
An Introduction to Data Sciences

Gabriel Peyré
CNRS & DMA

École Normale Supérieure
gabriel.peyre@ens.fr

https://mathematical-tours.github.io

March 14, 2019

gabriel.peyre@ens.fr
https://mathematical-tours.github.io

2

Presentation

The three chapters of this text are independent and present gentle introductions to a few im-
portant mathematical foundations of imaging sciences:

• Chapter 1 presents Shannon theory of compression, and insists in particular on the entropy
bound for coding of information.

• Chapter 2 presents the basics of image processing, in particular some important processings
(quantization, densoising, colors).

• Chapter 3 presents sampling theory, from Shannon classical sampling to compressed sensing.
It also serves as a gentle introduction to the field of inverse problems regularization.

• Chapter 4 presents optimal transport and its applications to data sciences.

The exposition level for the first two chapters is elementary. The last chapter presents more advanced
mathematical concepts and results.

3

4

Contents

1 Claude Shannon and Data Compression 7
1.1 Numeric Data and Coding . 7
1.2 Encoding and Decoding . 8

1.2.1 Example of an Image . 8
1.2.2 Uniform Coding . 9
1.2.3 Logarithm and Uniform Coding . 9
1.2.4 Variable-length Encoding . 10
1.2.5 Prefix Coding and Decoding . 10
1.2.6 Codes and Trees . 11

1.3 The Shannon Bound . 12
1.3.1 Minimum Length Code and Random Modeling 12
1.3.2 Empirical Frequencies . 12
1.3.3 Entropy . 13
1.3.4 Average number of bits of a source . 14
1.3.5 Shannon Bound for Coding . 15
1.3.6 Transformation of information . 16

1.4 Conclusion . 18

2 Image Processing 21
2.1 The pixels of an image . 21
2.2 Image Storage . 22

2.2.1 Binary Codes . 22
2.2.2 Sub-sampling an Image . 22
2.2.3 Quantizing an image . 23

2.3 Noise Removal . 23
2.3.1 Local Averaging . 23
2.3.2 Local Median . 25

2.4 Detecting Edges of Objects . 25
2.5 Color Images . 26

2.5.1 RGB Space . 26
2.5.2 CMJ Space . 27

2.6 Changing the Contrast of an Image . 28
2.6.1 Luminance . 28
2.6.2 Grayscale contrast manipulations . 29
2.6.3 Manipulations of Color Contrast . 29

5

2.7 Images and Matrices . 30
2.7.1 Symmetry and Rotation . 30
2.7.2 Interpolation Between Two Images . 30

3 Sparsity, Inverse Problems and Compressed Sensing 33
3.1 Traditional Sampling . 33
3.2 Nonlinear Approximation and Compression . 34

3.2.1 Nonlinear Approximation . 34
3.2.2 Approximation in an orthonormal basis . 35

3.3 Inverse Problems and Sparsity . 36
3.3.1 Inverse Problems . 36
3.3.2 Sparse Regularization . 37
3.3.3 `1 Regularization . 37
3.3.4 From Intuition to Theory . 39

3.4 Compressed sampling . 40
3.4.1 Single Pixel Camera . 40
3.4.2 Theoretical Guarantees . 41

4 Numerical Optimal Transport and its Applications 45
4.1 Optimal Transport of Monge . 45
4.2 Optimal Transport of Kantorovich . 48
4.3 Applications . 50

6

Chapter 1

Claude Shannon and Data Compression

The vast majority of data (text, sound, image, video, etc.) is stored and manipulated in digital
form, that is, using integers which are converted into a succession of bits (0 and 1). Conversion
from the continuous analog world to these discrete numerical representations is described by the
theory developed by Claude Shannon (April 30, 1916–February 24, 2001), the founding father of
the theory of information. The impact of this theory on our society is absolutely colossal. Yet his
name is almost unknown to the general public. The centenary of the birth of Claude Shannon is
therefore a good excuse to present the work of a major scientist.

1.1 Numeric Data and Coding

In the digital world that surrounds us, all data (images, films, sounds, texts, etc.) are coded
in the form of a succession of 0 and 1. This encoding is not limited to storage on computers, it
is also central for communications over the internet (email, “streaming” video, etc.) as well as for
applications as diverse as music players, e-readers or mobile phones.

