretical analysis of convergence for general smooth convex functions. The general idea
is to replace the linear operator C involved in the quadratic case by the second order derivative (the hessian
matrix).

Hessian. If the function is twice differentiable along the axes, the hessian matrix is

(∂2f)(x) =

(
∂2f(x)

∂xi∂xj

)

16i,j6p

∈ Rp×p.

Where recall that ∂2f(x)
∂xi∂xj

is the differential along direction xj of the function x 7→ ∂f(x)
∂xi

. We also recall that

∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

so that ∂2f(x) is a symmetric matrix.

A differentiable function f is said to be twice differentiable at x if

f(x+ ε) = f(x) + 〈∇f(x), ε〉+
1

2
〈∂2f(x)ε, ε〉+ o(||ε||2). (13.18)

This means that one can approximate f near x by a quadratic function. The hessian matrix is uniquely
determined by this relation, so that if one is able to write down an expansion with some matrix H

f(x+ ε) = f(x) + 〈∇f(x), ε〉+
1

2
〈Hε, ε〉+ o(||ε||2).

then equating this with the expansion (13.18) ensure that ∂2f(x) = H. This is thus a way to actually
determine the hessian without computing all the p2 partial derivative. This Hessian can equivalently be
obtained by performing an expansion (i.e. computing the differential) of the gradient since

∇f(x+ ε) = ∇f(x) + [∂2f(x)](ε) + o(||ε||)

where [∂2f(x)](ε) ∈ Rp denotes the multiplication of the matrix ∂2f(x) with the vector ε.
One can show that a twice differentiable function f on Rp is convex if and only if for all x the symmetric

matrix ∂2f(x) is positive semi-definite, i.e. all its eigenvalues are non-negative. Furthermore, if these
eigenvalues are strictly positive then f is strictly convex (but the converse is not true, for instance x4 is
strictly convex on R but its second derivative vanishes at x = 0).

For instance, for a quadratic function f(x) = 〈Cx, x〉 − 〈x, u〉, one has ∇f(x) = Cx − u and thus
∂2f(x) = C (which is thus constant). For the classification function, one has

∇f(x) = −A> diag(y)∇L(−diag(y)Ax).

and thus

∇f(x+ ε) = −A> diag(y)∇L(−diag(y)Ax−− diag(y)Aε)

= ∇f(x)−A> diag(y)[∂2L(−diag(y)Ax)](−diag(y)Aε)

Since ∇L(u) = (`′(ui)) one has ∂2L(u) = diag(`′′(ui)). This means that

∂2f(x) = A> diag(y)× diag(`′′(− diag(y)Ax))× diag(y)A.

One verifies that this matrix is symmetric and positive if ` is convex and thus `′′ is positive.

Remark 9 (Second order optimality condition). The first use of Hessian is to decide wether a point x?

with ∇f(x?) is a local minimum or not. Indeed, if ∂2f(x?) is a positive matrix (i.e. its eigenvalues are
strictly positive), then x? is a strict local minimum. Note that if ∂2f(x?) is only non-negative (i.e. some its
eigenvalues might vanish) then one cannot deduce anything (such as for instance x3 on R). Conversely, if x?

is a local minimum then ∂2f(x)

230

Remark 10 (Second order algorithms). A second use, is to be used in practice to define second order method
(such as Newton’s algorithm), which converge faster than gradient descent, but are more costly. The gener-
alized gradient descent reads

xk+1 = xk −Hk∇f(xk)

where Hk ∈ Rp×p is a positive symmetric matrix. One recovers the gradient descent when using Hk = τkIdp,
and Newton’s algorithm corresponds to using the inverse of the Hessian Hk = [∂2f(xk)]−1. Note that

f(xk) = f(xk)− 〈Hk∇f(xk), ∇f(xk)〉+ o(||Hk∇f(xk)||).
Since Hk is positive, if xk is not a minimizer, i.e. ∇f(xk) 6= 0, then 〈Hk∇f(xk), ∇f(xk)〉 > 0. So if Hk is
small enough one has a valid descent method in the sense that f(xk+1) < f(xk). It is not the purpose of
this chapter to explain in more detail these type of algorithm.

The last use of Hessian, that we explore next, is to study theoretically the convergence of the gradient
descent. One simply needs to replace the boundedness of the eigenvalue of C of a quadratic function by a
boundedness of the eigenvalues of ∂2f(x) for all x. Roughly speaking, the theoretical analysis of the gradient
descent for a generic function is obtained by applying this approximation and using the proofs of the previous
section.

Smoothness and strong convexity. One also needs to quantify the
smoothness of f . This is enforced by requiring that the gradient is L-Lipschitz,
i.e.

∀ (x, x′) ∈ (Rp)2, ||∇f(x)−∇f(x′)|| 6 L||x− x′||. (RL)

In order to obtain fast convergence of the iterates themselve, it is needed that
the function has enough “curvature” (i.e. is not too flat), which corresponds
to imposing that f is µ-strongly convex

∀ (x, x′),∈ (Rp)2, 〈∇f(x)−∇f(x′), x− x′〉 > µ||x− x′||2. (Sµ)

The following proposition express these conditions as constraints on the hessian for C2 functions.

Proposition 47. Conditions (RL) and (Sµ) imply

∀ (x, x′), f(x′) + 〈∇f(x), x′ − x〉+
µ

2
||x− x′||2 6 f(x) 6 f(x′) + 〈∇f(x′), x′ − x〉+

L

2
||x− x′||2. (13.19)

If f is of class C2, conditions (RL) and (Sµ) are equivalent to

∀x, µIdp � ∂2f(x) � LIdp (13.20)

where ∂2f(x) ∈ Rp×p is the Hessian of f , and where � is the natural order on symmetric matrices, i.e.

A � B ⇐⇒ ∀x ∈ Rp, 〈Au, u〉 6 〈Bu, u〉.
Proof. We prove (13.19), using Taylor expansion with integral remain

f(x′)− f(x) =

∫ 1

0

〈∇f(xt), x
′ − x〉dt = 〈∇f(x), x′ − x〉+

∫ 1

0

〈∇f(xt)−∇f(x), x′ − x〉dt

where xt
def.
= x+ t(x′ − x). Using Cauchy-Schwartz, and then the smoothness hypothesis (RL)

f(x′)− f(x) 6 〈∇f(x), x′ − x〉+

∫ 1

0

L||xt − x||||x′ − x||dt 6 〈∇f(x), x′ − x〉+ L||x′ − x||2
∫ 1

0

tdt

which is the desired upper-bound. Using directly (Sµ) gives

f(x′)− f(x) = 〈∇f(x), x′ − x〉+

∫ 1

0

〈∇f(xt)−∇f(x),
xt − x
t
〉dt > 〈∇f(x), x′ − x〉+ µ

∫ 1

0

1

t
||xt − x||2dt

which gives the desired result since ||xt − x||2/t = t||x′ − x||2.

231

The relation (13.19) shows that a smooth (resp. strongly convex) functional is bounded by below (resp.
above) by a quadratic tangential majorant (resp. minorant).

Condition (13.20) thus reads that the singular values of ∂2f(x) should be contained in the interval [µ,L].
The upper bound is also equivalent to ||∂2f(x)||op 6 L where || · ||op is the operator norm, i.e. the largest
singular value. In the special case of a quadratic function of the form 〈Cx, x〉−〈b, x〉 (recall that necessarily
C is semi-definite symmetric positive for this function to be convex), ∂2f(x) = C is constant, so that [µ,L]
can be chosen to be the range of the eigenvalues of C.

Convergence analysis. We now give convergence theorem for a general convex function. On contrast to
quadratic function, if one does not assumes strong convexity, one can only show a sub-linear rate on the
function values (and no rate at all on the iterates themselves). It is only when one assume strong convexity
that linear rate is obtained. Note that in this case, the solution of the minimization problem is not necessarily
unique.

Theorem 24. If f satisfy conditions (RL), assuming there exists (τmin, τmax) such that

0 < τmin 6 τ` 6 τmax <
2

L
,

then xk converges to a solution x? of (18.1) and there exists C > 0 such that

f(xk)− f(x?) 6 C

`+ 1
. (13.21)

If furthermore f is µ-strongly convex, then there exists 0 6 ρ < 1 such that ||xk − x?|| 6 ρ`||x0 − x?||.
Proof. In the case where f is not strongly convex, we only prove (13.21) since the proof that xk converges
is more technical. Note indeed that if the minimizer x? is non-unique, then it might be the case that the
iterate xk “cycle” while approaching the set of minimizer, but actually convexity of f prevents this kind of
pathological behavior. For simplicity, we do the proof in the case τ` = 1/L, but it extends to the general
case. The L-smoothness property imply (13.19), which reads

f(xk+1) 6 f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2.

Using the fact that xk+1 − xk = − 1
L∇f(xk), one obtains

f(xk+1) 6 f(xk)− 1

L
||∇f(xk)||2 +

1

2L
||∇f(xk)||2 6 f(xk)− 1

2L
||∇f(xk)||2 (13.22)

This shows that (f(xk))` is a decaying sequence. By convexity

f(xk) + 〈∇f(xk), x? − xk〉 6 f(x?)

and plugging this in (13.22) shows

f(xk+1) 6 f(x?)− 〈∇f(xk), x? − xk〉 −
1

2L
||∇f(xk)||2 (13.23)

= f(x?) +
L

2

(
||xk − x?||2 − ||xk − x? −

1

L
∇f(xk)||2

)
(13.24)

= f(x?) +
L

2

(
||xk − x?||2 − ||x? − xk+1||2

)
. (13.25)

Summing these inequalities for ` = 0, . . . , k, one obtains

k∑

`=0

f(xk+1)− (k + 1)f(x?) 6 L

2

(
||x0 − x?||2 − ||x(k+1) − x?||2

)

232

and since f(xk+1) is decaying
∑k
`=0 f(xk+1) > (k + 1)f(x(k+1)), thus

f(x(k+1))− f(x?) 6 L||x0 − x?||2
2(k + 1)

which gives (13.21) for C
def.
= L||x0 − x?||2/2.

If we now assume f is µ-strongly convex, then, using ∇f(x?) = 0, one has µ
2 ||x?− x||2 6 f(x)− f(x?) for

all x. Re-manipulating (13.25) gives

µ

2
||xk+1 − x?||2 6 f(xk+1)− f(x?) 6 L

2

(
||xk − x?||2 − ||x? − xk+1||2

)
,

and hence

||xk+1 − x?|| 6
√

L

L+ µ
||xk+1 − x?||, (13.26)

which is the desired result.

Note that in the low conditioning setting ε� 1, one retrieve a dependency of the rate (13.26) similar to
the one of quadratic functions (13.17), indeed

√
L

L+ µ
= (1 + ε)−

1
2 ∼ 1− 1

2
ε.

13.5.3 Acceleration

The previous analysis shows that for L-smooth functions (i.e. with a hessian uniformly bounded by L,
||∂2f(x)||op 6 L), the gradient descent with fixed step size converges with a speed on the function value
f(xk) − min f = O(1/k). Even using various line search strategies, it is not possible to improve over this
rate. A way to improve this rate is by introducing some form of “momentum” extrapolation and rather
consider a pair of variables (xk, yk) with the following update rule, for some step size s (which should be
smaller than 1/L) {

xk+1 = yk − s∇f(yk)
yk+1 = xk+1 + βk(xk+1 − xk)

where the extrapolation parameter satisfies 0 < βk < 1. The case of a fixed βk = β corresponds to the
so-called “heavy-ball” method. In order for the method to bring an improvement for the 1/k “worse case”
rate (which does not means it improves for all possible case), one needs to rather use increasing momentum
βk → 1, one popular choice being

βk
k − 1

k + 2
∼ 1− 1

k
.

This corresponds to the so-called “Nesterov” acceleration (although Nesterov used a slightly different choice,
with the similar 1− 1/k asymptotic behavior).

When using s 6 1/L, one can show that f(xk)−min f = O(||x0−x?||
sk2), so that in the worse case scenario,

the convergence rate is improved. Note however that in some situation, acceleration actually deteriorates the
rates. For instance, if the function is strongly convex (and even on the simple case f(x) = ||x||2), Nesterov
acceleration does not enjoy linear convergence rate.

A way to interpret this scheme is by looking at a time-continuous ODE limit when s → 0. On the
contrary to the classical gradient descent, the step size here should be taker as τ =

√
s so that the time

evolves as t =
√
sk. The update reads

xk+1 − xk
τ

= (1− 3/k)
xk − xk−1

τ
−∇f(yk)

233

which can be re-written as

xk+1 + xk−1 − 2xk
τ2

− 3

kτ

xk − xk−1

τ
+ τ∇f(yk) = 0.

Assuming (xk, yk)→ (x(t), y(t)), one obtains in the limit the following second order ODE

x′′(t) +
3

t
x′(t) +∇f(x(t)) = 0 with

{
x(0) = x0,
x′(0) = 0.

This corresponds to the movement of a ball in the potential field f , where the term 3
tx
′(t) plays the role

of a friction which vanishes in the limit. So for small t, the method is similar to a gradient descent x′ =
−∇f(x), while for large t, it ressemble a Newtonian evolution x′′ = −∇f(x) (which keeps oscillating without
converging). The momentum decay rate 3/t is very important, it is the only rule which enable the speed
improvement from 1/k to 1/k2.

234

Chapter 14

Optimization & Machine Learning:
Advanced Topics

14.1 Regularization

When the number n of sample is not large enough with respect to the dimension p of the model, it makes
sense to regularize the empirical risk minimization problem.

14.1.1 Penalized Least Squares

For the sake of simplicity, we focus here on regression and consider

min
x∈Rp

fλ(x)
def.
=

1

2
||Ax− y||2 + λR(x) (14.1)

where R(x) is the regularizer and λ > 0 the regularization parameter. The regularizer enforces some prior
knowledge on the weight vector x (such as small amplitude or sparsity, as we detail next) and λ needs to be
tuned using cross-validation.

We assume for simplicity that R is positive and coercive, i.e. R(x)→ +∞ as ||x|| → +∞. The following
proposition that in the small λ limit, the regularization select a sub-set of the possible minimizer. This is
especially useful when ker(A) 6= 0, i.e. the equation Ax = y has an infinite number of solutions.

Proposition 48. If (xλk)k is a sequence of minimizers of fλ, then this sequence is bounded, and any
accumulation x? is a solution of the constrained optimization problem

min
Ax=y

R(x). (14.2)

Proof. Let x0 be so that Ax0 = y, then by optimality of xλk

1

2
||Axλk − y||2 + λkR(xλk) 6 λkR(x0). (14.3)

Since all the term are positive, one has R(xλk) 6 R(x0) so that (xλk)k is bounded by coercivity of R. Then
also ||Axλk − y|| 6 λkR(x0), and passing to the limit, one obtains Ax? = y. And passing to the limit in
R(xλk) 6 R(x0) one has R(x?) 6 R(x0) which shows that x? is a solution of (14.2).

14.1.2 Ridge Regression

Ridge regression is by far the most popular regularizer, and corresponds to using R(x) = ||x||2Rp . Since it
is strictly convex, the solution of (14.1) is unique

xλ
def.
= argmin

x∈Rp
fλ(x) =

1

2
||Ax− y||2Rn + λ||x||2Rp .

235

One has

∇fλ(x) = A>(Axλ − y) + λxλ = 0

so that xλ depends linearly on y and can be obtained by solving a linear system. The following proposition
shows that there are actually two alternate formula.

Proposition 49. One has

xλ = (A>A+ λIdp)
−1A>y, (14.4)

= A>(AA> + λIdn)−1y. (14.5)

Proof. Denoting B
def.
= (A>A + λIdp)

−1A> and C
def.
= A>(AA> + λIdn)−1, one has (A>A + λIdp)B = A>

while

(A>A+ λIdp)C = (A>A+ λIdp)A
>(AA> + λIdn)−1 = A>(AA> + λIdn)(AA> + λIdn)−1 = A>.

Since A>A+ λIdp is invertible, this gives the desired result.

The solution of these linear systems can be computed using either a direct method such as Cholesky
factorization or an iterative method such as a conjugate gradient (which is vastly superior to the vanilla
gradient descent scheme).

If n > p, then one should use (14.4) while if n < p one should rather use (14.5).

Pseudo-inverse. As λ→ 0, then xλ → x0 which is, using (14.2)

argmin
Ax=y

||x||.

If ker(A) = {0} (overdetermined setting), A>A ∈ Rp×p is an invertible matrix, and (A>A + λIdp)
−1 →

(A>A)−1, so that

x0 = A+y where A+ def.
= (A>A)−1A>.

Conversely, if ker(A>) = {0}, or equivalently Im(A) = Rn (undertermined setting) then one has

x0 = A+y where A+ def.
= A>(AA>)−1.

In the special case n = p and A is invertible, then both definitions of A+ coincide, and A+ = A−1. In the
general case (where A is neither injective nor surjective), A+ can be computed using the Singular Values
Decomposition (SVD). The matrix A+ is often called the Moore-Penrose pseudo-inverse.

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 14.1: `q balls {x ;
∑
k |xk|q 6 1} for varying q.

236

14.1.3 Lasso

The Lasso corresponds to using a `1 penalty

R(x) = ||x||1 def.
=

p∑

k=1

|xk|.

The underlying idea is that solutions xλ of a Lasso problem

xλ ∈ argmin
x∈Rp

fλ(x) =
1

2
||Ax− y||2Rn + λ||x||1

are sparse, i.e. solutions xλ (which might be non-unique) have many zero entries. To get some insight about
this, Fig. 14.1 display the `q “balls” which shrink toward the axes as q → 0 (thus enforcing more sparsity)
but are non-convex for q < 1.

This can serve two purposes: (i) one knows before hand that the solution is expected to be sparse, which
is the case for instance in some problems in imaging, (ii) one want to perform model selection by pruning
some of the entries in the feature (to have simpler predictor, which can be computed more efficiently at test
time, or that can be more interpretable). For typical ML problems though, the performance of the Lasso
predictor is usually not better than the one obtained by Ridge.

Minimizing f(x) is still a convex problem, but R is non-smooth, so that one cannot use a gradient descent.
Section 14.1.4 shows how to modify the gradient descent to cope with this issue. In general, solutions xλ
cannot be computed in closed form, excepted when the design matrix A is orthogonal.

Figure 14.2: Evolution with λ of the function F (x)
def.
= 1

2 || · −y||2 + λ| · |.

Proposition 50. When n = p and A = Idn, one has

argmin
x∈Rp

1

2
||x− y||2 + λ||x1|| = Sλ(x) where Sλ(x) = (sign(xk) max(|xk| − λ, 0))k

Proof. One has fλ(x) =
∑
k

1
2 (xk − yk)2 + λ|xk|, so that one needs to find the minimum of the 1-D function

x ∈ R 7→ 1
2 (x− y)2 + λ|x|. We can do this minimization “graphically” as shown on Fig. 14.2. For x > 0, one

has F ′(x) = x− y + λ wich is 0 at x = y − λ. The minimum is at x = y − λ for λ 6 y, and stays at 0 for all
λ > y. The problem is symmetric with respect to the switch x 7→ −x.

Here, Sλ is the celebrated soft-thresholding non-linear function.

14.1.4 Iterative Soft Thresholding

We now derive an algorithm using a classical technic of surrogate function minimization. We aim at
minimizing

f(x)
def.
=

1

2
||y −Ax||2 + λ||x||1

237

and we introduce for any fixed x′ the function

fτ (x, x′)
def.
= f(x)− 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2.

We notice that fτ (x, x) = 0 and one the quadratic part of this function reads

K(x, x′)
def.
= −1

2
||Ax−Ax′||2 +

1

2τ
||x− x′|| = 1

2
〈
(

1

τ
IdN −A>A

)
(x− x′), x− x′〉.