However, data (eg text, sounds, images, or videos) is initially represented as a succession of
symbols, which are not necessarily 0 or of 1. For example, for the case of a text, the symbols
are the letters of the alphabet. For the case of images, these are the values of the pixels. It is
therefore necessary to be able to convert this sequence of symbols into a sequence of 0 and 1. It is
also necessary to be able to do it in an economical way, that is to say using the shortest possible
sequence. This is crucial in order to be able to store this data efficiently on a hard disk, or to
transmit them quickly on the Internet. This problem of compression has become a major issue
because the stored and transmitted data grow exponentially.

The theory developed by Claude Shannon describes the theoretical and algorithmic bases of this
coding. He mathematically formalized the three key stages of conversion from the analog world to
the digital world:

(i) sampling1, which allows one to switch from continuous data to a succession of numbers;

(ii) coding2 (also known as compression), which allows one to move to a more compact sequence
of 0 and 1 (called binary code);

1https://en.wikipedia.org/wiki/Sampling_(signal_processing)
2https://en.wikipedia.org/wiki/Data_compression

7

https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Data_compression

(iii) error-correcting code3, which makes code robust to errors and attacks.

For each of these steps, Claude Shannon has established performance “upper bounds” in [28,
29], under precise assumptions about the data and the transmission channel. These performance
bounds set limits that can not be exceeded, regardless of the method used. For example, for the
encoding phase (ii), this bound corresponds to the minimum theoretical size of the binary messages
making it possible to code the desired information. In the second half of the 20th century, efficient
computational methods and algorithms were developed that reach the limits of Shannon, leading to
the 21st century on the explosion of the digital age. This article focuses on part (ii) and presents
the basics of data compression as defined by Claude Shannon.

You can find at the end of this article a glossary summarizing the most important terms.

1.2 Encoding and Decoding

We will now describe and study the transformation (coding) from the sequence of {0, 1, 2, 3}
symbols to a binary code, that is, a sequence of 0 and 1.

1.2.1 Example of an Image

In the rest of this article, I will illustrate my remarks using grayscale images. Such an image is
composed of pixels. To simplify, we will consider only pixels with 4 levels of gray:

0: black,
1: dark gray,
2: light gray,
3: white.

However, all that will be described hereafter can be generalized to an arbitrary number of gray levels
(in general, the images that are found on the Internet have 256 levels) and even to color images
(which can be decomposed in 3 monochrome images, the red, green and blue components).

Figure 1.1 shows an example of an image with 4 levels of gray, with a zoom on a subset of 5× 5
pixels.

Figure 1.1: A greyscale image and a zoom on a square of 5× 5 pixels

3https://en.wikipedia.org/wiki/Error_detection_and_correction

8

https://en.wikipedia.org/wiki/Error_detection_and_correction

We will focus on this set of 25 pixels (the rest of the image is treated in the same way). If we
put the corresponding values one after the other, we get the following sequence of symbols, which
are numbers between 0 and 3

(0, 1, 3, 2, 0, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1).

1.2.2 Uniform Coding

The coding step therefore proceeds by associating to each of the symbols {0, 1, 2, 3} a code word,
which is a sequence of 0 and 1.

One possible strategy is to use coding

0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11.

This is a particular case of uniform coding, which associates with each symbol a code word of fixed
length (here of constant length 2).

Thus the sequence of (0, 1, 3) symbols is coded as

(0, 1, 3)
coding7−→ (00, 01, 11)

grouping7−→ 000111.

The complete sequence of symbols corresponding to the image of 5× 5 pixels shown above will give
the code

00011110001110100110100101101010010110101001011001.

The length (ie the number of 0 and 1) in the sequence 0 and 1 used to encode a message is measured
in number of bits. Using the previous uniform coding, which uses 2 bits per symbols, as one must
code 25 symbols, a length

L̄ = 25× 2 = 50 bits

The bit (“binary digit”) is the fundamental unit of information, and was introduced by John Tukey4

who was a collaborator of Claude Shannon.