This quantity K(x, x′) is positive if λmax(A>A) 6 1/τ (maximum eigenvalue), i.e. τ 6 1/||A||2op, where we
recall that ||A||op = σmax(A) is the operator (algebra) norm. This shows that fτ (x, x′) is a valid surrogate
functional, in the sense that

f(x) 6 fτ (x, x′), fτ (x, x′) = 0, and f(·)− fτ (·, x′) is smooth.

We also note that this majorant fτ (·, x′) is convex. This leads to define

xk+1
def.
= argmin

x
fτ (x, xk) (14.6)

which by construction satisfies

f(xk+1) 6 f(xk).

Proposition 51. The iterates xk defined by (14.6) satisfy

xk+1 = Sλτ
(
xk − τA>(Axk − y)

)
(14.7)

where Sλ(x) = (sλ(xm))m where sλ(r) = sign(r) max(|r| − λ, 0) is the soft thresholding operator.

Proof. One has

fτ (x, x′) =
1

2
||Ax− y||2 − 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2 + λ||x||1

= C +
1

2
||Ax||2 − 1

2
||Ax||2 +

1

2τ
||x||2 − 〈Ax, y〉+ 〈Ax, Ax′〉 − 1

τ
〈x, x′〉+ λ||x||1

= C +
1

2τ
||x||2 + 〈x, −A>y +AA>x′ − 1

τ
x′〉+ λ||x||1

= C ′ +
1

τ

(
1

2
||x− (x′ − τA>(Ax′ − y))||2 + τλ||x||1.

)

Proposition (50) shows that the minimizer of fτ (x, x′) is thus indeed Sλτ (x′− τA>(Ax′−y)) as claimed.

Equation (14.7) defines the iterative soft-thresholding algorithm. It follows from a valid convex surrogate
function if τ 6 1/||A||2, but one can actually shows that it converges to a solution of the Lasso as soon as
τ < 2/||A||2, which is exactly as for the classical gradient descent.

14.2 Stochastic Optimization

We detail some important stochastic Gradient Descent methods, which enable to perform optimization
in the setting where the number of samples n is large and even infinite.

238

14.2.1 Minimizing Sums and Expectation

A large class of functionals in machine learning can be expressed as minimizing large sums of the form

min
x∈Rp

f(x)
def.
=

1

n

n∑

i=1

fi(x) (14.8)

or even expectations of the form

min
x∈Rp

f(x)
def.
= Ez∼π(f(x, z)) =

∫

Z
f(x, z)dπ(z). (14.9)

Problem (14.8) can be seen as a special case of (14.9), when using a discrete empirical uniform measure
π =

∑n
i=1 δi and setting f(x, i) = fi(x). One can also viewed (14.8) as a discretized “empirical” version

of (14.9) when drawing (zi)i i.i.d. according to z and defining fi(x) = f(x, zi). In this setup, (14.8) converges
to (14.9) as n→ +∞.

A typical example of such a class of problems is empirical risk minimization for linear model, where in
these cases

fi(x) = `(〈ai, x〉, yi) and f(x, z) = `(〈a, x〉, y) (14.10)

for z = (a, y) ∈ Z = (A = Rp) × Y (typically Y = R or Y = {−1,+1} for regression and classification),
where ` is some loss function. We illustrate below the methods on binary logistic classification, where

L(s, y)
def.
= log(1 + exp(−sy)). (14.11)

But this extends to arbitrary parametric models, and in particular deep neural networks.
While some algorithms (in particular batch gradient descent) are specific to finite sums (14.8), the

stochastic methods we detail next work verbatim (with the same convergence guarantees) in the expectation
case (14.9). For the sake of simplicity, we however do the exposition for the finite sums case, which is
sufficient in the vast majority of cases. But one should keep in mind that n can be arbitrarily large, so it is
not acceptable in this setting to use algorithms whose complexity per iteration depend on n.

If the functions fi(x) are very similar (the extreme case being that they are all equal), then of course
there is a gain in using stochastic optimization (since in this case, ∇fi ≈ ∇f but ∇fi is n times cheaper).
But in general stochastic optimization methods are notÂ necessarily faster than batch gradient descent. If
n is not too large so that one afford the price of doing a few non-stochastic iterations, then deterministic
methods can be faster. But if n is so large that one cannot do even a single deterministic iteration, then
stochastic methods allow one to have a fine grained scheme by breaking the cost of determinstic iterations
in smaller chunks. Another advantage is that they are quite easy to parallelize.

14.2.2 Batch Gradient Descent (BGD)

The usual deterministic (batch) gradient descent (BGD) is studied in details in Section 13.4. Its iterations
read

xk+1 = xk − τk∇f(xk)

and the step size should be chosen as 0 < τmin < τk < τmax
def.
= 2/L where L is the Lipschitz constant of the

gradient ∇f . In particular, in this deterministic setting, this step size should not go to zero and this ensures
quite fast convergence (even linear rates if f is strongly convex).

The computation of the gradient in our setting reads

∇f(x) =
1

n

n∑

i=1

∇fi(x) (14.12)

so it typically has complexity O(np) if computing ∇fi has linear complexity in p.

239

200 400 600 800 1000 1200
0.56

0.58

0.6

0.62

E(wl)

200 400 600 800 1000 1200

-5

-4

-3

-2

log(E(wl) - min E)

200 400 600 800 1000 1200
0.56

0.58

0.6

0.62

E(wl)

200 400 600 800 1000 1200

-5

-4

-3

-2

log(E(wl) - min E)

f(xk) log10(f(xk)− f(x?))

Figure 14.3: Evolution of the error of the BGD for logistic classification.

For ERM-type functions of the form (14.10), one can do the Taylor expansion of fi

fi(x+ ε) = `(〈ai, x〉+ 〈ai, ε〉, yi) = `(〈ai, x〉, yi) + `′(〈ai, x〉, yi)〈ai, ε〉+ o(||ε||)
= fi(x) + 〈`′(〈ai, x〉, yi)ai, x〉+ o(||ε||),

where `(y, y′) ∈ R is the derivative with respect to the first variable, i.e. the gradient of the map y ∈ R 7→
L(y, y′) ∈ R. This computation shows that

∇fi(x) = `′(〈ai, x〉, yi)ai. (14.13)

For the logistic loss, one has

L′(s, y) = −s e−sy

1 + e−sy
.

14.2.3 Stochastic Gradient Descent (SGD)

Figure 14.4: Unbiased gra-
dient estimate

For very large n, computing the full gradient ∇f as in (14.12) is prohibitive.
The idea of SGD is to trade this exact full gradient by an inexact proxy using a
single functional fi where i is drawn uniformly at random. The main idea that
makes this work is that this sampling scheme provides an unbiased estimate of
the gradient, in the sense that

Ei∇fi(x) = ∇f(x) (14.14)

where i is a random variable distributed uniformly in {1, . . . , n}.
Starting from some x0,the iterations of stochastic gradient descent (SGD)

read
xk+1 = xk − τk∇fi(k)(xk)

where, for each iteration index k, i(k) is drawn uniformly at random in {1, . . . , n}. It is important that the
iterates xk+1 are thus random vectors, and the theoretical analysis of the method thus studies wether this
sequence of random vectors converges (in expectation or in probability for instance) toward a deterministic
vector (minimizing f), and at which speed.

Figure 14.5:
Schematic view
of SGD iterates

Note that each step of a batch gradient descent has complexity O(np), while a step
of SGD only has complexity O(p). SGD is thus advantageous when n is very large, and
one cannot afford to do several passes through the data. In some situation, SGD can
provide accurate results even with k � n, exploiting redundancy between the samples.

A crucial question is the choice of step size schedule τk. It must tends to 0 in order
to cancel the noise induced on the gradient by the stochastic sampling. But it should
not go too fast to zero in order for the method to keep converging.

A typical schedule that ensures both properties is to have asymptotically τk ∼ k−1

for k → +∞. We thus propose to use

τk
def.
=

τ0
1 + k/k0

(14.15)

240

Figure 14.6: Display of a large number of trajectories k 7→ xk ∈ R generated by several runs of SGD. On
the top row, each curve is a trajectory, and the bottom row displays the corresponding density.

where k0 indicates roughly the number of iterations serving as a “warmup” phase.
Figure 14.6 shows a simple 1-D example to minimize f1(x) + f2(x) for x ∈ R and

f1(x) = (x−1)2 and f2(x) = (x+1)2. One can see how the density of the distribution of
xk progressively clusters around the minimizer x? = 0. Here the distribution of x0 is uniform on [−1/2, 1/2].

The following theorem shows the convergence in expectation with a 1/
√
k rate on the objective.

Theorem 25. We assume f is µ-strongly convex as defined in (Sµ) (i.e. Idp � ∂2f(x) if f is C2), and is
such that ||∇fi(x)||2 6 C2. For the step size choice τk = 1

µ(k+1) , one has

E(||xk − x?||2) 6 R

k + 1
where R = max(||x0 − x?||, C2/µ2), (14.16)

where E indicates an expectation with respect to the i.i.d. sampling performed at each iteration.

Proof. By strong convexity, one has

f(x?)− f(xk) > 〈∇f(xk), x? − xk〉+
µ

2
||xk − x?||2

f(xk)− f(x?) > 〈∇f(x?), xk − x?〉+
µ

2
||xk − x?||2.

Summing these two inequalities and using ∇f(x?) = 0 leads to

〈∇f(xk)−∇f(x?), xk − x?〉 = 〈∇f(xk), xk − x?〉 > µ||xk − x?||2. (14.17)

Considering only the expectation with respect to the ransom sample of i(k) ∼ ik, one has

Eik(||xk+1 − x?||2) = Eik(||xk − τk∇fik(xk)− x?||2)

= ||xk − x?||2 + 2τk〈Eik(∇fik(xk)), x? − xk〉+ τ2
kEik(||∇fik(xk)||2)

6 ||xk − x?||2 + 2τk〈∇f(xk)), x? − xk〉+ τ2
kC

2

where we used the fact (14.14) that the gradient is unbiased. Taking now the full expectation with respect
to all the other previous iterates, and using (14.17) one obtains

E(||xk+1 − x?||2) 6 E(||xk − x?||2)− 2µτkE(||xk − x?||2) + τ2
kC

2 = (1− 2µτk)E(||xk − x?||2) + τ2
kC

2. (14.18)

We show by recursion that the bound (14.16) holds. We denote εk
def.
= E(||xk − x?||2). Indeed, for k = 0, this

it is true that

ε0 6 max(||x0 − x?||, C2/µ2)

1
=
R

1
.

241

f(xk) log10(f(xk)− f(x?))

Figure 14.7: Evolution of the error of the SGD for logistic classification (dashed line shows BGD).

We now assume that εk 6 R
k+1 . Using (14.18) in the case of τk = 1

µ(k+1) , one has, denoting m = k + 1

εk+1 6 (1− 2µτk)εk + τ2
kC

2 =

(
1− 2

m

)
εk +

C2

(µm)2

6
(

1− 2

m

)
R

m
+

R

m2
=

(
1

m
− 1

m2

)
R =

m− 1

m2
R =

m2 − 1

m2

1

m+ 1
R 6 R

m+ 1

A weakness of SGD (as well as the SGA scheme studied next) is that it only weakly benefit from strong
convexity of f . This is in sharp contrast with BGD, which enjoy a fast linear rate for strongly convex
functionals, see Theorem 24.

Figure 14.7 displays the evolution of the energy f(xk). It overlays on top (black dashed curve) the
convergence of the batch gradient descent, with a careful scaling of the number of iteration to account for
the fact that the complexity of a batch iteration is n times larger.

14.2.4 Stochastic Gradient Descent with Averaging (SGA)

Stochastic gradient descent is slow because of the fast decay of τk toward zero. To improve somehow the
convergence speed, it is possible to average the past iterate, i.e. run a “classical” SGD on auxiliary variables
(x̃k)k

x̃(`+1) = x̃k − τk∇fi(k)(x̃k)

and output as estimated weight vector the Cesaro average

xk
def.
=

1

k

k∑

`=1

x̃`.

This defines the Stochastic Gradient Descent with Averaging (SGA) algorithm.

Note that it is possible to avoid explicitly storing all the iterates by simply updating a running average
as follow

xk+1 =
1

k
x̃k +

k − 1

k
xk.

In this case, a typical choice of decay is rather of the form

τk
def.
=

τ0

1 +
√
k/k0

.

Notice that the step size now goes much slower to 0, at rate k−1/2.

Typically, because the averaging stabilizes the iterates, the choice of (k0, τ0) is less important than for
SGD.

Bach proves that for logistic classification, it leads to a faster convergence (the constant involved are
smaller) than SGD, since on contrast to SGD, SGA is adaptive to the local strong convexity of E.

242

Figure 14.8: Evolution of log10(f(xk)− f(x?)) for SGD, SGA and SAG.

14.2.5 Stochastic Averaged Gradient Descent (SAG)

For problem size n where the dataset (of size n × p) can fully fit into memory, it is possible to further
improve the SGA method by bookkeeping the previous gradients. This gives rise to the Stochastic Averaged
Gradient Descent (SAG) algorithm.

We store all the previously computed gradients in (Gi)ni=1, which necessitates O(n × p) memory. The
iterates are defined by using a proxy g for the batch gradient, which is progressively enhanced during the
iterates.

The algorithm reads

xk+1 = xk − τg where

h← ∇fi(k)(x̃k),
g ← g −Gi(k) + h,
Gi(k) ← h.

Note that in contrast to SGD and SGA, this method uses a fixed step size τ . Similarly to the BGD, in order
to ensure convergence, the step size τ should be of the order of 1/L where L is the Lipschitz constant of f .

This algorithm improves over SGA and SGD since it has a convergence rate of O(1/k) as does BGD.
Furthermore, in the presence of strong convexity (for instance when X is injective for logistic classification),
it has a linear convergence rate, i.e.

E(f(xk))− f(x?) = O
(
ρk
)
,

for some 0 < ρ < 1.

Note that this improvement over SGD and SGA is made possible only because SAG explicitly uses the
fact that n is finite (while SGD and SGA can be extended to infinite n and more general minimization of
expectations (14.9)).

Figure 14.8 shows a comparison of SGD, SGA and SAG.

14.3 Automatic Differentiation

The main computational bottleneck of gradient descent methods (batch or stochastic) is the computation
of gradients ∇f(x). For simple functionals, such as those encountered in ERM for linear models, and also for
MLP with a single hidden layer, it is possible to compute these gradients in closed form, and that the main
computational burden is the evaluation of matrix-vector products. For more complicated functionals (such as
those involving deep networks), computing the formula for the gradient quickly becomes cumbersome. Even
worse: computing these gradients using the usual chain rule formula is sub-optimal. We presents methods
to compute recursively in an optimal manner these gradients. The purpose of this approach is to automatize
this computational step.

243

Figure 14.9: A computational graph.

14.3.1 Finite Differences and Symbolic Calculus

We consider f : Rp → R and want to derive a method to evaluate ∇f : Rp 7→ Rp. Approximating this
vector field using finite differences, i.e. introducing ε > 0 small enough and computing

1

ε
(f(x+ εδ1)− f(x), . . . , f(x+ εδp)− f(x))> ≈ ∇f(x)

requires p + 1 evaluations of f , where we denoted δk = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at index k. For
a large p, this is prohibitive. The method we describe in this section (the so-called reverse mode automatic
differentiation) has in most cases a cost proportional to a single evaluation of f . This type of method is similar
to symbolic calculus in the sense that it provides (up to machine precision) exact gradient computation. But
symbolic calculus does not takes into account the underlying algorithm which compute the function, while
automatic differentiation factorizes the computation of the derivative according to an efficient algorithm.

14.3.2 Computational Graphs

We consider a generic function f(x) where x = (x1, . . . , xs) are the input variables. We assume that
f is implemented in an algorithm, with intermediate variable (xs+1, . . . , xt) where t is the total number
of variables. The output is xt, and we thus denote xt = f(x) this function. We denote xk ∈ Rnk the

dimensionality of the variables. The goal is to compute the derivatives ∂f(x)
∂xk

∈ Rnt×nk for k = 1, . . . , s. For
the sake of simplicity, one can assume in what follows that nk = 1 so that all the involved quantities are
scalar (but if this is not the case, beware that the order of multiplication of the matrices of course matters).

A numerical algorithm can be represented as a succession of functions of the form

∀ k = s+ 1, . . . , t, xk = fk(x1, . . . , xk−1)

where fk is a function which only depends on the previous variables, see Fig. 14.9. One can represent this
algorithm using a directed acyclic graph (DAG), linking the variables involved in fk to xk. The node of this
graph are thus conveniently ordered by their indexing, and the directed edges only link a variable to another
one with a strictly larger index. The evaluation of f(x) thus corresponds to a forward traversal of this graph.
Note that the goal of automatic differentiation is not to define an efficient computational graph, it is up
to the user to provide this graph. Computing an efficient graph associated to a mathematical formula is a
complicated combinatorial problem, which still has to be solved by the user. Automatic differentiation thus
leverage the availability of an efficient graph to provide an efficient algorithm to evaluate derivatives.

14.3.3 Forward Mode of Automatic Differentiation

The forward mode correspond to the usual way of computing differentials. It compute the derivative
∂xk
∂x1

of all variables xk with respect to x1. One then needs to repeat this method p times to compute all
the derivative with respect to x1, x2, . . . , xp (we only write thing for the first variable, the method being of
course the same with respect to the other ones).

244

Figure 14.10: Relation between the variable for the forward (left) and backward (right) modes.

The method initialize the derivative of the input nodes

∂x1

∂x1
= Idn1×n1 ,

∂x2

∂x1
= 0n2×n1 , . . . ,

∂xs
∂x1

= 0ns×n1 ,

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the following recursion formula

∀ k = s+ 1, . . . , t,
∂xk
∂x1

=
∑

`∈parent(k)

[
∂xk
∂x`

]
× ∂x`
∂x1

=
∑

`∈parent(k)

∂fk
∂x`

(x1, . . . , xk−1)× ∂x`
∂x1

.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 14.10,
left. Here the quantities being computed (i.e. stored in computer variables) are the derivatives ∂x`

∂x1
, and

× denotes in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation, since
here ∂xk

∂x`
should be interpreted not as a numerical variable but needs to be interpreted as derivative of the

function fk, which can be evaluated on the fly (we assume that the derivative of the function involved are
accessible in closed form).

Assuming all the involved functions ∂fk
∂xk

have the same complexity (which is likely to be the case if all

the nk are for instance scalar or have the same dimension), and that the number of parent node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for ∂

∂x1
, . . . , ∂

∂xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x, y) = y log(x) +
√
y log(x) (14.19)

whose computational graph is displayed on Figure 14.11. The iterations of the forward mode to compute
the derivative with respect to x read

∂x

∂x
= 1,

∂y

∂x
= 0

∂a

∂x
=

[
∂a

∂x

]
∂x

∂x
=

1

x

∂x

∂x
{x 7→ a = log(x)}

∂b

∂x
=

[
∂b

∂a

]
∂a

∂x
+

[
∂b

∂y

]
∂y

∂x
= y

∂a

∂x
+ 0 {(y, a) 7→ b = ya}

∂c

∂x
=

[
∂c

∂b

]
∂b

∂x
=

1

2
√
b

∂b

∂x
{b 7→ c =

√
b}

∂f

∂x
=

[
∂f

∂b

]
∂b

∂x
+

[
∂f

∂c

]
∂c

∂x
= 1

∂b

∂x
+ 1

∂c

∂x
{(b, c) 7→ f = b+ c}

245

Figure 14.11: Example of a simple computational graph.

One needs to run another forward pass to compute the derivative with respect to y

∂x

∂y
= 0,

∂y

∂y
= 1

∂a

∂y
=

[
∂a

∂x

]
∂x

∂y
= 0 {x 7→ a = log(x)}

∂b

∂y
=

[
∂b

∂a

]
∂a

∂y
+

[
∂b

∂y

]
∂y

∂y
= 0 + a

∂y

∂y
{(y, a) 7→ b = ya}

∂c

∂y
=

[
∂c

∂b

]
∂b

∂y
=

1

2
√
b

∂b

∂y
{b 7→ c =

√
b}

∂f

∂y
=

[
∂f

∂b

]
∂b

∂y
+

[
∂f

∂c

]
∂c

∂y
= 1

∂b

∂y
+ 1

∂c

∂y
{(b, c) 7→ f = b+ c}

Dual numbers. A convenient way to implement this forward pass is to make use of so called “dual
number”, which is an algebra over the real where the number have the form x + εx′ where ε is a symbol
obeying the rule that ε2 = 0. Here (x, x′) ∈ R2 and x′ is intended to store a derivative with respect to some
input variable. These number thus obeys the following arithmetic operations

(x+ εx′)(y + εy′) = xy + ε(xy′ + yx′) and
1

x+ εx′
=

1

x
− ε x

′

x2
.

If f is a polynomial or a rational function, from these rules one has that

f(x+ ε) = f(x) + εf ′(x).

For a more general basic function f , one needs to overload it so that

f(x+ εx′)
def.
= f(x) + εf ′(x)x′.

Using this definition, one has that

(f ◦ g)(x+ ε) = f(g(x)) + εf ′(g(x))g′(x)

which corresponds to the usual chain rule. More generally, if f(x1, . . . , xs) is a function implemented using
these overloaded basic functions, one has

f(x1 + ε, x2, . . . , xs) = f(x1, . . . , xs) + ε
∂f

∂x1
(x1, . . . , xs)

and this evaluation is equivalent to applying the forward mode of automatic differentiation to compute
∂f
∂x1

(x1, . . . , xs) (and similarly for the other variables).

246

14.3.4 Reverse Mode of Automatic Differentiation

Instead of evaluating the differentials ∂xk
∂x1

which is problematic for a large p, the reverse mode evaluates

the differentials ∂xt
∂xk

, i.e. it computes the derivative of the output node with respect to the all the inner
nodes.

The method initialize the derivative of the final node

∂xt
∂xt

= Idnt×nt ,

and then iteratively makes use, from the last node to the first, of the following recursion formula

∀ k = t− 1, t− 2, . . . , 1,
∂xt
∂xk

=
∑

m∈son(k)

∂xt
∂xm

×
[
∂xm
∂xk

]
=

∑

m∈son(k)

∂xt
∂xm

× ∂fm(x1, . . . , xm)

∂xk
.

The notation “parent(k)” denotes the nodes ` < k of the graph that are connected to k, see Figure 14.10,
right.

Back-propagation. In the special case where xt ∈ R, then ∂xt
∂xk

= [∇xkf(x)]> ∈ R1×nk and one can write
the recursion on the gradient vector as follow

∀ k = t− 1, t− 2, . . . , 1, ∇xkf(x) =
∑

m∈son(k)

(
∂fm(x1, . . . , xm)

∂xk

)>
(∇xmf(x)) .

where
(
∂fm(x1,...,xm)

∂xk

)>
∈ Rnk×nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.

In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its
drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

Simple example. We consider once again the fonction f(x) of (14.19), the iterations of the reverse mode
read

∂f

∂f
= 1

∂f

∂c
=
∂f

∂f

[
∂f

∂c

]
=
∂f

∂f
1 {c 7→ f = b+ c}

∂f

∂b
=
∂f

∂c

[
∂c

∂b

]
+
∂f

∂f

[
∂f

∂b

]
=
∂f

∂c

1

2
√
b

+
∂f

∂f
1 {b 7→ c =

√
b, b 7→ f = b+ c}

∂f

∂a
=
∂f

∂b

[
∂b

∂a

]
=
∂f

∂b
y {a 7→ b = ya}

∂f

∂y
=
∂f

∂b

[
∂b

∂y

]
=
∂f

∂b
a {y 7→ b = ya}

∂f

∂x
=
∂f

∂a

[
∂a

∂x

]
=
∂f

∂a

1

x
{x 7→ a = log(x)}

The advantage of the reverse mode is that a single traversal of the computational graph allows to compute
both derivatives with respect to x, y, while the forward more necessitates two passes.

247

Figure 14.12: Complexity of forward (left) and backward (right) modes for composition of functions.

14.3.5 Feed-forward Compositions

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft ◦ ft−1 ◦ . . . ◦ f2 ◦ f1 (14.20)

for functions fk : Rnk−1 → Rnk .
The forward function evaluation algorithm initializes x0 = x ∈ Rn0 and then computes

∀ k = 1, . . . , t, xk = fk(xk−1)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= ∂fk(xk−1) ∈ Rnk×nk−1 the Jacobian, one has

∂f(x) = At ×At−1 × . . . A2 ×A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

∂f(x) = At × (At−1 × (. . .× (A3 × (A2 ×A1)))) ,

∂f(x) = ((((At ×At−1)×At−2)× . . .)×A2)×A1.

We note that the computation of the product A × B of A ∈ Rn×p with B ∈ Rp×q necessitates npq
operations. As shown on Figure 14.12, the complexity of the forward and backward modes are

n0

t−1∑

k=1

nknk+1 and nt

t−2∑

k=0

nknk+1

So if nt � n0 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

14.3.6 Feed-forward Architecture

We can generalize the previous example to account for feed-forward architectures, such as neural networks,
which are of the form

∀ k = 1, . . . , t, xk = fk(xk−1, θk−1) (14.21)

where θk−1 is a vector of parameters and x0 ∈ Rn0 is given. The function to minimize has the form

f(θ)
def.
= L(xt) (14.22)

where L : Rnt → R is some loss function (for instance a least square or logistic prediction risk) and θ =
(θk)t−1

k=0. Figure 14.13, top, displays the associated computational graph.
One can use the reverse mode automatic differentiation to compute the gradient of f by computing

successively the gradient with respect to all (xk, θk). One initializes

∇xtf = ∇L(xt)

248

Figure 14.13: Computational graph for a feedforward architecture.

Figure 14.14: Multi-layer perceptron parameterization.

and then recurse from k = t− 1 to 0

zk−1 = [∂xfk(xk−1, θk−1)]>zk and ∇θk−1
f = [∂θfk(xk−1, θk−1)]>(∇xkf) (14.23)

where we denoted zk
def.
= ∇xkf(θ) the gradient with respect to xk.

Multilayers perceptron. For instance, feedforward deep network (fully connected for simplicity) corre-
sponds to using

∀xk−1 ∈ Rnk−1 , fk(xk−1, θk−1) = ρ(θk−1xk−1) (14.24)

where θk−1 ∈ Rnk×nk−1 are the neuron’s weights and ρ a fixed pointwise linearity, see Figure 14.14. One
has, for a vector zk ∈ Rnk (typically equal to ∇xkf)

{
[∂xfk(xk−1, θk−1)]>(zk) = θ>k−1wkzk,

[∂θfk(xk−1, θk−1)]>(zk) = wkx
>
k−1

where wk
def.
= diag(ρ′(θk−1xk−1)).

Link with adjoint state method. One can interpret (14.21) as a time discretization of a continuous
ODE. One imposes that the dimension nk = n is fixed, and denotes x(t) ∈ Rn a continuous time evolution,
so that xk → x(kτ) when k → +∞ and kτ → t. Imposing then the structure

fk(xk−1, θk−1) = xk−1 + τu(xk−1, θk−1, kτ) (14.25)

where u(x, θ, t) ∈ Rn is a parameterized vector field, as τ → 0, one obtains the non-linear ODE

ẋ(t) = u(x(t), θ(t), t) (14.26)

with x(t = 0) = x0.
Denoting z(t) = ∇x(t)f(θ) the “adjoint” vector field, the discrete equations (14.28) becomes the so-called

adjoint equations, which is a linear ODE

ż(t) = −[∂xu(x(t), θ(t), t)]>z(t) and ∇θ(t)f(θ) = [∂θu(x(t), θ(t), t)]>z(t).

Note that the correct normalization is 1
τ∇θk−1

f → ∇θ(t)f(θ)

249

Figure 14.15: Computational graph for a recurrent architecture.

14.3.7 Recurrent Architectures

Parametric recurrent functions are obtained by using the same parameter θ = θk and fk = h recursively
in (14.24), so that

∀ k = 1, . . . , t, xk = h(xk−1, θ). (14.27)

We consider a real valued function of the form

f(θ) = L(xt, θ)

so that here the final loss depends on θ (which is thus more general than (14.22)). Figure 14.15, bottom,
displays the associated computational graph.

The back-propagation then operates as

∇xk−1
f = [∂xh(xk−1, θ)]

>∇xkf and ∇θf = ∇θL(xt, θ) +
∑

k

[∂θh(xk−1, θ)]
>∇xkf. (14.28)

Similarly, writing h(x, θ) = x+ τu(x, θ), letting (k, kτ)→ (+∞, t), one obtains the forward non-linear ODE
with a time-stationary vector field

ẋ(t) = u(x(t), θ)

and the following linear backward adjoint equation, for f(θ) = L(x(T), θ)

ż(t) = −[∂xu(x(t), θ)]>z(t) and ∇θf(θ) = ∇θL(x(T), θ) +

∫ T

0

[∂θf(x(t), θ)]>z(t)dt. (14.29)

with z(0) = ∇xL(xt, θ).

Residual recurrent networks. A recurrent network is defined using

h(x, θ) = x+W>2 ρ(W1x)

as displayed on Figure 14.16, where θ = (W1,W2) ∈ (Rn×q)2 are the weights and ρ is a pointwise non-
linearity. The number q of hidden neurons can be increased to approximate more complex functions. In the
special case where W2 = −τW1, and ρ = ψ′, then this is a special case of an argmin layer (14.31) to minimize
the function E(x, θ) = ψ(W1x) using gradient descent, where ψ(u) =

∑
i ψ(ui) is a separable function. The

Jacobians ∂θh and ∂xh are computed similarly to (14.29).

Mitigating memory requirement. The main issue of applying this backpropagation method to com-
pute ∇f(θ) is that it requires a large memory to store all the iterates (xk)tk=0. A workaround is to use
checkpointing, which stores some of these intermediate results and re-run partially the forward algorithm to
reconstruct missing values during the backward pass. Clever hierarchical method perform this recursively in
order to only require log(t) stored values and a log(t) increase on the numerical complexity.

In some situation, it is possible to avoid the storage of the forward result, if one assume that the algorithm
can be run backward. This means that there exists some functions gk so that

xk = gk(xk+1, . . . , xt).

250

Figure 14.16: Recurrent residual perceptron parameterization.

In practice, this function typically also depends on a few extra variables, in particular on the input values
(x0, . . . , xs).

An example of this situation is when one can split the (continuous time) variable as x(t) = (r(t), s(t))
and the vector field u in the continuous ODE (14.26) has a symplectic structure of the form u((r, s), θ, t) =
(F (s, θ, t), G(r, θ, t)). One can then use a leapfrog integration scheme, which defines

rk+1 = rk + τF (sk, θk, τk) and sk+1 = sk + τG(rk+1, θk+1/2, τ(k + 1/2)).

One can reverse these equation exactly as

sk = sk+1 − τG(rk+1, θk+1/2, τ(k + 1/2)). and rk = rk+1 − τF (sk, θk, τk).

Fixed point maps In some applications (some of which are detailed below), the iterations xk converges
to some x?(θ) which is thus a fixed point

x?(θ) = h(x?(θ), θ).

Instead of applying the back-propagation to compute the gradient of f(θ) = L(xt, θ), one can thus apply the
implicit function theorem to compute the gradient of f?(θ) = L(x?(θ), θ). Indeed, one has

∇f?(θ) = [∂x?(θ)]>(∇xL(x?(θ), θ)) +∇θL(x?(θ), θ). (14.30)

Using the implicit function theorem one can compute the Jacobian as

∂x?(θ) = −
(
∂h

∂x
(x?(θ), θ)

)−1
∂h

∂θ
(x?(θ), θ).

In practice, one replace in these formulas x?(θ) by xt, which produces an approximation of ∇f(θ). The
disadvantage of this method is that it requires the resolution of a linear system, but its advantage is that it
bypass the memory storage issue of the backpropagation algorithm.

Argmin layers One can define a mapping from some parameter θ to a point x(θ) by solving a parametric
optimization problem

x(θ) = argmin
x

E(x, θ).

The simplest approach to solve this problem is to use a gradient descent scheme, x0 = 0 and

xk+1 = xk − τ∇E(xk, θ). (14.31)

This has the form (14.25) when using the vector field u(x, θ) = ∇E(xk, θ).

251

Using formula (14.30) in this case where h = ∇E , one obtains

∇f?(θ) = −
(
∂2E
∂x∂θ

(x?(θ), θ)

)>(
∂2E
∂x2

(x?(θ), θ)

)−1

(∇xL(x?(θ), θ)) +∇θL(x?(θ), θ)

In the special case where the function f(θ) is the minimized function itself, i.e. f(θ) = E(x?(θ), θ), i.e.
L = E , then one can apply the implicit function theorem formula (14.30), which is much simpler since in
this case ∇xL(x?(θ), θ) = 0 so that

∇f?(θ) = ∇θL(x?(θ), θ). (14.32)

This result is often called Danskin theorem or the envelope theorem.

Sinkhorn’s algorithm Sinkhorn algorithm approximates the optimal distance between two histograms

a ∈ Rn and b ∈ Rm using the following recursion on multipliers, initialized as x0
def.
= (u0, v0) = (1n, 1m)

uk+1 =
a

Kvk
, and vk+1 =

b

K>uk
.

where ·· is the pointwise division and K ∈ Rn×m+ is a kernel. Denoting θ = (a, b) ∈ Rn+m and xk = (uk, vk) ∈
Rn+m, the OT distance is then approximately equal to

f(θ) = E(xt, θ)
def.
= 〈a, log(ut)〉+ 〈b, log(vt)〉 − ε〈Kut, vt〉.

Sinkhorn iteration are alternate minimization to find a minimizer of E .

Denoting K def.
=

(
0 K
K> 0

)
∈ R(n+m)×(n+m), one can re-write these iterations in the form (14.27) using

h(x, θ) =
θ

Kx and L(xt, θ) = E(xt, θ) = 〈θ, log(xt)〉 − ε〈Kut, vt〉.

One has the following differential operator

[∂xh(x, θ)]> = −K> diag

(
θ

(Kx)2

)
, [∂θh(x, θ)]> = diag

(
1

Kx

)
.

Similarly as for the argmin layer, at convergence xk → x?(θ), one finds a minimizer of E , so that∇xL(x?(θ), θ) =
0 and thus the gradient of f?(θ) = E(x?(θ), θ) can be computed using (14.32) i.e.

∇f?(θ) = log(x?(θ)).

252

Chapter 15

Shallow Learning

In this chapter, we study the simplest example of non-linear parametric models, namely Multi-Layers
Perceptron (MLP) with a single hidden layer (so they have in total 2 layers). Perceptron (with no hidden
layer) corresponds to the linear models studied in the previous chapter. MLP with more layers are obtained
by stacking together several such simple MLP, and are studied in Section ??, since the computation of their
derivatives is very suited to automatic-differentiation methods.

15.1 Recap on Supervised Learning

In this chapter, we denote (xi, yi)
n
i=1 the training data, with xi ∈ X (typically X = Rd in the following).

Let (X,Y) be a pair of random variables with values in X × Y. We observe (xi, yi)i=1...n an i.i.d. of the
same law as (X,Y). For a loss function ` : Y ×Y → R, we write R(g) , E(`(g(X), Y)) the risk of a function
g. The goal is to approach f ∈ argminR(f) as best as possible from only the knowledge of (xi, yi)i=1,...,n.
Given a space F of functions, this is achieved by minimizing the empirical risk

f̂ , argmin
g∈F

R̂(g) , 1

n

n∑

i=1

`(g(xi), yi).

The goal of the theoretical analysis of supervised learning is to limit the excess risk of this estimator. To do
this, we break down this excess risk into two terms:

R(f̂)−R(f) = [R(f̂)−min
g∈F

R(g)] + [min
g∈F

R(g)−R(f)] (15.1)

The first term Eest quantifies the distance between the model f̂ and the optimal model on F , it is called the
estimation error. This is a random error that can be controlled with tools such as Rademacher Complexity.
Intuitively this requires that the set F is not too large.

The second term Eapp is called the approximation error, it quantifies the quality of the optimal model
on F . If we suppose that ` is C` -Lipschitz with respect to its first variable(which is the case for classical
cost functions), then we can limit

Eapp 6 C` min
g∈F
||g − f ||L2(µ)

where we denote by µ the probability distribution of X and ||h||2L2(µ) ,
∫
X h(x)2dµ(x). In part of this

chapter, we focus on the study of this error. For it to be small, F must be large enough, but it will also be
necessary to make assumptions about f .

253

15.2 Multi-layer Perceptron

We consider the case X = Rd. A MLP with a single hidden layer having q neurons defines a function as

fq(x) , a0 +

q∑

k=1

akρ(〈x, bk〉+ ck), (15.2)

where ak ∈ R are outer neurons weights, and wk = (bk, ck) ∈ Rd ×R are the neurons weights which compose
the hidden layers. To ease the notation, we denote x̄ = (x, 1) ∈ Rd+1 and wk = (bk, ck) ∈ Rd+1, so that
〈x̄, wk〉 = 〈x, bk〉+ ck. With this notation, we conveniently write

fq(x; (W,a)) , a0 +

q∑

k=1

akρ(〈x̄, wk〉) = a0 + 〈ρ(Wx̄), a〉Rq ,

where the neurons wk as the rows of W ∈ Rq×(d+1) and the non-linearity is implicitly assumed to be applied
component-wise. In the following, we often denote fq(x) in place of fq(x; (W,a)).

This function fq is thus a weighted sum of q “ridge functions” ρ(〈·, wk〉). These functions are constant
in the direction orthogonal to the neuron wk and have a profile defined by ρ.

The most popular non-linearities are sigmoid functions such as

ρ(r) =
er

1 + er
and ρ(r) =

1

π
atan(r) +

1

2

and the rectified linear unit (ReLu) function ρ(r) = max(r, 0).

Expressiveness. In order to define function of arbitrary complexity when q increases, it is important
that ρ is non-linear. Indeed, if ρ(s) = s, then fq(x) = 〈Wx, a〉 = 〈x, W>a〉. It is thus a linear function with
weights W>a, whatever the number q of neurons. Similarly, if ρ is a polynomial on R of degree d, then fq is
itself a polynomial of degree d in Rp, which is a linear space V of finite dimension dim(V) = O(pd). So even
if q increases, the dimension dim(V) stays fixed and fq cannot approximate an arbitrary function outside
V . In sharp contrast, one can show that if ρ is not polynomial, then fq can approximate any continuous
function, as studied in Section 15.5.

15.3 Training a MLP

Given pairs of features and data values (xi, yi)
n
i=1, and as usual storing the features (xk, 1) in the rows of

X ∈ Rn×(d+1), we consider the following least square regression function (similar computation can be done
for classification losses) which corresponds to a minimization of the empirical risk

min
W,a
E(W,a)

def.
=

1

2

n∑

i=1

(fq(xi; (W,a))− yi)2 =
1

2
||ρ(XW>)a− y||2.

Note that here, the parameters being optimized are (W,a) ∈ Rq×(d+1) × Rq.