1.2.3 Logarithm and Uniform Coding

If the number N of possible symbols (in this case N = 4) is a power of 2, that is N = 2` (here
N = 4 = 22 so that ` = 2), one can always construct such a uniform code where one associates
to each symbol its binary writing. We have given the example of the uniform coding of N = 4
symbols, and the case of N = 8 (thus ` = 3) symbols corresponds to the coding

0 7→ 000, 1 7→ 001, 2 7→ 010, 3 7→ 011,

4 7→ 100, 5 7→ 101, 6 7→ 110, 7 7→ 111.

This binary code has a length `, which is called the logarithm in base of 25 of N , which is noted

N = 2` ⇐⇒ log2(N)
def.
= `.

The definition of log2(x) also extends to the case where x is not a power of 2, using the definition
log2(x)

def.
= ln(x)/ ln(2), where ln is the natural logarithm. In this case, log2(x) is not an integer. For

a strictly positive real number x, the logarithm satisfies log2(1/x) = − log2(x), so for example, we
have log2(1/4) = − log2(4) = 2.

4https://en.wikipedia.org/wiki/John_Tukey
5https://en.wikipedia.org/wiki/Binary_Logarithm

9

https://en.wikipedia.org/wiki/John_Tukey
https://en.wikipedia.org/wiki/Binary_Logarithm

1.2.4 Variable-length Encoding

An important question is whether we can do better (that is, use fewer bits to code the same
sequence of symbols). For example, the following coding may be used instead of a uniform code

0 7→ 001, 1 7→ 01, 2 7→ 1, 3 7→ 000.

With such coding, the (0, 1, 3) symbol sequence is coded as

(0, 1, 3)
codage7−→ (001, 01, 000)

regroupement7−→ 00101000.

The complete sequence of symbols corresponding to the image of 5× 5 pixels will give the code

001010001001000110111010111101011110101101.

The length of the binary code obtained is therefore now

L̄ = 42bits

This shows that it is therefore possible to do better than with a uniform coding using a variable
coding, which associates a variable length code with each symbol.

It is also possible to define the average number of bits per symbol L, which is computed, here
for a sequence of 25 symbols, as

L def.
=
L̄
25

=
42

25
= 1.68 bits.

Compared to a uniform coding, it is seen that the average number of bits per symbol has changed
from log2(N) = 2 bits to 1.68 bits.

1.2.5 Prefix Coding and Decoding

These codings, uniform or of variable length, would be of no interest if we did not ensure that
the message obtained is decodable, ie we can find the sequence of symbols at the origin of a binary
code. All encodings do not allow for this reverse path.

For uniform encodings, such as coding

0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11.

it is sufficient to separate the sequence of bits into packets of length log2(N)(here N = 4 and
log2(N) = 2) and use the encoding table in the opposite direction. Thus, the 000111 binary code
is decoded as

000111
splitting7−→ (00, 01, 11)

decoding7−→ (0, 1, 3).

On the other hand, if we consider the coding

0 7→ 0, 1 7→ 10, 2 7→ 110, 3 7→ 101,

then the bit sequence 1010 can be decoded in two ways:

1010
splitting7−→ (10, 10)

decoding7−→ (1, 1),

10

or
1010

splitting7−→ (101, 0)
decoding7−→ (3, 0).

This means that this sequence can be decoded either as the sequence (1, 1), or as the (3, 0) sequence.
Note that the 10 encoding word used to encode 1 is the beginning of the 101 word used to encode
3.

To be able to do the decoding in an unambiguous way, it is enough that no word of the coding
is the beginning of another word. When this condition is satisfied, we speak of prefix 6 and it is
therefore possible to carry out the decoding step by step. It is easily verified that this is indeed the
case for the non-uniform coding already considered previously

0 7→ 001, 1 7→ 01, 2 7→ 1, 3 7→ 000.

The progressive decoding of the symbol message of the pixels of the image is carried out as follows:

001010001001000110111010111101011110101101 −→ decoding 0

001010001001000110111010111101011110101101 −→ decoding 1

001100001001000110111010111101011110101101 −→ decoding 3

001100301001000110111010111101011110101101 −→ decoding 2 . . .