Optimizing with respect to a. This function E is convex with respect to a, since it is a quadratic
function. Its gradient with respect to a can be computed as in (13.8) and thus (here we do not consider the
derivative with respect to a0, which is treated after separately)

∇aE(W,a) = ρ(XW>)>(a0 + ρ(XW>)a− y) ∈ Rq

and one can compute in closed form the solution (assuming ker(ρ(XW>)) = {0}) as

a? = [ρ(XW>)>ρ(XW>)]−1ρ(XW>)>(y − a0) = [ρ(WX>)ρ(XW>)]−1ρ(WX>)(y − a0)

When W = Idp and ρ(s) = s one recovers the least square formula (13.9). The derivative with respect to
the output bias a0 is

∇a0E(W,a) = 〈1n, ρ(XW>)a− y〉 ∈ R

254

Optimizing with respect to W . The function E is non-convex with respect to W because the function
ρ is itself non-linear. Training a MLP is thus a delicate process, and one can only hope to obtain a local
minimum of E . It is also important to initialize correctly the neurons (wk)k (for instance as unit norm
random vector, but bias terms might need some adjustment), while u can be usually initialized at 0.

To compute its gradient with respect to W , we first note that for a perturbation ε ∈ Rq×(d+1), one has

ρ(X(W + ε)>) = ρ(XW> +Xε>) = ρ(XW>) + ρ′(XW>)� (Xε>)

where we have denoted “�” the entry-wise multiplication of matrices, i.e. U � V = (Ui,jVi,j)i,j . One thus
has,

E(W + ε, a) =
1

2
||e+ [ρ′(XW>)� (Aε>)]y||2 where e

def.
= ρ(XW>)a− y ∈ Rn

= E(W,a) + 〈e, [ρ′(XW>)� (Aε>)]y〉+ o(||ε||)
= E(W,a) + 〈Aε>, ρ′(XW>)� (eu>)〉
= E(W,a) + 〈ε>, A> × [ρ′(XW>)� (ea>)]〉.

The gradient thus reads

∇WE(W,a) = [ρ′(WX>)� (ae>)]×A ∈ Rq×(d+1).

15.4 Controlling the Estimation Error

Regarding the error Eest, defined in (15.1), it is well studied in the literature. Under the assumptions
that the weights of the network are bounded, this error is increased with great probability, by a term of the
order of 1√

n
. This corresponds to a decay rate independent of the number p of neurons.

Denoting σ2 ,
∫
||x||2dµ(x) the variance of the data, if we impose that ϕ is Gϕ-Lipschitz, that

∑

k

|ak| 6 Ka, ||bk||2, |ck|/σ 6 Kb,c, (15.3)

and that the loss ` is G`-Lipschitz and bounded by `∞, then as explained in [2, Proposition 9.1], with
probability 1− δ,

Eest 6
4G`GϕKaKb,cσ√

n
+ 2`∞

√
log(1/δ)√

n
, (15.4)

which is a speed independent of the number q of neurons. We now study how the error Eapp decreases as a
function of q, and show that it is of the order 1/

√
q.

15.5 Universality

In the following we assume that ρ : R→ R is a bounded measurable function such that

ρ(r)
r→−∞−→ 0 and ρ(r)

r→+∞−→ 1. (15.5)

Note in particular that such a function cannot be a polynomial and that the ReLu function does not satisfy
these hypothesis (universality for the ReLu is more involved to show). We denote a ridge function as

ϕw(x) , ρ(〈w, x̄〉) where w = (b, c) ∈ Rd × R. (15.6)

The goal is to show the following theorem.

255

Theorem 26 (Cybenko [15]). For any compact set Ω ⊂ Rd, the space spanned by the functions {ϕw}w is
dense in C(Ω) for the uniform convergence. This means that for any continuous function f and any ε > 0,
there exists q ∈ N and weights (wk, ak)qk=1 such that

∀x ∈ Ω, |f(x)− fq(x, (W,a))| 6 ε.

In a typical ML scenario, this implies that one can “overfit” the data, since using a q large enough ensures
that the training error can be made arbitrary small. Of course, there is a bias-variance tradeoff, and q needs
to be cross-validated to account for the finite number n of data, and ensure a good generalization properties.

Proof in dimension p = 1. In 1D, the approximation fq can be thought as an approximation using
smoothed step functions. Indeed, introducing a parameter ε > 0, one has (assuming the function is Lipschitz
to ensure uniform convergence),

ϕw/ε
ε→0−→ 1[−c/b,+∞[

This means that
f(·; (W/ε, a))

ε→0−→
∑

k

ak1[−ck/bk,+∞[,

which is a piecewise constant function. Inversely, any piecewise constant function can be written this way.
Indeed, if f assumes the value dk on each interval [tk, tk+1[, then it can be written as

h =
∑

k

dk(1[tk,+∞[− 1[tk,+∞[).

Since the space of piecewise constant functions is dense in continuous function over an interval, this proves
the theorem.

Proof in arbitrary dimension d. We start by proving the following dual characterization of density,
using bounded Borel measure ν ∈M(Ω) i.e. such that ν(Ω) < +∞.

Proposition 52. If ρ is such that for any Borel measure ν ∈M(Ω)

(
∀w,

∫
ρ(〈x̄, w〉)dν(x) = 0

)
=⇒ ν = 0, (15.7)

then Theorem 26 holds.

Proof. We consider the linear space

S def.
=

{
q∑

k=1

akϕwk ; q ∈ N, wk ∈ Rd+1, ak ∈ R

}
⊂ C(Ω).

Let S̄ be its closure in C(Ω) for || · ||∞, which is a Banach space. If S̄ 6= C(Ω), let us pick g 6= 0, g ∈ C(Ω)\S̄.
We define the linear form L on S̄ ⊕ span(g) as

∀ s ∈ S̄, ∀λ ∈ R, L(s+ λg) = λ

so that L = 0 on S̄. L is a bounded linear form, so that by Hahn-Banach theorem, it can be extended in a
bounded linear form L̄ : C(Ω) → R. Since L ∈ C(Ω)∗ (the dual space of continuous linear form), and that
this dual space is identified with Borel measures, there exists ν ∈ M(Ω), with ν 6= 0, such that for any
continuous function h, L̄(h) =

∫
Ω
h(x)dν(x). But since L̄ = 0 on S̄,

∫
ρ(〈̄·, w〉)dν = 0 for all w and thus by

hypothesis, ν = 0, which is a contradiction.

The theorem now follows from the following proposition.

256

Proposition 53. If ρ is continuous and satisfies (15.5), then it satisfies (15.7).

Proof. One has, for w = (b, c) ∈ Rd+1 and t ∈ R,

ϕ b
ε ,
c
ε+t(x) = ρ

(〈x̄, w〉
ε

+ t

)
ε→0−→ γ(x)

def.
=

1 if x ∈ Hw,
ρ(t) if x ∈ Pw,
0 if 〈x̄, w〉 < 0,

where we defined Hw
def.
= {x ; 〈x̄, w〉 > 0} and Pw

def.
= {x ; 〈w, x̄〉 = 0}. By Lebesgue dominated convergence

(since the involved quantities are bounded uniformly on a compact set)

∫
ϕ b
ε ,
c
ε+tdν

ε→0−→
∫
γdν = ϕ(t)ν(Pw) + ν(Hw).

Thus if ν is such that all these integrals vanish, then

∀ (w, t), ϕ(t)ν(Pw) + ν(Hw) = 0.

By selecting (t, t′) such that ϕ(t) 6= ϕ(t′), one has that

∀w, ν(Pw) = ν(Hw) = 0.

We now need to show that ν = 0. For a fixed b ∈ Rd, we consider the function

h ∈ L∞(R), F (h)
def.
=

∫

Ω

h(〈b, x〉)dν(x).

F : L∞(R) → R is a bounded linear form since |F (ν)| 6 ||h||∞ν(Ω) and ν(Ω) < +∞. One has, for
w = (b, c) ∈ Rd+1,

F (1[−c,+∞[=

∫

Ω

1[−c,+∞[(〈b, x〉)dν(x) = ν(Pw) + ν(Hw) = 0.

By linearity, F (h) = 0 for all piecewise constant functions, and F is a continuous linear form, so that by
density F (h) = 0 for all functions h ∈ L∞(R). Applying this for h(r) = eir one obtains

ν̂(b)
def.
=

∫

Ω

ei〈x, b〉dν(x) = 0.

This means that the Fourier transform of ν is zero, so that ν = 0.

15.6 Approximation Rates

This section details in a mostly informal way the results of [3].

15.6.1 Barron’s spaces

For an integrable function f , its Fourier transform is defined, for any ω ∈ Rd by

f̂(ω) ,
∫

Rd
f(ω)ei〈ω, x〉dx.

The Barron’s space [3] is the set of functions such as the semi-norm

||f ||B ,
∫

Rd
||ω|||f̂(ω)|dω

257

is finite. If we impose that f(0) is fixed, we can show that this defines a norm and that the Barron space is
a Banach space. One has

||f ||B =

∫

Rd
||∇̂f(ω)||dω,

this shows that the functions of the Barron space are quite regular. Here are some example of function
classes with the corresponding Barron’s norm.

• Gaussians: for f(x) = e−||x||
2/2, one has ||f ||B 6 2

√
d

• Ridge function: let f(x) = ψ(〈x, b〉+ c) where ψ : R→ R then one has

||f ||B 6 ||b||
∫

R
|uψ̂(u)|du.

In particular, if ψ is C2+δ for δ > 0 then f is in the Barron space. If ρ satisfies this hypothesis, the
“neurons” functions are in Barron space.

• Regular functions with s derivatives: for all s > d/2, one has ||f ||B 6 C(d, s) ||f ||Hs where the Sobolev
norm is

||f ||2Hs ,
∫

Rd
|f̂(ω)|2(1 + ||ω||2s)dω ∼ ||f ||2L2(dx) +

d∑

k=1

||∂xkf ||2L2(dx),

and C(d, s) <∞ is a constant. This shows that if f has at least d/2 derivatives in L2, it is in Barron
space. Beware that the converse is false, the Barron space can contain less regular functions as seen
in the previous examples. This somehow shows that the Barron space is larger than RKHS space of
fixed smoothness degree.

15.6.2 Barron’s Theorem

The main result is as follows.

Theorem 27 (Barron [3]). We assume µ is supported on B(0, R). For all q, there exists an MLP fq of the
form (15.2) such that

||fq − f ||L2(µ) 6
2R||f ||B√

q
.

This result shows that if f is in Barron space, the decrease of the error does not depend on the dimension:
this is often referred to as “overcoming the curse of dimensionality”. Be careful however, the constant ||f ||B
can depend on the dimension, this is the case for Gaussian functions (where it is 2

√
d) but not for ridges

functions.
The proof of this theorem shows that one can impose c0 = f(0) and

∑
k |ak| 6 αmax , 2R||f ||B . This `1

normalization is crucial since it is the one required in (??) to control the estimation error. Controlling this
error also requires to bound ||wk||, which can be achieved assuming more constraint on ρ. The estimation
error is thus bounds as O(1/

√
n) while the approximation one is O(1/

√
q), so that a balance is obtained by

selecting q ∼ n, and the overall error has a dimension-free decay rate 0(1/
√
n).

We will give the main ingredients of the proof of Barron’s theorem.

Integral representation using a probability distribution The most important point is a formula for
representing functions in the Barron space as an average of ridge functions, this average being computed
using a probability distribution Λ over the space of neurons. For θ = (w,α) ∈ Rd+1 × R, we denote

ξθ(x)
def.
= αρ(〈w, x̄〉).

258

We can interpret the MLP as a finite average

fq = a0 +
1

q

p∑

k=1

ξθk (15.8)

where θk , (wk, p ak). The central idea of Barron’s proof is that the functions f of the Barron space are
those where we replace this finite empirical mean by a “continuous average”. That is, for any f in the Barron
space, there exists a probability density Γ on Rd+1 × R such that

f(x) = f(0) +

∫

Rd+1×R
ξθdΓ(θ). (15.9)

Barron shows in the proof of this result that we can impose that Γ is supported in Rd+1 ×B(0, αmax) where
αmax , 2R||f ||B . For example, we get the (15.8) decomposition by taking Γ = 1/p

∑
k δθk and c0 = f(0).

The proof of this decomposition is the crux of the proof. Using the inverse Fourier transform and the
fact that f(x) is real, one has

f(x)− f(0) = <
(∫

Rd
f̂(ω)(ei〈ω, x〉 − 1)dω

)
= <

(∫

Rd
|f̂(ω)|eiΘ(ω)(ei〈ω, x〉 − 1)dω

)

=

∫

Rd
(cos(〈ω, x〉+ Θ(ω))− cos(Θ(ω)))|f̂(ω)|dω

=

∫

Rd

||f ||B
|ω| (cos(〈ω, x〉+ Θ(ω))− cos(Θ(ω)))

||ω|||f̂(ω)|
||f ||B

dω =

∫

Rd
gω(x)dΓ(ω)

where gω(x) , ||f ||B||ω|| (cos(〈ω, x〉+ Θ(ω))− cos(Θ(ω))) and dΛ(ω) , ||ω|||f̂(ω)|
||f ||B

dω

Note that

|gω(x)| 6 ||f ||B||ω|| |〈ω, x〉| 6 ||f ||BR

so that gω are similar to bounded sigmoid functions. This calculation shows that the previous decomposition
(15.11) is true but with sigmoid functions gω instead of functions ξθ. One then proceeds by showing that
the function cos can be written using translates and dilates of the function ρ to obtain the thought after
integral formula.

Discretization To go from the integral representation (15.11) to fq, which is a discretized version (15.8),

Barron performs a probabilistic proof by Monte Carlo sampling. We consider i.i.d. realizations Θ ,
(θ1, . . . θq) according to the law Γ and we define fq according to the definition (15.8). Beware that fq is now a
random function. By expanding the squares and inner product, and using the fact that Eθk(ϕθk(x)) = f(x),
one has

EΘ(||f − fq||2L2(µ)) =
Eθ(‖ξθ − Eθ′(ξθ′)‖2L2(µ))

q
=

Eθ(‖ξθ‖2L2(µ))− ‖Eθ(ξθ)‖2L2(µ)

q
. (15.10)

An important point is that one can bound

E(‖ξθ‖2L2(µ)) 6 α2
max where αmax , 2||f ||BR

because the realizations (w,α) from Γ satisfy |α| 6 αmax because of the support localization of Γ. This shows
that EΘ(||f − fq||2L2(µ)) 6 2||f ||BR/q. This shows that the event ||f − fq||2L2(µ) 6 2||f ||BR/q has a positive
probability so that the set of MLP such that this bound holds is non-empty.

Furthermore, since |α| 6 αmax on the support of Γ, the (ak)k in the decomposition of the MLP, which
are of of the form ak = αk/q with αk in the support de Γ, safisfy

∑
k |ak| = 1/q

∑
k |αk| 6 αmax.

259

15.6.3 Integral representation over w

Integral representation using a signed measure. It is possible to develop an alternate proof, which
relies on a simpler and more natural representation of Barron functions using a signed measure. Indeed, one
can re-write (15.11) as (using a slight abuse of notation)

f(x) = f(0) +

∫

Rd+1×R
αρ(〈w, x̄〉dΓ(w,α) = f(0) +

∫

Rd+1

ϕw(x)dγ(w) where γ(·) =

∫

R
αdΓ(·, α) (15.11)

where we recall that the ridge functions ϕw(x) , ρ(〈w, x̄〉) were defined in (15.6). Furthermore, we recall
that we can assume that Λ is supported on Rd+1×B(0, αmax) so that the total variation of γ is bounded as

||γ||TV = |γ|(Rd+1) 6
∫

Rd+1

∫

R
|α|dΓ(w,α) 6 αmax. (15.12)

Assuming f(0) = 0 for simplicity, we denote the relation (15.11) as f = Φγ where Φ is a linear operator
between M(Rd+1) (the space of signed Radon measures) and C(Rd) the space of continuous functions (here
we assume ρ is continuous for simplicity).

Convex learning. In the limit q → +∞, one can thus replace the MLP fq by functions of the form Φ(γ)
with ||γ||TV 6 αmax. This allows one to replace in the large q limit the non-convex minimization of the risk

inf
W,a

1

n

n∑

i=1

`(fq(xi; (W,a)), yi)

by the following convex but infinite dimensional optimization problem [1]

inf
γ∈M(Rd+1)

E0(γ) , 1

n

n∑

i=1

`((Φγ)(xi), yi). (15.13)

possibly with the additional constraint ||γ||TV 6 αmax.
Note that this type of TV constraint corresponds to defining a norm on the space of functions

||f ||∗ , inf
γ∈M(Rd+1)

{||γ||TV ; f = Φγ} .

One can show under some hypotheses that || · ||∗ is actually equivalent to || · ||B .

Revisiting Barron’s proof using Frank-Wolfe Barron gives an alternate proof of his theorem using
a greedy algorithm. This is very similar to using the celebrated Frank-Wolfe algorithm, that we now detail
in the case of the space of measure (this algorithm is very general and work on arbitrary vector space,
not necessarily with Banach structure). This follows [1]. The idea is to consider the following “fake”
approximation problem

inf
||γ||TV6αmax

E1(γ) =
1

2
||Φγ − f ||2L2(µ) (15.14)

for which we know from (15.12) that the minimum value is 0.
More generally, we consider the problem of constraint minimization (this can be generalized to penalized

minimization)
inf
γ∈C
E(γ)

where C is a compact set of contraints for the strong topology and E is some function. We assume that this
function has directional derivatives, that we write for ρ another measure

E(γ + ελ) = E(γ) + ε〈δE(γ), λ〉+ o(ε)

260

where δE(γ) ∈ C(Rd+1) should be thought as the gradient of E at γ, when one replace a hilbertian inner
product by the duality pairing between measures and continuous functions,

∀(g, λ) ∈ C(Rd+1)×M(Rd+1), 〈g, λ〉 ,
∫

Rd+1

g(w)dλ(w).

For instant, in the cases (15.13) and (15.14), if we assume that ` is smooth, one has

δE0(γ) : w ∈ Rd+1 7→ 1

n

n∑

i=1

`′((Φγ)(xi), yi)ϕw(xi) ∈ R (15.15)

δE1(γ) : w ∈ Rd+1 7→
∫

Rd
(Φγ(x)− f(x))ϕw(x)dµ(x) ∈ R. (15.16)

Starting from γ0 ∈ C, the algorithm proceeds at step k by extracting an extremal point of the constraint
set

ζk ∈ argmin
ζ∈M(Rd+1)

〈δE(γk), ζ〉 (15.17)

and then update
γk+1 = (1− tk)γk + tkζk

where the step size can be for instance chosen as tk ∼ 1
k or using a line search. In the special case where

C =
{
γ ∈M(Rd+1) ; ||γ||TV 6 αmax

}

then the extremal point are of the form ζk = ±αmaxδwk where the optimal weight thus solves an optimization
over Rd+1 of a non-convex function

wk ∈ argmax
w∈Rd+1

|[δE(γk)](w)|

Unfortunately, even simply finding this sole neurone with theoretical guarantees is computationally hard.
In order to ensure the convergence (in value) of Frank-Wolfe, the function needs somehow to be L-smooth

(Lipschitz gradient). Since we are not optimizing over a vector space, this property is controlled by upper-
bounding the directional Hessian, which corresponds to assuming a curvature bound (bounding the function
by above by a parabola along 1-D segments)

∀ (γ, ζ) ∈ C2, ∀t ∈ [0, 1], E((1− t)γ + tζ) 6 E(γ) + t〈δE(γ), ζ − γ〉+
L

2
t2.

Under this hypothesis, one has the following convergence result

Proposition 54. One has for the choice tk = 2
2+k

E(γk)− inf
γ∈C
E(γ) 6 L

k + 2
.