1.2.6 Codes and Trees

As shown in Figure 1.2, in the top left, it is possible to place the set of binary codes of less than
` bits in a tree of depth `+ 1. The 2` words of length exactly ` occupy the sheets, and the shorter
words are the inner nodes.

Décodage non-ambiguë : aucun mot du code n’est le début d’un autre.

Code préfixe.

Décodage et arbres binaires

00101000100100011011101011110101110101101Code reçu :

0																																				1

00														01															10															11

000			001			010			011			100			101			110			111

3 0

1

2

000			001			010			011			100			101			110			111

0																																				1

00														01															10															11

Décodage: parcours de l’arbre.
00101000100100011011101011110101110101101 ! décode 0

0 ! 001, 1 ! 01, 2 ! 1, 3 ! 000

! Se représente sous forme d’un arbre binaire.Décodage non-ambiguë : aucun mot du code n’est le début d’un autre.

Code préfixe.

Décodage et arbres binaires

00101000100100011011101011110101110101101Code reçu :

0																																				1

00														01															10															11

000			001			010			011			100			101			110			111

3 0

1

2

000			001			010			011			100			101			110			111

0																																				1

00														01															10															11

Décodage: parcours de l’arbre.
00101000100100011011101011110101110101101 ! décode 0

0 ! 001, 1 ! 01, 2 ! 1, 3 ! 000

! Se représente sous forme d’un arbre binaire.

Figure 1.2: Left: complete tree of all codes of length 3; right: example of prefix code.

The prefix encodings are then represented as the leaves of the subtrees of this complete tree.
Figure 1.2, top right, shows which subtree corresponds to the variable-length code

0 7→ 001, 1 7→ 01, 2 7→ 1, 3 7→ 000.

Once a prefix encoding has been represented as a binary subtree, the decoding algorithm is par-
ticularly simple to implement. When decoding is begun, one moves to the root, and descends to
each new bit read either to the left (for a 0) or to the right (for a 1). When one reaches a leaf of
the subtree, one then sends the word of the code corresponding to this leaf, and one restarts to the
root. The previous figure shows the decoding process.

6https://en.wikipedia.org/wiki/Prefix_Code

11

https://en.wikipedia.org/wiki/Prefix_Code

1.3 The Shannon Bound

After describing the coding techniques, we will now explain the Shannon theory, which analyzes
the performance of these techniques (ie the number of bits needed for coding) by performing a
random modeling of the message to be coded which is composed of a particular sequence of symbols).

1.3.1 Minimum Length Code and Random Modeling

The use of variable length prefix encoding shows that an average number of bits Lcan be obtained
than the number log2(N) of bits obtained by a uniform code. The fundamental question, both on
a theoretical and practical level, is whether we can find a prefix coding giving rise to a minimum
number of bits per symbol.

This question is not correctly phrased, because its answer depends on the message to be coded,
and this message is generally unknown a priori. A model is therefore needed to describe possible
messages. The fundamental idea introduced by Claude Shannon is to use a probabilistic model: we
do not know what messages we will have to code, but we assume that we know the probability of
appearance of the symbols composing this message.

Shannon assumes that the symbols that make up the modeled message are drawn indepen-
dently7 according to a random variable V (the source of the message). This means that the symbols
composing the modeled message are independent random variables with the same distribution as
V .

1.3.2 Empirical Frequencies

In order to apply this probabilistic model to a given message, we will act as if we randomly draw
each symbol one after the other according to probabilities identical to the frequencies observed (on
average) in the case studied.

This means that we impose that the distribution of the V source to be equal to the empirical
frequencies observed in the message. Empirical frequencies (p0, p1, p2, p3) are the frequency of
appearance of the different symbols (0, 1, 2, 3). For the set of the 25 pixels of the grayscale image

(0, 1, 3, 2, 0, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1),

the frequency p1 is equal to 9/25 because the symbol 1 appears 9 times and it is desired to encode
a sequence of 25 symbols. The list of empirical frequencies for this sequence of symbols is thus

p0 = 2
25 , p1 = 9

25 , p2 = 12
25 , p3 = 2

25 .