In the case of E = E0 defines in (15.14), which is quadratic, one has

E((1− t)γ + tζ)− E(γ)− t〈δE(γ), ζ − γ〉 =
t2

2
||Φ(γ − ζ)||2L2(µ)

and then, since ||ϕw||∞ 6 1 and ||γ − ζ||TV 6 2γmax (because ζ and γ are in C),

1

2
||Φ(γ − ζ)||2L2(µ) =

1

2

∫

Rd

(∫

Rd+1

ϕw(x)d(γ − ζ)(w)

)2

dµ(x) 6 1

2

∫

Rd
||ϕw||2∞||γ − ζ||2TVdµ(x) 6 γmax

so that L 6 2γ2
max. Using the convergence speed of one recovers the approximation result of Barron for

fq = Φγq computed at step q of F-W

||f − fq||2L2(µ) = E(γq)− inf
γ∈C
E(γ) 6 2γ2

max

q + 2
.

261

262

Chapter 16

Deep Learning

16.1 Deep Architectures

16.1.1 Deep Network Structure

Deep learning are estimator f(x, β) which are built as composition of simple building blocks. The inner
layers can be understood as computing a lifted representation (feature map) of the input, while the last layer
is a classical linear model (e.g. logistic classification). The difference with kernel method is that the feature
map is not fixed but is learned from the data.

Feedforward architectures. In their simplest form (non-recursive), they corresponds to a simple linear
computational graph as already defined in (14.20) (without the loss L). Initialized as x0 = x, one computed

x`+1 = f`(x`, β`),

so that xL = f(x, β) with

f(·, β) = fL−1(·, βL−1) ◦ fL−2(·, β2) ◦ . . . ◦ f0(·, β0)

where β = (β0, . . . , βL−1) is the set of parameters, and

f`(·, β`) : Rn` → Rn`+1 .

While it is possible to consider more complicated computational graph (in particular recurrent ones, where the
weight are shared by the functions), we restrict here out attention to these simple linear graph computation
structures (so-called feedforward networks).

The supervised learning of these parameters β is usually done by empirical risk minimization (12.11) using
SGD-type methods as explained in Section 14.2. Note that this results in highly non-convex optimization
problems. In particular, strong convergence guarantees such as Theorem 25 do not hold anymore, and
only weak convergence (toward stationary points) holds. SGD type technics are however found to work
surprisingly well in practice, and it now believe that the success of these deep-architecture approaches (in
particular the ability of these over-parameterized model to generalize well) are in large part due to the
dynamics of the SGD itself, which induce an implicit regularization effect.

For these simple linear architectures, the gradient of the ERM loss (14.13) can be computed using the re-
verse mode computation detailed in Section ??. In particular, in the context of deep learning, formula (16.3).
One should however keep in mind that for more complicated (e.g. recursive) architectures, such a simple
formula is not anymore available, and one should resort to reverse mode automatic differentiation (see Sec-
tion ??), which, while being conceptually simple, is actually implementing possibly highly non-trivial and
computationally optimal recursive differentiation.

263

Figure 16.1: Left: example of fully connected network. Right: example of convolutional neural network.

Deep MLP. In most successful applications of deep-learning, each computational block f`(·, β`) is actually
very simple, and is the composition of

an affine map, B` · +b` with a matrix B` ∈ Rn`×ñ` and a vector b` ∈ Rñ` parametrized (in most case
linearly) by β`,

a fixed (not depending on β`) non-linearity ρ` : Rñ` → Rn`+1

which we write as

∀x` ∈ Rn` , f`(x`, β`) = ρ`(B`x` + b`) ∈ Rn`+1 . (16.1)

In the simplest case, the so-called “fully connected”, one has (B`, b`) = β`, i.e. B` is a full matrix and its
entries (together with the bias b`) are equal to the set of parameters β`. Also in the simplest cases ρ` is a
pointwise non-linearity ρ`(z) = (ρ̃`(zk))k, where ρ̃` : R → R is non-linear. The most usual choices are the
rectified linear unit (ReLu) ρ̃`(s) = max(s, 0) and the sigmoid ρ̃`(s) = θ(s) = (1 + e−s)−1.

The important point here is that the interleaving of non-linear map progressively increases the complexity
of the function f(·, β).

The parameter β = (B`, b`)` of such a deep network are then trained by minimizing the ERM func-
tional (12.11) using SGD-type stochastic optimization method. The gradient can be computed efficiently
(with complexity proportional to the application of the model, i.e. O(

∑
` n

2
`)) by automatic differentiation.

Since such models are purely feedforward, one can directly use the back-propagation formula (14.20).
For regression tasks, one can can directly use the output of the last layer (using e.g. a ReLu non-linearity)

in conjunction with a `2 squared loss L. For classification tasks, the output of the last layer needs to be
transformed into class probabilities by a multi-class logistic map (??).

An issue with such a fully connected setting is that the number of parameters is too large to be applicable
to large scale data such as images. Furthermore, it ignores any prior knowledge about the data, such
as for instance some invariance. This is addressed in more structured architectures, such as for instance
convolutional networks detailed in Section 16.1.3.

16.1.2 Perceptron and Shallow Models

Before going on with the description of deep architectures, let us re-interpret the logistic classification
method detailed in Sections 12.4.2 and 12.4.3.

The two-class logistic classification model (12.21) is equal to a single layer (L = 1) network of the
form (16.1) (ignoring the constant bias term) where

B0x = 〈x, β〉 and ρ̃0(u) = θ(u).

The resulting one-layer network f(x, β) = θ(〈x, β〉) (possibly including a bias term by adding one dummy

264

dimension to x) is trained using the loss, for binary classes y ∈ {0, 1}
L(t, y) = − log(ty(1− t)1−y) = −y log(t)− (1− y) log(1− t).

In this case, the ERM optimization is of course a convex program.
Multi-class models with K classes are obtained by computing B0x = (〈x, βk〉)Kk=1, and a normalized

logistic map

f(x, β) = N ((exp(〈x, βk〉))k) where N (u) =
u∑
k uk

and assuming the classes are represented using vectors y on the probability simplex, one should use as loss

L(t, y) = −
K∑

k=1

yk log(tk).

16.1.3 Convolutional Neural Networks

In order to be able to tackle data of large size, and also to improve the performances, it is important
to leverage some prior knowledge about the structure of the typical data to process. For instance, for
signal, images or videos, it is important to make use of the spacial location of the pixels and the translation
invariance (up to boundary handling issues) of the domain.

Convolutional neural networks are obtained by considering that the manipulated vectors x` ∈ Rn` at
depth ` in the network are of the form x` ∈ Rn̄`×d` , where n̄` is the number of “spatial” positions (typically
along a 1-D, 2-D, or 3-D grid) and d` is the number of “channels”. For instance, for color images, one starts
with ñ` being the number of pixels, and d` = 3. To ease the writing, we denote x` = ((x`)r[i])r,i where
i ∈ {1, . . . , n̄`} is the pixel location, and r ∈ {1, . . . , d`} is the channel index.

The linear operator B` : Rn̄`×d` → Rn̄`×d`+1 is then (up to boundary artefact) translation invariant and
hence a convolution along each channel (note that the number of channels can change between layers). This
is formalized in the following proposition.

Proposition 55. Let B : Rn×d → Rn×d
′

(where n indicates “spacial” dimension, with periodic boundary
conditions). Then x = (xr[i])r,i 7→ Bx is co-variant with translation, i.e.

∀ τ, B(x[· − τ]) = (Bx)[· − τ]

(one translate the pixels) if and only if there exists a set of filters ψ = (ψr,s ∈ Rn)s=1,...,d′

r=1,...,d such that

∀ r = 1, . . . , d′, (Bx)r =

d∑

s=1

ψr ? xs (16.2)

i.e. (Bx)r[i] =

d∑

s=1

∑

j

ψr,s[i− j] ? xs[j]

where ? is the convolution on Rn (for instance 1-D or 2-D convolution).

Proof. Since convolutions are covariant with translation on Rn, formula (16.2) defines covariant operators.
We now assume B is covariant. We define δs the dirac at pixel i = 0 and channel s, i.e. (δs)s′ [i] = 1s=s′1i=0,

and then we let ψ̃r,s
def.
= (Bδs)r. One has the decomposition of a vector as translated Diracs

x =
∑

j,s

xs[j]δ
s[· − j],

so that by linearity and translation co-variance

(Bx)r =
∑

j,s

xs[j](Bδ
s[· − j])r =

∑

j,s

xs[j](Bδ
s)r[· − j] =

∑

j,s

xs[j]ψ̃r,s[· − j] =
∑

s

ψr,s ? xs

where ψr,s[i] = ψ̃r,s[−i] is the reversed filter.

265

Using this proposition, a covariant B` is thus parameterized by a set of filters ψ` = ((ψ`)r,s)
r=1,...,d`+1

s=1,...,d`
.

Denoting x` = ((x`)·,s)
d`
s=1 the different layers composing x`, the linear map reads

∀ r ∈ {1, . . . , d`+1}, (B`x`)r =

d∑̀

s=1

(ψ`)r,s ? (x`)s,

and the bias term (b`)·,r = (b̃`)r ∈ R is contant across the spacial dimension (to maintain translation
invariance). Translation covariance results in a weight-sharing: all the neurons (associated to an output
pixels) have the same weights, defined by ψ`.

The non-linear maps across layers serve two purposes: as before a point-wise non-linearity is applied,
and then a sub-sampling helps to reduce the computational complexity of the network. This is very similar
to the construction of the fast wavelet transform. Denoting by mk the amount of down-sampling, where
usually mk = 1 (no reduction) or mk = 2 (reduction by a factor two in each direction). One has

ρ`(u) = (ρ̃`(us[mk·]))s=1...,d`+1
.

In the literature, it has been proposed to replace linear sub-sampling by non-linear sub-sampling, for instance
the so-called max-pooling (that operate by taking the maximum among groups of m` successive values), but
it seems that linear sub-sampling is sufficient in practice when used in conjunction with very deep (large L)
architectures.

The intuition behind such model is that as one moves deeper through the layers, the neurons are receptive
to larger areas in the image domain (although, since the transform is non-linear, precisely giving sense to
this statement and defining a proper “receptive field” is non-trivial). Using an increasing number of channels
helps to define different classes of “detectors” (for the first layer, they detect simple patterns such as edges
and corner, and progressively capture more elaborated shapes).

In practice, the last few layers (2 or 3) of such a CNN architectures are chosen to be fully connected.
This is possible because, thanks to the sub-sampling, the dimension of these layers are small.

The parameters of such a model are the filters β = ((ψ`)r, s)`,s,r, and they are trained by minimizing the
ERM functional (12.11). The gradient is typically computed by backpropagation. Indeed, when computing
the gradient with respect to some filter ψ`,r,s, the feedforward computational graph has the form (14.20).
For simplicity, we re-formulate this computation in the case of a single channel per layer (multiple layer can
be understood as replacing convolution by matrix-domain convolution). The forward pass computes all the
inner coefficients, by traversing the network from ` = 0 to ` = L− 1,

x`+1 = ρ`(ψ` ? x`)

where ρ`(u) = (ρ̃`(ui))i is applied component wise. Then, denoting E(β) = L(β, y) the loss to be minimized

with respect to the set of filters β = (ψ`)`, and denoting ∇`E(β) = ∂E(β)
∂ψ`

the gradient with respect to ψ`,
one computes all the gradients by traversing the network in reverse order, from ` = L− 1 to ` = 0

∇`E(β) = [ρ′`(ψ` ? x`)]� [ψ̄` ?∇`+1E(β)], (16.3)

where ρ′`(u) = (ρ̃′`(ui))i applies the derivative of ρ̃` component wise, and where ψ̄` = ψ`(−·) is the reversed
filter. Here, � is the pointwise multiplication of vectors. The recursion is initialized as ∇EL(β) = ∇L(xL, y),
the gradient of the loss itself.

This recursion (16.3) is the celebrated backpropagation algorithm put forward by Yann Lecun. Note
that to understand and code these iterations, one does not need to rely on the advanced machinery of
reverse mode automatic differentiation exposed in Section ??. The general automatic differentiation method
is however crucial to master because advanced deep-learning architectures are not purely feedforward, and
might include recursive connexions. Furthermore, automatic differentiation is useful outside deep learning,
and considerably eases prototyping for modern data-sciences with complicated non-linear models.

266

16.1.4 Advanced Architectures

Residual Networks Residual network introduce so-called skip connexions of the form (for a significant
sub-set of `)

f`(x`, β`) = x` + f̃`(x`, β`)

where f̃`(·, β`) : Rn` → Rn` (the dimension is kept during these connexion). These connexion stabilize
the training and enables the use of very deep network. They can also be interpreted as explicit Euler
discretization of ODE’s. The usual choice for these layer is to have a bottleneck shape, of the form

f̃`(x`, β`) = C>` ρ`(B`x`)

(ignoring biases) where β` = (B`, C`) ∈ Rm`×n` × Rm`×n` with m` � n` to enforce a regularization effect.

Batch normalization TODO write me.

Transformers Networks Transformers networks operates over distribution of points using a parametric
push-forward of the point locations. They have a quadratic complexity in term of number of input points.
The input x of such a layer is a set of points x = (xi)

n
i=1 where xi ∈ Rd, and each point is modified as

xk 7→
∑

i

exp(−〈Qxi, Kxk〉)V xi.

where Q,K, V are the query, key and value matrices (which are the parameters of the layer).

16.1.5 Scattering Transform

The scattering transform, introduced by Mallat and his collaborators, is a specific instance of deep
convolutional network, where the filters (ψ`,r,s)`,s,r are not trained, and are fixed to be wavelet filters. This
network can be understood as a non-linear extension of the wavelet transform. In practice, the fact that it
is fixed prevent it to be applied to arbitrary data (and is used mostly on signals and images) and it does not
lead to state of the art results for natural images. Nevertheless, it allows to derives some regularity properties
about the feature extraction map f(·, β) computed by the network in term of stability to diffeomorphisms.
It can also be used as a set of fixed initial features which can be further enhanced by a trained deep network,
as shown by Edouard Oyallon.

267

268

Chapter 17

Convex Analysis

The main references for this chapter are [13, 6]. This chapters uses different notations than the previous
one, and we denote f(x) a typical function to minimized with respect to the variable x. We discus here some
important concepts from convex analysis for non-smooth optimization.

17.1 Basics of Convex Analysis

We consider minimization problems of the form

min
x∈H

f(x) (17.1)

over the finite dimension (Hilbertian) space H def.
= RN , with the canonical inner product 〈·, ·〉. Most of the

results of this chapter extends to possibly infinite dimensional Hilbert space.

Here f : H −→ R̄
def.
= R∪ {+∞} is a convex function. Note that we allow here f to take the value +∞ to

integrate constraints in the objective, and the constraint set is thus the “domain” of the function

dom(f)
def.
= {x ; f(x) < +∞} .

A useful notation is the indicator function of a set C ⊂ H

ιC(x)
def.
=

{
0 if x ∈ C,
+∞ otherwise.

17.1.1 Convex Sets and Functions

A convex set Ω ⊂ H is such that

∀ (x, y, t) ∈ H2 × [0, 1], (1− t)x+ ty ∈ Ω.

A convex function is such that

∀ (x, y, t) ∈ H2 × [0, 1], f((1− t)x+ ty) 6 (1− t)f(x) + tf(y) (17.2)

and this is equivalent to its epigraph {(x, r) ∈ H × R ; r > f(x)} being a convex set. Note that here we use
6 as a comparison over R̄. The function f is strictly convex if equality in (17.2) only holds for t ∈ {0, 1}. A
set Ω being convex is equivalent to ιC being a convex function.

In the remaining part of this chapter, we consider convex function f which are proper, i.e. such that
dom(f) 6= ∅, and that should be lower-semi-continuous (lsc), i.e. such that for all x ∈ H,

lim inf
y→x

f(y) > f(x).

It is equivalent to epi(f) being a closed convex set. We denote Γ0(H) the set of proper convex lsc functions.

269

Figure 17.1: Convexity and strict convexity for function and sets.

17.1.2 First Order Conditions

Existence of minimizers. Before looking at first optimality conditions, one has to check that there exists
minimizers, which is implied by the l.s.c. property and coercivity.

Proposition 56. If f is l.s.c. and coercive (i.e. f(x) → +∞ as x → +∞), then there exists a minimizer
x? of f .

Proof. Since f is coercive, it is bounded from below, one can consider a minimizing sequence (xn)n such
that f(xn) → min f . Since f is l.s.c., this implies that the sub-level set of f are closed, and coercivity
imply they are bounded, hence compact. One can thus extract from (xn)n a converging sub-sequence
(xn(p))p, xn(p) → x?. Lower semi-continuity implies that min f = limp f(xn(p)) > f(x?), and hence x? is a
minimizer.

This existence proof is often called the “direct method of calculus of variation”. Note that if the function
f is in Γ0(H), then the set of minimizer argmin f is a closed convex set, and all local minimizers (i.e.
minimizer of the function restricted to an open ball) are global one. If it is furthermore strictly convex, then
there is a single minimizer.

Sub-differential. The sub-differential at x of such a f is defined as

∂f(x)
def.
= {u ∈ H∗ ; ∀y, f(y) > f(x) + 〈u, y − x〉} .

We denote here H∗ = RN the set of “dual” vector. Although in finite dimensional Euclidean space, this
distinction is not needed, it helps to distinguish primal from dual vectors, and recall that the duality pairing
implicitly used depends on the choice of an inner product. The sub-differential ∂f(x) is thus the set of
“slopes” u of tangent affine planes f(x) + 〈u, z − x〉 that fits below the graph of f .

Figure 17.2: The subdiffer-
ential

Note that f being differentiable at x is equivalent to the sub-differential
being reduced to a singleton (equal to the gradient vector)

∂f(x) = {∇f(x)}.

Informally, the “size” of ∂f(x) controls how smooth f is at x.
Note that one can have ∂f(x) = ∅, for instance if x /∈ dom(f). Note

also that one can still have x ∈ dom(f) and ∂f(x) = ∅, for instance take
f(x) = −

√
1− x2 + ι[−1,1](x) at x = ±1.

Since ∂f(x) ⊂ H∗ is an intersection of half space, it is a closed convex set.
The operator ∂f : H 7→ 2H

∗
is thus “set-valued”, and we often denote this as

∂f : H ↪→ H∗.

270

Figure 17.3: Subdifferential of the absolute value and a piecewise affine convex function.

Remark 11 (Maximally monotone operator). The operator ∂f is particular instance of so-called monotone
operator, since one can check that U = ∂f satisfies

∀ (u, v) ∈ U(x)× U(y), 〈y − x, v − u〉 > 0.

In the 1-D setting, being monotone is the same as being an increasing map. Sub-differential can also be
shown to be maximally monotone, in the sense that such an operator is not striclty included in the graph
of another monotone operator. Note that there exists monotone maps which are not subdifferential, for
instance (x, y) 7→ (−y, x). Much of the theory of convex analysis and convex optimization can be extended
to deal with arbitrary maximally monotone-maps in place of subdifferential, but we will not pursue this here.

A prototypical example is the absolute value f(x) = | · |, and writing conveniently ∂f(x) = ∂| · |(x), one
verifies that

∂| · |(x) =

−1 if x < 0,
+1 if x > 0,
[−1, 1] if x = 0.

First Order Conditions. The subdifferential is crucial for this simple but extremely important proposi-
tion.

Proposition 57. x? is a minimizer of f is and only if 0 ∈ ∂f(x?).

Proof. One has

x? ∈ argmin f ⇔ (∀y, f(x?) 6 f(y) + 〈0, x? − y〉) ⇔ 0 ∈ ∂f(x?).