The random modeling therefore imposes on the variable V to have for probability distribution
(p0, p1, p2, p3), ie the probability that a symbol of the modeled message (assumed to be generated
by the V source) is P(V = v) = pv.

This is an important example of modeling, which is of course not always relevant but allows
a fine analysis of the problem. For example, in the case of an image, if a pixel is black, the next
one is likely to be black, even if the overall black frequency is low. This defeats the independence
hypothesis (the “Information Transformation” section details this example).

7https://en.wikipedia.org/wiki/Independencies_(probability)

12

https://en.wikipedia.org/wiki/Independencies_(probability)

1.3.3 Entropy

In order to answer the coding problem with a minimum average number of bits, Shannon intro-
duced a fundamental mathematical object: entropy8. Entropy was invented by Ludwig Boltzmann9

in the context of thermodynamics10 and this concept was taken up by Claude Shannon to develop
his theory of information. The entropy of the distribution of the source V is defined by the formula

HV def.
= −

N−1∑
v=0

pv × log2(pv).

This formula means that we sum up for all possible v symbols the frequency of occurrence pv of
the symbol v multiplied by the logarithm log2(pv) of this frequency, then take the opposite (minus
sign) of the number obtained.

As the logarithm is an increasing function, and as log2(1) = 0, we have log2(pv) 6 0 because
pv is always less than 1). The minus sign before the formula defining the entropy ensures that this
quantity is always positive.

In our case, we have N = 4 values for the symbols, and we use the formula

HV def.
= −p0 × log2(p0)− p1 × log2(p1)− p2 × log2(p2)− p3 × log2(p3).

Note that if pv = 0, then the convention pv × log2(pv) = 0 × log2(0) = 0. This convention means
that null probabilities (ie, impossible events) are not taken into account in this formula. Moreover,
it is consistent with the limit value of the function x 7→ x ln(x) at x = 0.

The goal of entropy is to quantify the uncertainty on possible symbol sequences generated by
the V source. We can show that the entropy verifies

0 6 HV 6 log2(N).

The two extreme values thus correspond to respective minimum and maximum uncertainties.

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0 ! 001, 1 ! 01, 2 ! 1, 3 ! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0 ! 001, 1 ! 01, 2 ! 1, 3 ! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

00101000100100011011101011110101110101101Code à envoyer:
001 01 000 1 001 000 1 1 01 1 1 01 01 1 1 1 01 01 1 1 01 01 1 01

0 ! 001, 1 ! 01, 2 ! 1, 3 ! 000

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p2 p3

0.27 0.53 0.19 0.01
p1 0 1 2 3

0

0.1

0.2

0.3

p0 p2 p3p1

0.25 0.25 0.25 0.25
0 1 2 3

0

0.2

0.4

0.6

0.8

1

p0 p2 p3p1

0 1 0 0

0 1 2 3
0

0.1

0.2

0.3

0.4

p0 p2 p3p1

2

25

2

25

9

25

12

25

HV = 0 HV = log2(2) = 1 HV = 1.62

Figure 1.3: Three examples of probability distributions with corresponding entropies.

• Minimal entropy The entropy HV = 0 is minimal when the frequencies pv are all null except
one. The left-handed figure 1.3 shows the case where p1 = 1 and all other probabilities are
null.

8https://en.wikipedia.org/wiki/Entropy
9https://en.wikipedia.org/wiki/Ludwig_Boltzmann

10https://en.wikipedia.org/wiki/Entropie_(thermodynamics)

13

https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Entropie_(thermodynamics)

In this case,

HV = −0× log2(0)− 1× log2(1)− 0× log2(0)− 0× log2(0) = 0,

where we recall that log2(1) = 0 and that by convention we have 0 × log2(0) = 0. This
corresponds to the modeling of a constant sequence of symbols, and the source will generate,
for example, with probability 1 the following sequence of 25 symbols

(0, 0).

• Maximum entropy On the other hand, HV = log2(N) is maximal when all frequencies are
equal, pv = 1/N . In our case where N = 4, we have

HV = −1
4 × log2(1

4)− 1
4 × log2(1

4)− 1
4 × log2(1

4)− 1
4 × log2(1

4) = log2(4) = 2,

where log2(1/x) = − log2(x) is used and therefore in particular log2(1
4) = − log2(4). The

following figure 1.3, center, shows the histogram corresponding to this case.