Sub-differential calculus. There is a large set of calculus rules that allows to simplify the computation
of sub-differentials. For decomposable function f(x1, . . . , xK) =

∑K
k=1 fk(xk), the sub-differential is the

product of the sub-differentials

∂f(x1, . . . , xK) = ∂f1(x1)× . . .× ∂fK(xK).

This can be used to compute the sub-differential of the `1 norm ||x||1 =
∑N
k=1 |xk|

∂|| · ||1(x) =

N∏

k=1

∂| · |(xk)

271

which is thus an hyper rectangle. This means that, denoting I = supp(x), one has u ∈ ∂|| · ||1(x) is equivalent
to

uI = sign(xI) and ||uIc ||∞ 6 1.

A tricky problem is to compute the sub-differential of the sum of two functions. If one of the two function
is continuous at x (i.e. it has a finite value), then

∂(f + g)(x) = ∂f(x)⊕ ∂g(x) = {u+ v ; (u, v) ∈ ∂f(x)× ∂g(x)}

where ⊕ thus denotes the Minkowski sum. For instance, if f is differentiable at x, then

∂(f + g)(x) = ∇f(x) + ∂g(x) = {∇f(x) + v ; v ∈ ∂g(x)} .

Positive linear scaling is simple to handle

∀λ ∈ R+, ∂(λf)(x) = λ(∂f(x)).

The chain rule for sub-differential is difficult since in general composition does not work so-well with
convexity. The only simple case is composition with linear functions, which preserves convexity. Denoting
A ∈ RP×N and f ∈ Γ0(RP), one has that f ◦A ∈ Γ0(RN) and

∂(f ◦A)(x) = A∗(∂f)(Ax)
def.
= {A∗u ; u ∈ ∂f(Ax)} .

Remark 12 (Application to the Lasso). TODO

Normal cone. The sud-differential of an indicator function is a convex cone, the so-called normal cone to
the constraint

∀x ∈ C, ∂ιC(x) = NC(x)
def.
= {v ; ∀ z ∈ C, 〈z − x, v〉 6 0} .

Note that for x /∈ C, ∂ιC(x) = ∅. For an affine space C = a + V where V ⊂ H is a linear space, then
NC(x) = V⊥ is the usual orthogonal for linear spaces. If x ∈ int(C) is in the interior of C, then NC(x) = {0}.
In some sense, the more non-regular the boundary of C is at x, the larger is the normal cone.

Figure 17.4: Normal cones

The normal cone is a way to express first order condition for constrained
problem

min
x∈C

f(x)

which reads, if f is continuous

0 ∈ ∂f(x)+∂ιC(x) ⇔ ∃ξ ∈ ∂f(x),−ξ ∈ NC(x) ⇔ ∂f(x)∩(−NC(x)) 6= ∅.

If f is differentiable, it reads −∇f(x) ∈ NC(x).

17.2 Legendre-Fenchel Transform

In order to simplify and accelerate computation involving Lagrange duality, it is very convenient to
introduce a particular transformation of convex functions the Legendre-Fenchel transform. In some sense,
it is the canonical “isomorphisms” (pairing) between convex functions. In spirit, is plays a similar role for
convex function as the Fourier transform for signal or images.

272

17.2.1 Legendre Transform

For f ∈ Γ0(H), we define its Legendre-Fenchel transform as

f∗(u)
def.
= sup

x
〈x, u〉 − f(x). (17.3)

Being the maximum of affine functional, one obtains that f∗ is itself a convex function, and that in fact
f? ∈ Γ0(H∗). One can prove the following fundamental bi-duality result.

Theorem 28. One has

∀ f ∈ Γ0(H), (f∗)∗ = f.

In fact, f∗ is convex even in the case where f is not, and f∗∗ is the convex envelop of f (i.e. the largest
convex function smaller than f). [ToDo: drawing]

One has the following basic property relating the sub-differentials of f and f∗.

Proposition 58. One has ∂f∗ = (∂f)−1, where the inverse of a set valued map is defined in (18.15), and

∀ (x, y), 〈x, y〉 6 f(x) + f∗(y) and 〈x, y〉 = f(x) + f∗(y) ⇔ x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x).

Proposition 59. For 1/p+ 1/q = 1,

(ι||·||p61)∗ = || · ||q and (|| · ||q)∗ = ι||·||p61

Let us now give some example of Legendre transform.

Proposition 60. For f(x) = 1
2 〈Ax, x〉 − 〈b, x〉 with A inversible, then f∗(u) = 1

2 〈A−1u, u〉 − 1
2 〈A−1b, b〉.

In particular, for f = || · ||2/2, then f∗ = f . One has[ToDo: check]

f(· − z)∗ = f + 〈z, ·〉, (f + 〈z, ·〉)∗ = f(· − z), (λf)∗ = λf∗(·/λ).

Proof. One has f∗(u) = 〈Ax?, x?〉 − 〈b, x?〉 where x? solves

u = Ax? − b =⇒ x? = A−1u+A−1b.

Hence

f∗(u) =
1

2
〈AA−1(u+ b), A−1(u+ b)〉 − 〈b, A−1(u+ b)〉 =

1

2
〈A−1u, u〉 − 1

2
〈A−1b, b〉

17.2.2 Legendre transform and smoothness

While the Fourier transform is a pairing between smoothness and decay (see Section ??), the Legendre-
Fenchel is really a pairing between smoothness and strong convexity. This can be intuitively seen by the fact
that the Legendre-Fenchel inverts the sub-differentials (??) and hence when the functions involved are C2,
it inverse the Hessians

∂2f(x) = (∂2f∗(y))−1 at y = ∇f(x).

This relation between Hessian can be seen as implying the exchange of strong convexity and uniform bound
on the Hessian, as detailed in Proposition 47.

Proposition 61. One has

∇f is L-Lipschitz ⇐⇒ ∇f∗ is µ-strongly convex.

273

This results suggests a way to smooth any function f . Instead of doing a convolution, one can use the
infimal convolution

(f ⊗ g)(x)
def.
= sup

y+y′=x
f(y) + g(y′).

One can check that if (f, g) are convex, so is f ⊗ g, and that the Legendre transform actually exchanges sum
and inf-convolution

(f + g)∗ = f ⊗ g and (f ⊗ g)∗ = f + g.

The Moreau-Yosida regularization of f is corresponds to a µ-strict-convexification of f∗, i.e.

fµ
def.
= f ⊗ (

1

2µ
|| · ||2) = (f∗ +

µ

2
|| · ||2)∗. (17.4)

Since f∗ + µ
2 || · ||2 is at least µ-strongly convex, then fµ as a 1/µ-Lipchitz gradient.

As an example, the Moreau-Yosida regularization of the absolute value reads

(| · |µ)(x) =

{ 1
2µx

2 if |x| 6 µ,

|x| − µ
2 if |x| > µ.

This should be compared with the regularization
√
x2 + µ2 (which is above the curve) that we used previ-

ously. [ToDo: add drawing]

17.3 Convex Duality

Duality is associated to a particular formulation of the optimization problem, so that for instance making
change of variables results in a different duality.

17.3.1 Lagrange Duality: Afine Constraint

We first consider a specific case of problem of the form

min
Ax=y

f(x)

where f : Rp → R is a convex function (for now, we assume it cannot assume infinite value and is hence
continuous).

[ToDo: finalize this]

17.3.2 Lagrange Duality: General Case

We consider a minimization of the form

p? = min
x∈RN

{f(x) ; Ax = y and g(x) 6 0} (17.5)

for a continuous convex functions f : H → 0, a matrix A ∈ RP×N and a function g : H → RQ such that
each of its coordinates gi : H → R are continuous and convex. Note that it is always the case that equality
in convex program corresponds to affine ones. One can always write a convex minimization problem with
positivity constraints in the form (17.5), although there exists infinite way of doing so (each one giving a
different duality formula).

Here we have assumed for simplicity that f is continuous, i.e. dom(f) = RN . The following exposition
can be generalized to dom(f) being arbitrary, but this is more technical. For the sake of simplicity, we thus
assume all the constraint defining the domain are encoded in Ax = y and g(x) 6 0

Note that it is possible to generalized the previous Lagrange duality results by replacing “x > 0” by
“X � 0” where X is a matrix (and in fact even more generally using convex cones).

274

We use the following fact

sup
u∈RP

〈r, u〉 =

{
0 if r = 0,
+∞ if r 6= 0,

and sup
v∈RQ+

〈s, v〉 =

{
0 if s 6 0,
+∞ otherwise,

to encode the constraints r = Ax− y = 0 and s = g(x) 6 0.
One can represent the constraints appearing in (17.5) conveniently using a maximization over so-called

Lagrange multipliers

p? = inf
x

max
u∈RP ,v∈RQ+

L(x, u, v)
def.
= f(x) + 〈Ax− y, u〉+ 〈g(x), v〉.

It is tempting to inverse the inf and the sup, and study

d? = sup
(u,v)∈RP×RQ+

F (u, v)
def.
= inf

x
f(x) + 〈Ax− y, u〉+ 〈g(x), v〉. (17.6)

One remarks that F is a concave function (as being the minimum of linear forms), and this “dual” problem
is thus a maximization of a concave function.

The following proposition is the so-called weak duality, which assert that values of the dual problems
always lower bounds values of the primal one

Proposition 62. One always has, for all (u, v) ∈ RP × RQ+,

F (u, v) 6 p? =⇒ d? 6 p?.

Proof. Since g(x) 6 0 and v > 0, one has 〈g(x), v〉 6 0, and since Ax = y, one has 〈Ax− y, u〉 = 0, so that

L(x, u, v) 6 f(x) =⇒ F (u, v) = inf
x
L(x, u, v) 6 inf

x
f(x) = p?.

The following fundamental theorem, more difficult to prove, gives a sufficient condition (so-called quali-
fication of the constraints) such that one actually has equality.

Theorem 29. If
∃x0 ∈ RN , Ax0 = y and g(x0) < 0, (17.7)

then p? = d?. Furthermore, x? and (u?, v?) are solutions of respectively (17.5) and (17.6) if and only if

Ax? = y, g(x?) 6 0, u? > 0 (17.8)

0 ∈ ∂f(x?) +A∗u? +
∑

i

v?i ∂gi(x
?) (17.9)

∀ i, u?i gi(x
?) = 0 (17.10)

The existence of such an x0 is called “constraint qualification”, and as written here, this corresponds to
the so-called “Slater” qualification condition (many other weaker sufficient conditions exist).

Condition (17.8) is simply the primal and dual constraints. Condition (17.9) is the first order condition
for the minimization of L(x, u, v) over x. Condition (17.10) is the first order condition for the maximization
of L(x, u, v) over (u, v). These three conditions are often referred to as “Karush-Kuhn-Tucker” (KKT)
conditions, and under a constraint qualification condition, they are necessary and sufficient condition for
optimality.

The last condition u?i gi(x
?) = 0 (so called “complementary slackness”) states that if gi(x

?) < 0 (the
constraints is not saturated) then ui = 0, and also that if ui > 0 then gi(x

?) = 0.
Note that it is possible to weaken the hypotheses of this theorem, for the linear constraints of the form

gi(x) = 〈x, hi〉 − ci 6 0, by replacing the gi(x0) < 0 by the weaker condition 〈x0, hi〉 6 ci.

275

One can generalize this theorem to the setting where dom(f) is not equal to RN (i.e. it is not continuous,
and thus integrates extra constraint beside the 6). In this case, one has to add the extra constraint x0 ∈
relint(dom(f)).

Theorem 29 generalizes the necessary conditions provided by Lagrange multipliers for equality constrained
optimization. The setting is both more complex because one can deal with inequalities that might be
saturated (so this introduce positivity constraints on the multipliers v) but also simpler because of convexity
(which thus gives also necessary conditions).

As a simple example, we now derive the dual for a simple linear projection problem. A more complicated
computation is carried over in Section 10.1.5 for the Lasso. We consider

p? = min
Ax=y

1

2
||x− z||2 = min

x
max
u

1

2
||x− z||2 + 〈Ax− y, u〉 = max

u
F (u) = min

x

1

2
||x− z||2 + 〈Ax− y, u〉,

where we used the fact that strong duality holds because only linear constraints are involved. For each u,
the optimal x satisfies x− z +A∗u, i.e. x = z −A∗u, so that

F (u) =
1

2
||A∗u||2 + 〈A(z −A∗u)− y, u〉 = −1

2
||A∗u||2 + 〈u, Az − y〉.

Weak duality states p? > F (u) for any u, and p? = F (u?) where the optimal u? satisfies AA∗u = Az − y. If
y ∈ Im(A), then such a u? exists and can be chosen as u? = u = (AA∗)−1(Az − y), and the (unique) primal
solution reads

x? = ProjA·=y(z)(Id−A+A)z −A+y. (17.11)

17.3.3 Fenchel-Rockafellar Duality

Very often the Lagrange dual can be expressed using the conjugate of the function f . We give here a
particularly important example, which is often called Fenchel-Rockafellar Duality.

We consider the following structured minimization problem

p? = inf
x
f(x) + g(Ax). (17.12)

Re-writing it as
inf
y=Ax

f(x) + g(y),

we can form the primal-dual problem

inf
(x,y)

sup
u
f(x) + g(y) + 〈Ax− y, u〉. (17.13)

If sufficient condition on the domain of (f, g) holds (such as those stated in Theorem ??), one one can
exchange the min and the max and obtains the dual problem

d? = sup
u

min
(x,y)

f(x) + g(y) + 〈Ax− y, u〉 (17.14)

= sup
u

(
min
x
〈x, A∗u〉+ f(x)

)
+

(
min
y
− 〈y, u〉+ g(y)

)
(17.15)

which leads to the celebrated Fenchel-Rockafellar, which we summarize together with qualification sufficient
condition ensuring strong duality.

Theorem 30 (Fenchel-Rockafellar). If

0 ∈ relint(dom(g))−A relint(dom(f)) (17.16)

the one has the following strong duality

inf
x
f(x) + g(Ax) = inf

x
sup
u
L(x, u) = sup

u
inf
x
L(x, u) = sup

u
− f∗(−A∗u)− g∗(u) (17.17)

276

where L(x, u)
def.
= f(x) + 〈Ax, u〉 − g∗(u).

Furthermore one has that (x?, u?) is a pair of optimal primal-dual solutions if and only if

−A∗u? ∈ ∂f(x?) and Ax? ∈ ∂g∗(u?). (17.18)

Condition (17.16) is the constraint qualification ensuring that one can inverse the inf and the sup
in (17.17). It can be recovered from Slater’s qualification condition (17.7) when deriving the dual prob-
lem as in (17.14). The primal-dual relations (17.18) are the first order condition along the x and the u
variables in minimization and maximization of L. They are sometimes summarised in “matrix” form

0 ∈
(
∂f A∗

−A ∂g∗

)(
x?

u?

)
.

277

278

Chapter 18

Non-smooth Convex Optimization

The main references for this chapter are [10, 11, 6], see also [23, 5, 4].
We consider a general convex optimization problem

min
x∈H

f(x) (18.1)

where H = Rp is a finite dimensional Hilbertian (i.e. Euclidean) space, and try to devise “cheap” algorithms
with a low computational cost per iterations. The class of algorithms considered are first order, i.e. they
make use of gradient information.

18.1 Descent Methods

The gradient descent method is covered in detailed in Section 13.4. We explain here how to extend it to
non-smooth and constrained problems.

18.1.1 Gradient Descent

The optimization program (8.26) is an example of unconstrained convex optimization of the form (18.1)
where f : H → R is a C1 function with Lipschitz gradient (so-called “smooth” function). Recall that the
gradient ∇f : H 7→ H of this functional (not to be confound with the discretized gradient ∇x ∈ H of f) is
defined by the following first order relation

f(x+ r) = f(x) + 〈f, r〉H +O(||r||2H)

where we used O(||r||2H) in place of o(||r||H) (for differentiable function) because we assume here f is of class
C1 (i.e. the gradient is continuous). Section 8.4.3 shows typical examples of gradient computation.

For such a function, the gradient descent algorithm is defined as

x(`+1) def.
= x(`) − τ`∇f(x(`)), (18.2)

where the step size τ` > 0 should be small enough to guarantee convergence, but large enough for this
algorithm to be fast.

18.1.2 Sub-gradient Descent

The gradient descent (18.2) cannot be applied on a non-smooth function f . One can use in place of a
gradient a sub-gradient, which defines the sub-gradient descent

x(`+1) def.
= x(`) − τ`g(`) where g(`) ∈ ∂f(x(`)). (18.3)

279

The main issue with this scheme is that to ensure convergence, the iterate should go to zero. One can easily
convince oneself why by looking at the iterates on a function f(x) = |x|. This means that in practice this
method is very slow, and should be avoided if the functions has some structure that can be used (as it will
be explained in the remaining part of the chapter).

Theorem 31. If
∑
` τ` = +∞ and

∑
` τ

2
` < +∞, then x(`) converges to a minimizer of f . For τ` = 1/`,

one has f(x(`))−min f = O(1/
√
`).

18.1.3 Projected Gradient Descent

We consider a generic constraint optimization problem as

min
x∈C

f(x) (18.4)

where C ⊂ RS is a closed convex set and f : RS → R is a smooth convex function (at least of class C1).
The gradient descent algorithm (18.2) is generalized to solve a constrained problem using the projected

gradient descent

x(`+1) def.
= ProjC

(
x(`) − τ`∇f(x(`))

)
, (18.5)

where ProjC is the orthogonal projector on C

ProjC(x) = argmin
x′∈C

||x− x′||

which is always uniquely defined because C is closed and convex. The following proposition shows that all
the convergence properties of the classical gradient descent caries over to this projected algorithm.

Theorem 32. Theorems ?? and 24 still holds when replacing iterations (18.2) by (18.5).

Proof. The proof of Theorem ?? extends because the projector is contractant, ||ProjC(x) − ProjC(x
′)|| 6

||x−x′|| so that the strict contraction properties of the gradient descent is maintained by this projection.

The main bottleneck that often prevents to use (18.5) is that the projector is often complicated to
compute. We are however lucky since for `1 mininization, one can apply in a straightforward manner this
method.

18.2 Interior Point Methods

We give here an informal description of a class of schemes which converge extremely fast in term of
number of iterations, but where each iteration can be very costly. These methods are extensions of the
Newton method for unconstrained minimization, but can deal with a specific class of non-smoothness which
can be encoded using some specific type of constraints (such as for instance positivity of vector or matrices).

To illustrate the main idea, we consider the following problem

min
x∈Rd,Ax6y

f(x) (18.6)

for A ∈ Rm×d. This can be generalized for instance by replacing Ax by a matrix and 6 by PSD matrix
inequalities.

Example 9 (Lasso). The Lasso problem (applied to the regression problem Bw ≈ b for B ∈ Rn×p)

min
w∈Rp

1

2
||Bw − b||2 + λ||w||1 (18.7)

can be re-casted as (18.6) by introducing the positive/negative decomposition x = (x−, x+) ∈ R2p (so that
d = 2p) and w = x+ − x− with (x+, x−) > 0, so that f(x) = 1

2 ||B(x+ − x−)− b||2 + λ〈x, 1〉 and A = −Id2p

(so that m = 2p).

280

Example 10 (Dual of the Lasso). One can also solve the dual problem to (18.7)

min
||B>q||∞61

f(q) =
λ

2
||q||2 − 〈q, y〉 (18.8)

so that one can use A =

(
B>

−B>
)

and b = 12p (so that d = n and m = 2p).

The main idea of interior point methods is to approximate (18.6) using a logarithmic barrier function

min
x∈Rp,

ft(x)
def.
= f(x)− 1

t
Log(y −Ax) (18.9)

where
Log(u)

def.
=
∑

i

log(ui)

so that -Log is a strictly concave function which acts as a barrier for positivity. On recovers the initial
problem in the limit, i.e. in some sense f + ιA·6y = f∞.