This situation corresponds intuitively to the modeling of a sequence maximally uncertain.
Here, for example, are two sequences of symbols generated by such a source V

(2, 2, 1, 1, 3, 0, 3, 3, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 3, 2, 0, 2, 2, 1, 3),

(3, 3, 1, 2, 0, 0, 2, 2, 1, 3, 2, 2, 3, 3, 2, 0, 0, 3, 0, 1, 3, 0, 1, 1, 2).

• Intermediate entropy The intermediate situations between these two extremes correspond
to intermediate entropies. For example, we can consider the distribution of the 25 pixels
considered at the beginning of this article, which correspond to the message

(0, 1, 3, 2, 0, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1).

For this distribution, we recall that we have the probabilities

p0 = 2
25 , p1 = 9

25 , p2 = 12
25 , p3 = 2

25 ,

the figure 1.3, right, shows the histogram corresponding to these values.

The entropy then

HV = − 2
25 × log2(2

25)− 9
25 × log2(9

25)− 12
25 × log2(12

25)− 2
25 × log2(2

25) ≈ 1.62,

which corresponds to a “intermediate” value of the entropy.

1.3.4 Average number of bits of a source

In the following, we denote cv the code associated with a symbol v. The length (i.e. the number
of bits) of each word cv of code is denoted L(cv). For uniform coding, then the length is constant
L(cv) = log2(N). On the other hand, if we take the example of variable coding

0 7→ c0
def.
= 001, 1 7→ c1

def.
= 01, 2 7→ c2

def.
= 1, 3 7→ c3

def.
= 000,

14

then L(c0) = L(001) = 3.
It can be seen that the average bit number L of the encoding of a message can be calculated

using the empirical frequencies as follows:

L =

N−1∑
v=0

pv × L(cv).

This formula means that we sum up for all possible v symbols the frequency of occurrence pv of the
symbol multiplied by the length L(cv) of the code word cv. For example, in our case, for N = 4, we
have the formula

L = p0 × L(c0) + p1 × L(c1) + p2 × L(c2) + p3 × L(c3).

As part of the random modeling using a V source, we will write Lv this average bit number, which
is associated with the source V having the distribution (pv)v.

1.3.5 Shannon Bound for Coding

Claude Shannon showed in his article [28] that the entropy allows to bound the average number
of bits Lv within the framework of this random model. He indeed showed that for any prefix
encoding, one has

HV 6 Lv.
This is a lower bound, and it says no prefix encoding can do better than this bound.

This result is fundamental because it describes an unbreakable limit, whatever the prefix encod-
ing technique used. Its proof is too difficult to be exposed here, it uses the representation in the
form of a tree detailed above in Section 1.2.6, one can look for example [19] for the details. This
proof shows that it is necessary to spend on average at least − log2(pv) bits (which is, as we have
already seen, always a positive number) to code a symbol v if one wants to have an effective coding.
The most frequent symbols need fewer bits because pv is smaller, so the optimal length − log2(pv)
is also smaller. This is very natural, as can be seen in particular for the two extreme cases:

• Minimal entropy If HV = 0, then with probability 1, the sequence of symbols is composed
of a single symbol. In this case, the use of a prefix encoding is very inefficient, since it must
use at least one bit per symbol ie LV > 1, and thus such a coding is far from reaching the
boundary of Shannon.

The entropy being zero, the boundary says that one would wish to spend nothing for coding.
This is logical, because there is no need to code such a sequence (since it is always the same).

• Maximum entropy If HV = log2(N), then all symbols are equally probable, so we must
use codewords of the same length for all symbols, which is obtained by a uniform code. As
we saw above, such a code requires Lv = log2(N) = Hv bits per symbol, and thus the lower
bound of Shannon is tight in this case.

• Intermediate entropy In the case of the distribution of the 25 pixels considered at the
beginning of this article, which correspond to the message

(0, 1, 3, 2, 0, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1),

15

it is recalled that the entropy and the average number of bits, which have already been
calculated, are respectively

HV ≈ 1.62 bits et LV = 1.68 bits.

These values are in agreement with Shannon bound, and show that the prefix encoding used
allows to be close enough to this bound.

We can ask whether this bound is precise, and whether it is possible to construct codes reaching
the Shannon boundary in all cases (and not just the two extreme cases). Huffmann proposed in [18]
a construction of an “optimal” encoding (ie having the average length LV minimum for a given
source V) using an elegant algorithm. The average length obtained by this coding satisfies

HV 6 LV 6 HV + 1.

The fact that this average length can be potentially as large as HV + 1(and therefore quite different
from Shannon’s lower bound Hv) the length L(cword) of a word cv of the code is an integer, while the
optimal length should be − log2(pv) which is not generally an integer. To overcome this problem,
the symbols must be coded in groups, which can be done efficiently using Arithmetic Coding11 [25],
which reach the boundary of Shannon when we code an infinite sequence of symbols.

Shannon’s theory thus makes it possible to bound the average coding length, which gives im-
portant information about the performance of a coding method for a given source. However, note
that this does not give information on other potentially interesting statistical quantities, such as
the maximum length or the median length.

1.3.6 Transformation of information

This entropy bound implicitely assumes that the symbols that make up the message to be coded
are generated independently by the source V . This hypothesis allows a simple mathematical analysis
of the problem, but it is generally false for complex data, as for example for the image shown in
the following figure. Indeed, it is clear that the value of a pixel is not at all independent of those
of its neighbors. For example, there are large homogeneous zones where the value of the pixels is
quasi-constant.

In order to improve the coding performance, and to obtain effective image compression methods,
it is crucial to retransform the sequence of symbols in order to reduce its entropy by exploiting the
dependencies between the pixels. A simple transformation to do this involves replacing the p pixels
(vi)

P
i=1 with those of their differences (di

def.
= vi−vi−1)P−1

i=1 . Indeed, in a uniform zone, the successive
differences will be zero because the pixels have the same value. Figure 1.4 shows how to perform
such a calculation. It also shows that this transformation is bijective, that is to say that one can
return to the original values (vi)i by carrying out a gradual summation of the differences, that is to
say calculating

vi = v0 +

i∑
j=1

dj .

In order to make this inversion, it is of course necessary to retain the value v0 of the first pixel. The
bijectivity of the transformation

(v0, . . . , vP−1) 7−→ (v0, d1, . . . , dP−1)

11https://en.wikipedia.org/wiki/ArithmeticCoding

16

https://en.wikipedia.org/wiki/ArithmeticCoding

is crucial for decoding and displaying the decoded image.

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1

+ ++

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� ��� �

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1

0 1 2 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 0 -1 0 1 -1

+

Figure 1.4: Difference representation

As the pixels can take values {0, 1, 2, 3}, the differences can take the values {−3, . . . , 3}. In
particular, they may be negative (which does not pose any particular problem for defining a coding).
The following figure compares the histograms of pixels and differences. We notice that the histogram
of the differences is much more “peaked” in the neighborhood of 0, which is logical, because many
differences (corresponding to the homogeneous zones) are null or small. The entropy HD of the
histogram of the differences (which can be modeled with a source D) is therefore much lower than
the entropy Hv of the pixels.

The figure 1.5 shows a comparison of the histograms of pixel values and differences, calculated
over the entire image (and not only on the initial 25 pixel subset). It also shows the tree of an
optimal prefix encoding (computed by the Huffman [18] algorithm) associated with the histogram
of the differences.

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

0 11/e
0

pi log2(1/pi)

pi

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3 -3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

Comment faire mieux?

! Les pixels ne sont pas indépendants les uns des autres !

Retransformation des symboles , diminuer l’entropie.

0 1 3 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

+ +

0 2 0 3 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 11

+

3

0 1 3 2 0
3 2 2 1 2
2 1 1 2 2
2 1 1 2 2
2 1 1 2 1

bijectivité

0

01

010

1

00

011

0100 010

0101 01011

010100 010101

0

�1

�2

�3
3

2

1

Long. moy. = 1.16 bits.Long. moy. = 1.67 bits.