For a fixed t, one can solve (18.9) using a Newton method with some line search procedure (the simplest
being Armijo backtracking (13.14)) to select the step size 0 < τ` 6 1

x(`+1) def.
= x(`) − τ`[∂2ft(x

(`))]−1∇ft(x(`)) (18.10)

where here

∇ft(x) = ∇f(x) +
1

t
A>

1

y −Ax and ∂2ft(x) = ∂2f(x) +
1

t
A> diag

(
1

(y −Ax)2

)
A.

The natural stopping criterion for this descent step is

〈[∂2ft(x)]−1∇ft(x(`)), ∇ft(x(`))〉 < ε

2
.

The interior point barrier method proceed by ft using (18.10) (defining an approximated “central” path
t 7→ x(t)) for a series of increasing step sizes t = tk = µkt0 for some µ > 1. The crucial point here is to use
a “warm restart” strategy: in order to solve for x(tk), one should initialize the Newton steps (18.10) using
x(tk−1). This is what makes interior point methods efficient. Thanks to the use of a logarithmic barrier, one
can show the upper bound f(x(tk))− f(x?) 6 m/tk (m being the number of scalar constraints), so that in
order to a final error of ε, one needs to use k = 0, . . . ,K such that

m

tK
=

m

t0µK
6 ε.

This shows that only O(| log(ε)|) steps are necessary to reach ε precision. The important question to bound
the complexity of the method is thus to bound the number of Newton steps (18.10). This requires additional
hypotheses on f .

If the function f has a so-called self-concordance property, namely that for any (x, y), ϕ(s)
def.
= f(sx +

(1− s)y) satisfies
|ϕ′′′(s)| 6 2ϕ′′(s)3/2,

one can then that only a constant number of Newton steps are required per iterations (note that − log
being self-concordant, ft is also self-concordant) when using the warm-restart initialization to computes the
succession of x(tk). This result might looks surprising, but is possible because of the combination of the
warm restart strategy with the self-concordance property of ft: although problems become more and more
difficult (ft is becoming less regular) as t increases, the number of iterations of Newton stays constant. This
fundamental result supports the claim that interior point methods solve linear programs (and more general
types of problems including SDP problems) in polynomial times (where polynomial refers to polynomial in
log(ε)).

281

Figure 18.1: Proximal map and projection map.

18.3 Proximal Algorithm

For non-smooth functions f , it is not possible to perform an “explicit” gradient descent step because the
gradient is not even defined. One thus needs to replace this “explicit” step by an “implicit” one, which is
possible even if f is non-smooth.

18.3.1 Proximal Map

The implicit stepping of amplitude τ > 0 is defined as

∀x, Proxτf (x)
def.
= argmin

x′

1

2
||x− x′||2 + f(x′). (18.11)

It amounts to minimize function f locally around x, in a ball of radius controlled by τ . This the involved
function 1

2 ||x− ·||2 + f is strongly convex, this operator Proxτf is well defined and single-valued.
When f = ιC is an indicator, the proximal map boils down to a projection ProxιC = ProjC , it is thus

in some sense a generalization of the projection to arbitrary function. And can also be interpreted as a
projector on a level set of f . An interesting feature of the proximal map is that it is a contraction, thus
generalizing the well-known property of projectors.

Proposition 63. One has || proxf (x)− proxf (y)|| 6 ||x− y||.

Examples The following proposition states a few simples examples.

Proposition 64. One has

Prox τ
2 ||·||2(x) =

x

1 + τ
, and Proxτ ||·||1 = S1

τ (x), (18.12)

where the soft-thresholding is defined as

S1
τ (x)

def.
= (Sτ (xi))

p
i=1 where Sτ (r)

def.
= sign(r)(|r| − λ)+,

(see also (9.5)). For A ∈ RP×N , one has

Prox τ
2 ||A·−y||2(x) = (IdN + τA∗A)−1(x+ τA∗y). (18.13)

Proof. The proximal map of || · ||1 was derived in an informal wqy in Proposition 26. One can make a rigorous
proof using sub-differential calculus. Since the function is separable, one can restrict its attention to the 1-D
case. Optimality of x is thus equivalent to 0 ∈ x− y + τ∂| · |(x). For x = 0 being solution, this is equivalent
to 0 ∈ −y + [−τ, τ] i.e. y ∈ [−τ, τ]. For x 6= 0 being solution, one needs to have x = y − τ sign(x), and

282

indeed, for y /∈ [−τ, τ], the ansatz x = y − τ sign(y) satisfies x 6= 0 and sign(y) = sign(x), and it is thus the
solution (which is unique by strict convexity). For the quadratic case

z = Prox τ
2 ||A·−y||2(x) ⇔ z − x+ τA∗(Az − y) = 0 ⇔ (IdN + τA∗A)z = x+ τA∗y.

Note that in some case, the proximal map of a non-convex function is well defined, for instance Proxτ ||·||0
is the hard thresholding associated to the threshold

√
2τ , see Proposition 26.

18.3.2 Basic Properties

We recap some useful proximal-calculus.

Proposition 65. One has

Proxf+〈y, ·〉 = y + Proxf , Proxf(·−y) = y + Proxf (· − y).

If f(x) =
∑K
k=1 f(xk) for x = (x1, . . . , xK) is separable, then

Proxτf (x) = (Proxτfk(xk))Kk=1. (18.14)

Proof. One has

z = Proxf+〈y, ·〉(x) ⇔ 0 ∈ x− z + (∂f(x) + y) ⇔ 0 ∈ x− (z − y) + ∂f(x)

which is the optimality condition for z − y = Proxf (x).
One has

z = Proxf(·−y)(x) ⇔ 0 ∈ x− z + λ∂f(x− y) ⇔ 0 ∈ x′ − (z − y) + ∂f(x′)

where we defined x′
def.
= x− y, and this is the optimality condition for z − y = Proxf (x′)

The following proposition is very useful.

Proposition 66. If A ∈ RP×N is a tight frame, i.e. AA∗ = IdP , then

Proxf◦A = A∗ ◦ Proxf ◦A+ IdN −A∗A.

In particular, if A is orthogonal, then Proxf◦A = A∗ ◦ Proxf ◦A.

18.3.3 Related Concepts

Link with sub-differential. For a set-valued map U : H ↪→ G, we define the inverse set-valued map
U−1 : G ↪→ H by

h ∈ U−1(g) ⇐⇒ g ∈ U(h) (18.15)

[ToDo: add picture] The following proposition shows that the proximal map is related to a regularized
inverse of the sub-differential.

Proposition 67. One has Proxτf = (Id + τ∂f)−1.

Proof. One has the following equivalence

z = Proxτf (x)⇔ 0 ∈ z − x+ τ∂f(z)⇔ x ∈ (Id + τ∂f)(z)⇔ z = (Id + τ∂f)−1(x)

where for the last equivalence, we have replace “∈” by “=” because the proximal map is single valued.

The proximal operator is hence often referred to the “resolvent” Proxτf = (Id + τ∂f)−1 of the maximal
monotone operator ∂f .

283

Link with duality. One has the following fundamental relation between the proximal operator of a func-
tion and of its Legendre-Fenchel transform

Theorem 33 (Moreau decomposition). One has

Proxτf = Id− τ Proxf∗/τ (·/τ).

This theorem shows that the proximal operator of f is simple to compute if and only the proximal
operator of f∗ is also simple. As a particular instantiation, since according to , one can re-write the soft
thresholding as follow

Proxτ ||·||1(x) = x− τ Proj||·||∞61(x/τ) = x− Proj||·||∞6τ (x) where Proj||·||∞6τ (x) = min(max(x,−τ), τ).

In the special case where f = ιC where C is a closed convex cone, then

(ιC)
∗ = ιC◦ where C◦ def.

= {y ; ∀x ∈ C, 〈x, y〉 6 0} (18.16)

and C◦ is the so-called polar cone. Cones are fundament object in convex optimization because they are
invariant by duality, in the sense of (18.16) (if C is not a cone, its Legendre transform would not be an
indicator). Using (18.16), one obtains the celebrated Moreau polar decomposition

x = ProjC(x) +⊥ ProjC◦(x)

where “+⊥” denotes an orthogonal sum (the terms in the sum are mutually orthogonal). [ToDo: add
drawing] In the case where C = V is a linear space, this corresponds to the usual decomposition Rp =
V ⊕⊥ V ⊥.

Link with Moreau-Yosida regularization. The following proposition shows that the proximal operator
can be interpreted as performing a gradient descent step on the Moreau-Yosida smoothed version fµ of f ,
defined in (17.4).

Proposition 68. One has
Proxµf = Id− µ∇fµ.

18.4 Proximal Gradient Algorithms

We now describe some important algorithm which assumes some structure (a so-called “splitting”) of the
minimized functional to be able to apply proximal maps on sub-functions. Note that there is obviously many
ways to split or structure a given initial problem, so there are many non-equivalent ways to apply a given
proximal-based method to solve the problem. Finding the “best” way to split a problem is a bit like black
magic, and there is no definite answer. Also all there algorithm comes with step size and related parameters,
and there is no obvious way to tune these parameters automatically (although some insight might be gained
by studying convergence rate).

18.4.1 Proximal Point Algorithm

One has the following equivalence

x? ∈ argmin f ⇔ 0 ∈ ∂f(x?) ⇔ x? ∈ (Id + τ∂f)(x?) (18.17)

⇔ x? = (Id + τ∂f)−1(x?) = Proxτf (x?). (18.18)

This shows that being a minimizer of f is equivalent to being a fixed point of Proxτf . This suggest the
following fixed point iterations, which are called the proximal point algorithm

x(`+1) def.
= Proxτ`f (x(`)). (18.19)

On contrast to the gradient descent fixed point scheme, the proximal point method is converging for any
sequence of steps.

284

Theorem 34. If 0 < τmin 6 τ` 6 γmax < +∞, then x(`) → x? a minimizer of f .

This implicit step (18.19) should be compared with a gradient descent step (18.2)

x(`+1) def.
= (Id + τ`∇f)(x(`)).

One sees that the implicit resolvent (Id − τ`∂f)−1 replaces the explicit step Id + τ`∇f . For small τ` and
smooth f , they are equivalent at first order. But the implicit step is well defined even for non-smooth
function, and the scheme (the proximal point) is always convergent (whereas the explicit step size should be
small enough for the gradient descent to converge). This is inline with the general idea the implicit stepping
(e.g. implicit Euler for integrating ODE, which is very similar to the proximal point method) is more stable.
Of course, the drawback is that explicit step are very easy to implement whereas in general proximal map
are hard to solve (most of the time as hard as solving the initial problem).

18.4.2 Forward-Backward

It is in general impossible to compute Proxγf so that the proximal point algorithm is not implementable.
In oder to derive more practical algorithms, it is important to restrict the class of considered function, by
imposing some structure on the function to be minimized. We consider functions of the form

min
x
E(x)

def.
= f(x) + g(x) (18.20)

where g ∈ Γ0(H) can be an arbitrary, but f needs to be smooth.
One can modify the fixe point derivation (18.17) to account for this special structure

x? ∈ argmin f + g ⇔ 0 ∈ ∇f(x?) + ∂g(x?) ⇔ x? − τ∇f(x?) ∈ (Id + τ∂g)(x?)

⇔ x? = (Id + τ∂g)−1 ◦ (Id− τ∇f)(x?).

This fixed point suggests the following algorithm, with the celebrated Forward-Backward

x(`+1) def.
= Proxτ`g

(
x(`) − τ`∇f(x(`))

)
. (18.21)

Derivation using surrogate functionals. An intuitive way to derive this algorithm, and also a way to
prove its convergence, it using the concept of surrogate functional.

To derive an iterative algorithm, we modify the energy E(x) to obtain a surrogate functional E(x, x(`))
whose minimization corresponds to a simpler optimization problem, and define the iterations as

x(`+1) def.
= argmin

x
E(x, x(`)). (18.22)

In order to ensure convergence, this function should satisfy the following property

E(x) 6 E(x, x′) and E(x, x) = E(x) (18.23)

and E(x) − E(x, x′) should be a smooth function. Property (18.23) guarantees that f is decaying by the
iterations

E(x(`+1)) 6 E(x(`))

and it simple to check that actually all accumulation points of (x(`))` are stationary points of f .
In order to derive a valid surrogate E(x, x′) for our functional (18.20), since we assume f is L-smooth

(i.e. satisfies (RL)), let us recall the quadratic majorant (13.19)

f(x) 6 f(x′) + 〈∇f(x′), x′ − x〉+
L

2
||x− x′||2,

285

so that for 0 < τ < 1
L , the function

E(x, x′)
def.
= f(x′) + 〈∇f(x′), x′ − x〉+

1

2τ
||x− x′||2 + g(x) (18.24)

satisfies the surrogate conditions (18.23). The following proposition shows that minimizing the surrogate
functional corresponds to the computation of a so-called proximal operator.

Proposition 69. The update (18.22) for the surrogate (18.24) is exactly (18.21).

Proof. This follows from the fact that

〈∇f(x′), x′ − x〉+
1

2τ
||x− x′||2 =

1

2τ
||x− (x′ − τ∇f(x′))||2 + cst.

Convergence of FB. Although we impose τ < 1/L to ensure majorization property, one can actually
show convergence under the same hypothesis as for the gradient descent, i.e. 0 < τ < 2/L, with the same
convergence rates. This means that Theorem 32 for the projected gradient descent extend to FB.

Theorem 35. Theorems ?? and 24 still holds when replacing iterations (18.2) by (18.21).

Note furthermore that the projected gradient descent algorithm (18.5) is recovered as a special case
of (18.21) when setting J = ιC the indicator of the constraint set, since ProxρJ = ProjC in this case.

Of course the difficult point is to be able to compute in closed form Proxτg in (18.21), and this is usually
possible only for very simple function. We have already seen such an example in Section 14.1.4 for the
resolution of `1-regularized inverse problems (the Lasso).

18.5 Primal-Dual Algorithms

Convex duality, detailed in Section 17.3 (either from the Lagrange or the Fenchel-Rockafellar point of
view – which are essentially equivalent), is very fruitful to derive new optimization algorithm or to apply
existing algorithm on a dual reformulation.

18.5.1 Forward-backward on the Dual

Let us illustrate first the idea of applying a known algorithm to the dual problem. We consider here the
structured minimization problem associated to Fenchel-Rockafellar duality (17.12)

p? = inf
x
f(x) + g(Ax), (18.25)

but furthermore assume that f is µ-strongly convex, and we assume for simplicity that both (f, g) are
continuous. If f were also smooth (but it needs to be!), one could think about using the Forward-Backward
algorithm (18.21). But the main issue is that in general Proxτg◦A cannot be computed easily even if one can
compute Proxτg◦A. An exception to this is when A is a tight frame, as exposed in Proposition 66, but in
practice it is rarely the case.

Example 11 (TV denoising). A typical example, which was the one used by Antonin Chambolle [9] to develop
this class of method, is the total variation denoising

min
x

1

2
||y − x||2 + λ||∇x||1,2 (18.26)

where ∇x ∈ RN×d is the gradient (a vector field) of a signal (d = 1)or image (d = 2) x, and || · ||1,2 is the
vectorial-`1 norm (also called `1 − `2 norm), such that for a d-dimensional vector field (vi)

p
i=1

||v||1,2 def.
=
∑

i

||vi||.

286

Here

f =
1

2
|| · −y||2 and g = λ|| · ||1,2

so that f is µ = 1 strongly convex, and one sets A = ∇ the linear operator.

Example 12 (Support Vector Machine). We consider a supervised classification problems with data (ai ∈
Rp, yi ∈ {−1,+1})ni=1. The support vector machine classification method, with a ridge penalty ||x||2 reads

min
x∈Rp

`(−yi〈x, ai〉) +
λ

2
||x||2 =

λ

2
||x||2 + g(Ax) (18.27)

where `(s) = max(0, s+1) is the hinge loss function, where we denoted Ai,j = −yiai[j] and L(u) =
∑
i `(ui).

It corresponds to the split (18.25) using f(x) = λ
2 ||x||2.

Applying Fenchel-Rockafellar Theorem 30 (since strong duality holds, all involved functions being con-
tinuous), one has that

p? = sup
u
− g∗(u)− f∗(−A∗u). (18.28)

But more importantly, since f is µ-strongly convex, one has that f∗ is smooth with a 1/µ-Lipschitz gradient.
One can thus use the Forward-Backward algorithm (18.21) on (minus the energy of) this problem, which
reads

u(`+1) = Proxτkg∗
(
u(`) + τkA∇f∗(A∗u(`))

)
.

To guarantee convergence, the step size τk should be smaller than 2/L where L is the Lipschitz constant of
A ◦ ∇f∗ ◦A∗, which is smaller than ||A||2/µ.

Last but not least, one some (not necessarily unique) dual minimizer u? is computed, the primal-dual
relationships (17.18) ensures that one retrieves the unique primal minimizer x? as

−A∗u? ∈ ∂f(x?) ⇔ x? ∈ (∂f)−1(−A∗u?) = ∂f∗(−A∗u?) ⇔ x? = ∇f∗(−A∗u?)

where we used here the crucial fact that f∗ is smooth.

Example 13 (TV denoising). In the particular case of the TV denoising problem (18.26), one has

g∗ = ι||·||∞,26λ where ||v||∞,2 def.
= max

i
||vi|| =⇒

f?(h) =
1

2
||h||2 + 〈h, y〉,

so that the dual problem (re-written as a min) reads

min
||v||∞,26λ

1

2
|| − ∇∗v + y||2.

This can be minimized by projected gradient descent (special case of FB) using

Proxτg∗(u) =

(
min(||vi||, λ)

vi
||vi||

)

i

and ∇f?(h) = h+ y.

Furthermore, one has µ = 1 and A∗A = ∆ is the usual finite difference approximation of the Laplacian, so
that ||A||2 = ||∆|| = 4d where d is the dimension.

Example 14 (Support Vector Machine). For the SVM problem (18.27), one has

∀u ∈ Rn, g?(u) =
∑

i

`?(ui)

where
`?(t) = sup

s
ts−max(0, s+ 1) = −t+ sup

u
ts−max(0, s) = −t+ ι[0,1](t)

287

where we used the fact that the Legendre transform of max(0, s) is the indicator of the sub-differential at 0,
which is [0, 1] [ToDo: drawing]. Also, one has f(x) = λ

2 ||x||2 so that

f?(z) = λ(|| · ||2/2)(z/λ) = λ
||z/λ||2

2
=
||z||2
2λ

.

The dual problem reads

min
06v61

− 〈1, v〉+
||A>v||2

2λ

which can be solved using forward backward, in this case being equivalent to gradient descent. One thus has

Proxτg∗(u) = min
v∈[0,1]n

1

2
||u− v||2 − 〈1, v〉 = Proj[0,1]n(u− 1) = min(max(u− 1, 0),1).

18.5.2 Douglas-Rachford

We consider here the structured minimization problem

min
x∈Rp

f(x) + g(x), (18.29)

but on contrary to the Forward-Backward setting studied in Section 18.4.2, no smoothness is imposed on f .
We here suppose that we can compute easily the proximal map of f and g.

Example 15 (Constrained Lasso). An example of a problem of the form (18.29) where one can apply Douglas-
Rachford is the noiseless constrained Lasso problem (9.11)

min
Ax=y

||x||1

where one can use f = ιCy where Cy def.
= {x ; Ax = y} and g = || · ||1. As noted in Section 9.3.1, this problem

is equivalent to a linear program. The proximal operator of g is the soft thresholding as stated in (18.12),
while the proximal operator of g is the orthogonal projector on the affine space Cy, which can be computed
by solving a linear system as stated in (17.11) (this is especially convenient for inpainting problems or
deconvolution problem where this is achieved efficiently).

The Douglas-Rachford iterations read

x̃(`+1) def.
=
(

1− µ

2

)
x̃(`) +

µ

2
rProxτg(rProxτf (x̃(`))) and x(`+1) def.

= Proxτf (x̃(`+1)), (18.30)

where we have used the following shortcuts

rProxτf (x) = 2 Proxτf (x)− x.
One can show that for any value of τ > 0, any 0 < µ < 2, and any x̃0, x(`) → x? which is a minimizer of
f + g.

Note that it is of course possible to inter-change the roles of f and g, which defines another set of
iterations.

More than two functions. Another sets of iterations can be obtained by “symetrizing” the algorithm.
More generally, if we have K functions (fk)k, we re-write

min
x

∑

k

fk(x) = min
X=(x1,...,xk)

f(X) + g(X) where f(X) =
∑

k

fk(xk) and g(X) = ι∆(X)

where ∆ = {X ; x1 = . . . = xk} is the diagonal. The proximal operator of f is

Proxτf (X) = Proj∆(X) = (x̄, . . . , x̄) where x̄ =
1

K

∑

k

xk

while the proximal operator of f is easily computed from those of the (fk)k using (18.14). One can thus
apply DR iterations (18.30).

288

Handling a linear operator. One can handle a minimization of the form (18.25) by introducing extra
variables

inf
x
f1(x) + f2(Ax) = inf

z=(x,y)
f(z) + g(z) where

{
f(z) = f1(x) + f2(y)
g(z) = ιC(x, y),

where C = {(x, y) ; Ax = y}. This problem can be handled using DR iterations (18.30), since the proximal
operator of f is obtained from those of (f1, f2) using (18.14), while the proximal operator of g is the projector
on C, which can be computed in two alternative ways as the following proposition shows.

Proposition 70. One has

ProjC(x, y) = (x+A∗ỹ, y − ỹ) = (x̃, Ax̃) where

{
ỹ

def.
= (IdP +AA∗)−1(Ax− y)

x̃
def.
= (IdN +A∗A)−1(A∗y + x).

(18.31)

Proof. [ToDo: todo]

Remark 13 (Inversion of linear operator). At many places (typically to compute some sort of projector) one
has to invert matrices of the form AA∗, A∗A, IdP +AA∗ or IdN +A∗A (see for instance (18.31)). There are
some case where this can be done efficiently. Typical examples where this is simple are inpainting inverse
problem where AA∗ is diagonal, and deconvolution or partial Fourier measurement (e.g. fMRI) for which
A∗A is diagonalized using the FFT. If this inversion is too costly, one needs to use more advanced methods,
based on duality, which allows to avoid trading the inverse A by the application of A∗. They are however
typically converging more slowly.

18.5.3 Alternating Direction Method of Multipliers

In order to minimize the general splitting (18.25), of the form f+g◦A, in the absence of strong convexity
property of f , one can use Douglas-Rachford splitting presented in Section 18.5.2. This requires to be able to
compute Proxτf and Proxτg◦A. The Alternating Direction Method of Multipliers (ADMM) algorithm takes
a different route, and rather assume one is able to compute, in addition to Proxτg∗ (thus being equivalent to
the computation of Proxτg) and Proxτf?◦A∗ . In fact, it can be shown that ADMM is equivalent to applying
DR on the dual problem (18.28), which is the reason why it requires the use of the proximal map of the dual
functions.

For A ∈ Rn×p, we consider the problem derived in (17.13) using Lagrange duality and an extra scaling
by γ > 0

inf
x∈Rp

f(x) + g(Ax) = inf
y=Ax

f(x) + g(y) = inf
x∈Rp,y∈Rn

sup
z∈Rn

L((x, y), z)
def.
= f(x) + g(y) + γ〈z, Ax− y〉. (18.32)

The augmented Lagrangian corresponds to solving the problem

inf
x∈Rp,y∈Rn

sup
z∈Rn

Lγ((x, y), z)
def.
= L((x, y), z) +

γ

2
||Ax− y||2 = f(x) + g(y) + γ〈z, Ax− y〉+

γ

2
||Ax− y||2.

which is equivalent to (18.32) in the sense that they have the same solutions because the additional term
||Ax− y||2 is zero at the solutions.

The ADMM method then updates

y(`+1) def.
= argmin

y
Lγ((x(`), y), z(`)), (18.33)

x(`+1) def.
= argmin

x
Lγ((x, y(`+1)), z(`)), (18.34)

z(`+1) def.
= z(`) +Ax(`+1) − y(`+1). (18.35)

289

This is very similar to the dual ascent method, which perform a gradient descent on the dual (which a well
chosen step size), which can be shown to be the iterations

(x(`+1), y(`+1))
def.
= argmin

x,y
Lγ((x, y), z(`)),

z(`+1) def.
= z(`) +Ax(`+1) − y(`+1),

excepted that for ADMM the x and y variable are updated alternatively (hence the naming), which in many
situation gives tractable steps.

Step (18.35) can be understood as a gradient ascent on Lγ on the z variable, using a specific step size of
1/γ, so that the primal-dual relation ∇f(x?) + γA>z? = 0 (which are the optimality condition with respect
to x, assuming Ax? = y?, here we assume f is smooth for simplicity) is imposed at the end of the z update.
Indeed, the optimality condition for (18.34) reads

0 = ∇xLγ((x(`+1), y(`+1)), z(`)) = ∇f(x(`+1)) + γA>z(`) +A>(Ax(`+1) − y(`+1)) = ∇f(x(`+1)) + γA>z(`+1).

Step (18.33) is a proximal step, since

y(`+1) = argmin
y

g(y) + γ〈z(`), Ax(`) − y〉+
γ

2
||Ax(`) − y||2

= argmin
y

1

2
||y −Ax(`) − z(`)||2 +

1

γ
g(y) = Proxg/γ(Ax(`) + z(`)).

Step (18.34) is more involved, since it is a proximal step for a metric twisted by A

x(`+1) = argmin
x

f(x) + γ〈z(`), Ax− y(`+1)〉+
γ

2
||Ax− y(`+1)||2

= argmin
x

1

2
||Ax− y(`+1) + z(`)||2 1

γ
f(x)

def.
= ProxAf/γ(z(`) − y(`+1)).

The following formula, which can be shown after some tedious computation, shows that actually computing
this twisted proximal map is equivalent to the computation of the proximal operator of f∗ ◦A∗

ProxAf/γ(u) = A+

(
u− 1

γ
Proxγf∗◦A∗(γu)

)
.

Example 16 (Constrained TV recovery). We consider the problem of minimizing a TV norm under affine
constraints

min
Bx=y

||∇x||1

which is of the form f + g ◦A when defining A = ∇, g = || · ||1 and f = ιB·=y. The proximal map of g is the
soft thresholding, while the “twisted” proximal operator is

ProxAf/γ(u) = argmin
Bx=y

1

2
||Ax− u||2 = argmin

Bx=y
min
w

1

2
||∇x− u||2 + 〈w, Bx− y〉

where we added Lagrange multipliers w for the constraint Bx = y. From the first order conditions, an
optimal pair (x?, w?) is obtained by solving a linear system

(
∇>∇ B>

B 0

)(
x?

w?

)
=

(
∇>u
y

)

and note that ∆ = −∇>∇ is usually called the (discrete) Laplacian.

290

18.5.4 Primal-Dual Splitting

In the case where one cannot compute neither Proxτg◦A or Proxτf?◦A∗ , then one needs to use more
general proximal methods, which directly operate over the primal-dual saddle point. They are more general,
but in general less efficient than purely primal or dual methods. We thus consider the general structure
problem of the form (18.25), which we intend to solve in the primal-dual, using the fact that g = (g∗)∗

(otherwise one can re-use the approach using Lagrange duality performed in (17.13)) form as

inf
x
f(x) + g(Ax) = inf

x
f(x) + sup

u
〈Ax, u〉 − g∗(u) = sup

u
inf
x
f(x) + 〈Ax, u〉 − g∗(u). (18.36)

We make no assumption such as strong convexity of f .

Example 17 (Total Variation regularization of inverse problems). A typical instance of such a problem is for
the TV regularization of the inverse problem Kx = y, which corresponds to solving

min
x

1

2
||y −Kx||2 + λ||∇x||1,2.

where A = ∇, f(x) = 1
2 ||y − K · ||2 and g = λ|| · ||1,2. If one would be using directly f ◦ A (for instance in

combination with DR splitting), computing its proximal operator of f , which, following (18.13), requires
inverting either IdP +AA∗ or IdN +A∗A, see Remark 13. The goal is to avoid this here.

A standard primal-dual algorithm, which is detailed in [], reads

z(`+1) def.
= Proxσg∗(z

(`) + σA(x̃(`))

x(`+1) def.
= Proxτf (x(`) − τA∗(z(`+1)))

x̃(`) def.
= x(`+1) + θ(x(`+1) − x(`))

if 0 6 θ 6 1 and στ ||K||2 < 1, then x(`) converges to a minimizer of (18.36) .

291

292

Bibliography

[1] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

[2] Francis Bach. Learning theory from first principles. 2021.

[3] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

[4] Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MAT-
LAB. SIAM, 2014.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends R©
in Machine Learning, 3(1):1–122, 2011.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[7] E. Candès and D. Donoho. New tight frames of curvelets and optimal representations of objects with
piecewise C2 singularities. Commun. on Pure and Appl. Math., 57(2):219–266, 2004.

[8] E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying. Fast discrete curvelet transforms. SIAM
Multiscale Modeling and Simulation, 5:861–899, 2005.

[9] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging Vis.,
20:89–97, 2004.

[10] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and Thomas Pock. An intro-
duction to total variation for image analysis. Theoretical foundations and numerical methods for sparse
recovery, 9(263-340):227, 2010.

[11] Antonin Chambolle and Thomas Pock. An introduction to continuous optimization for imaging. Acta
Numerica, 25:161–319, 2016.

[12] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal
on Scientific Computing, 20(1):33–61, 1999.

[13] Philippe G Ciarlet. Introduction à l’analyse numérique matricielle et à l’optimisation. 1982.

[14] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. SIAM
Multiscale Modeling and Simulation, 4(4), 2005.

[15] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[16] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Commun. on Pure and Appl. Math., 57:1413–1541, 2004.

293

[17] D. Donoho and I. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81:425–455,
Dec 1994.

[18] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems, volume
375. Springer Science & Business Media, 1996.

[19] M. Figueiredo and R. Nowak. An EM Algorithm for Wavelet-Based Image Restoration. IEEE Trans.
Image Proc., 12(8):906–916, 2003.

[20] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, volume 1.
Birkhäuser Basel, 2013.

[21] Stephane Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008.

[22] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated varia-
tional problems. Commun. on Pure and Appl. Math., 42:577–685, 1989.

[23] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in Optimization,
1(3):127–239, 2014.

[24] Gabriel Peyré. L’algèbre discrète de la transformée de Fourier. Ellipses, 2004.

[25] J. Portilla, V. Strela, M.J. Wainwright, and Simoncelli E.P. Image denoising using scale mixtures of
Gaussians in the wavelet domain. IEEE Trans. Image Proc., 12(11):1338–1351, November 2003.

[26] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys.
D, 60(1-4):259–268, 1992.

[27] Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen, and L Sirovich.
Variational methods in imaging. Springer, 2009.

[28] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948.

[29] Jean-Luc Starck, Fionn Murtagh, and Jalal Fadili. Sparse image and signal processing: Wavelets and
related geometric multiscale analysis. Cambridge university press, 2015.

294

	Shannon Theory
	Analog vs. Discrete Signals
	Acquisition and Sampling
	Linear Translation Invariant Sampler

	Shannon Sampling Theorem
	Shannon Source Coding Theorem

	Fourier Transforms
	Hilbert spaces and Fourier Transforms
	Hilbertian bases.
	Fourier basis on R/2Z.

	Convolution on R and T
	Convolution
	Translation Invariant Operators
	Revisiting Poisson formula using distributions.

	Finite Fourier Transform and Convolution
	Discrete Ortho-bases
	Discrete Fourier transform
	Fast Fourier transform
	Finite convolution

	Discretisation Issues
	Fourier approximation via spatial zero padding.
	Fourier interpolation via spectral zero padding.

	Fourier in Multiple Dimensions
	On Continuous Domains
	On Discrete Domains
	Shannon sampling theorem.
	Convolution in higher dimension.

	Application to ODEs and PDEs
	On Continuous Domains
	Finite Domain and Discretization

	A Bit of Group Theory
	Characters
	More General cases

	A Bit of Spectral Theory
	On a Surface or a Manifold
	Spherical Harmonics
	On a Graph
	Other things

	Wavelets
	Multi-resolution Approximation Spaces
	Multi-resolution Details Spaces
	On Bounded Domains
	Fast Wavelet Transform
	Discretization
	Forward Fast Wavelet Transform (FWT)
	Inverse Fast Transform (iFWT)

	2-D Wavelets
	Anisotropic Wavelets
	Isotropic Wavelets

	Wavelet Design
	Low-pass Filter Constraints
	High-pass Filter Constraints
	Wavelet Design Constraints
	Daubechies Wavelets

	Linear and Non-linear Approximation
	Approximation
	Approximation in an Ortho-basis
	Linear Approximation
	Non-linear Approximation

	Signal and Image Modeling
	Uniformly Smooth Signals and Images
	Piecewise Regular Signals and Images
	Bounded Variation Signals and Images
	Cartoon Images

	Efficient approximation
	Decay of Approximation Error
	Comparison of bases.

	Fourier Linear Approximation of Smooth Functions
	1-D Fourier Approximation
	Sobolev Images

	Wavelet Approximation of Piecewise Smooth Functions
	Decay of Wavelet Coefficients
	1-D Piecewise Smooth Approximation
	2-D Piecewise Smooth Approximation

	Cartoon Images Approximation
	Wavelet Approximation of Cartoon Images
	Finite Element Approximation
	Curvelets Approximation

	Compression
	Transform Coding
	Coding
	De-coding
	Support Coding

	Entropic Coding
	JPEG-2000

	Denoising
	Noise Modeling
	Noise in Images
	Image Formation
	Denoiser

	Linear Denoising using Filtering
	Translation Invariant Estimators
	Optimal Filter Selection
	Wiener Filter
	Denoising and Linear Approximation

	Non-linear Denoising using Thresholding
	Hard Thresholding
	Soft Thresholding
	Minimax Optimality of Thresholding
	Translation Invariant Thresholding Estimators
	Exotic Thresholdings
	Block Thresholding

	Data-dependant Noises
	Poisson Noise
	Multiplicative Noise

	Variational Priors and Regularization
	Sobolev and Total Variation Priors
	Continuous Priors
	Discrete Priors

	PDE and Energy Minimization
	General Flows
	Heat Flow
	Total Variation Flows
	PDE Flows for Denoising

	Regularization for Denoising
	Regularization
	Sobolev Regularization
	TV Regularization

	Inverse Problems
	Inverse Problems Regularization
	Theoretical Study of Quadratic Regularization
	Singular Value Decomposition
	Tikonov Regularization

	Quadratic Regularization
	Solving Linear System

	Non-Quadratic Regularization
	Total Variation Regularization
	Gradient Descent Method
	Examples of Gradient Computation

	Examples of Inverse Problems
	Deconvolution
	Inpainting
	Tomography Inversion

	Sparse Regularization
	Sparsity Priors
	Ideal sparsity prior.
	Convex relaxation
	Sparse Regularization and Thresholding

	Sparse Regularization of Inverse Problems
	Iterative Soft Thresholding Algorithm
	Noiseless Recovery as a Linear Program
	Projected Gradient Descent for 1.
	Iterative Soft Thresholding and Forward Backward

	Example: Sparse Deconvolution
	Sparse Spikes Deconvolution
	Sparse Wavelets Deconvolution
	Sparse Inpainting

	Theory of Sparse Regularization
	Existence and Uniqueness
	Existence
	Polytope Projection for the Constraint Problem
	Optimality Conditions
	Uniqueness
	Duality

	Consistency and Sparsitency
	Bregman Divergence Rates for General Regularizations
	Linear Rates in Norms for 1 Regularization
	Sparsistency for Low Noise
	Sparsistency for Arbitrary Noise

	Sparse Deconvolution Case Study

	Compressed Sensing
	Motivation and Potential Applications
	Single Pixel Camera
	Sparse Recovery

	Dual Certificate Theory and Non-Uniform Guarantees
	Random Projection of Polytopes
	Random Matrices
	Dual Certificates

	RIP Theory for Uniform Guarantees
	Restricted Isometry Constants
	RIP implies dual certificates
	RIP implies stable recovery
	Fourier sampling RIP

	Basics of Machine Learning
	Unsupervised Learning
	Dimensionality Reduction and PCA
	Clustering and k-means

	Empirical Risk Minimization
	Empirical Risk
	Prediction and Consistency
	Parametric Approaches and Regularization
	Testing Set and Cross-validation

	Supervised Learning: Regression
	Linear Regression

	Supervised Learning: Classification
	Nearest Neighbors Classification
	Two Classes Logistic Classification
	Multi-Classes Logistic Classification

	Kernel Methods
	Feature Map and Kernels
	Kernel Design
	General Case

	Probably approximately correct learning theory
	Non parametric setup and calibration
	PAC bounds

	Optimization & Machine Learning: Smooth Optimization
	Motivation in Machine Learning
	Unconstraint optimization
	Regression
	Classification

	Basics of Convex Analysis
	Existence of Solutions
	Convexity
	Convex Sets

	Derivative and gradient
	Gradient
	First Order Conditions
	Least Squares
	Link with PCA
	Classification
	Chain Rule

	Gradient Descent Algorithm
	Steepest Descent Direction
	Gradient Descent

	Convergence Analysis
	Quadratic Case
	General Case
	Acceleration

	Optimization & Machine Learning: Advanced Topics
	Regularization
	Penalized Least Squares
	Ridge Regression
	Lasso
	Iterative Soft Thresholding

	Stochastic Optimization
	Minimizing Sums and Expectation
	Batch Gradient Descent (BGD)
	Stochastic Gradient Descent (SGD)
	Stochastic Gradient Descent with Averaging (SGA)
	Stochastic Averaged Gradient Descent (SAG)

	Automatic Differentiation
	Finite Differences and Symbolic Calculus
	Computational Graphs
	Forward Mode of Automatic Differentiation
	Reverse Mode of Automatic Differentiation
	Feed-forward Compositions
	Feed-forward Architecture
	Recurrent Architectures

	Shallow Learning
	Recap on Supervised Learning
	Multi-layer Perceptron
	Training a MLP
	Controlling the Estimation Error
	Universality
	Approximation Rates
	Barron's spaces
	Barron's Theorem
	Integral representation over w

	Deep Learning
	Deep Architectures
	Deep Network Structure
	Perceptron and Shallow Models
	Convolutional Neural Networks
	Advanced Architectures
	Scattering Transform

	Convex Analysis
	Basics of Convex Analysis
	Convex Sets and Functions
	First Order Conditions

	Legendre-Fenchel Transform
	Legendre Transform
	Legendre transform and smoothness

	Convex Duality
	Lagrange Duality: Afine Constraint
	Lagrange Duality: General Case
	Fenchel-Rockafellar Duality

	Non-smooth Convex Optimization
	Descent Methods
	Gradient Descent
	Sub-gradient Descent
	Projected Gradient Descent

	Interior Point Methods
	Proximal Algorithm
	Proximal Map
	Basic Properties
	Related Concepts

	Proximal Gradient Algorithms
	Proximal Point Algorithm
	Forward-Backward

	Primal-Dual Algorithms
	Forward-backward on the Dual
	Douglas-Rachford
	Alternating Direction Method of Multipliers
	Primal-Dual Splitting