Image 256 ⇥ 256 pixels:

16.3 ko 13.7 ko 9.5 ko

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

p0 p1 p2 p3

H(p) = 1.54

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

p0 p1 p2 p3p�1p�2p�3

H(p) = 0.61

� �

0 -1 -2 3 -1 0 -1 1 0 -1 0 1 0 0 -1 0 1 0 -1 0 -1 1

�

2

�

1

Hv ≈ 1.54,L ≈ 1.67 HD ≈ 0.61,L ≈ 1.16 Coding Tree

Figure 1.5: Comparison of histograms of pixel values and differences, and a code tree for these
differences.

This tree corresponds to the coding

−3 7→ 010101,−2 7→ 01011,−1 7→ 011, 0 7→ 1, 1 7→ 00, 2 7→ 0100, 3 7→ 010100.

This encoding has an average length L ≈ 1.16 bits. This average number matches well to the entropy
bound and is significantly smaller than the mean length associated with the pixel histogram (1.67
bits), which is itself smaller than the average length associated with a (log2(4) = 2 bits). If encode

17

the entire image of 256× 256 in gray level, we get the following gains, where 1kb=8 × 1024 bits is
a kilo byte.

Uniform encoding
16.3 kb −→ Variable encoding

13.7 kb −→ Coding of differences
9.5 kb

The most efficient methods of image compression use more complex transformations, and exploit
in a finer way the local regularity of the images. This is the case of the JPEG-200012 compression
method, which is considered to be the most efficient at the moment, using the wavelets13, see the
book [19] for more details. There are many other cases where non-independence of symbols can be
used to improve coding performance. An important example is the sequence of letters that compose
a text.

1.4 Conclusion

The mathematical theory initiated by Claude Shannon defines a framework necessary for the
development of effective techniques for the acquisition, processing, storage and transmission of data
in digital form. These techniques that revolutionized communications and computing during the
second half of the 20th century, and enabled the growth of the Internet at the beginning of the 21st
century. Without the revolutionary contributions of Shannon, you could not go on vacation with
your entire library in your electronic reader, and all episodes of Game of Thrones on your tablet!

For more details on the theory of information, one can have look at [10], for its use in signal and
image processing, one can look at [19]. The computer codes used to reproduce the figures in this
article are available online at14, and other codes are available on the site www.numerical-tours.
com [23].

Glossary

Pixel: location on the square grid of an image, sometimes used to refer to the associated value.
Symbol: element v of a finite set, for example {0, . . . , N − 1}.
Code: 0 and 1 sequence used to encode a v symbol.
Coding: set of correspondences between v symbols and associated codes, for example 2 7→ 10.
Also refers to the action of replacing a sequence of symbols with a set of bits.
Empirical distribution: frequency pv of appearance of symbols v in the sequence of symbols
to be coded.
Histogram: graphical representation of the empirical distribution, which can also by extension
designate this distribution.
Source: random variable V modeling the symbols, with the distribution P(V = v) = pv.
Entropy: Hv is a positive number associated with the source V and depends on its probability
distribution (pv)v.
Number of mean bits of a sequence: L is associated with the encoding of a sequence of
symbols.
12https://fr.wikipedia.org/wiki/JPEG_2000
13https://en.wikipedia.org/wiki/Ondelette
14https://github.com/gpeyre/2016-shannon-theory

18

www.numerical-tours.com
www.numerical-tours.com
https://fr.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/Ondelette
https://github.com/gpeyre/2016-shannon-theory

Number of source mean bits: Lv is associated with the encoding of symbols generated by V .

Acknowledgments

I thank Marie-Noëlle Peyré, Gwenn Guichaoua, François Béguin, Gérard Grancher, Aurélien
Djament and François Sauvageot for their careful proofreading of a French version of this text.

The image of the flower is due to Maitine Bergounioux. The image of Shannon used for the logo
of the article is due to the telehistoriska user of the flickr site (under license CC-BY-NC-2.0).

19

20

Chapter 2

Image Processing

Digital cameras take precise photographs of the world around us. The user wants to be able to
store his photos on his hard drive with minimum memory requirement. He also wishes to be able
to reprocess them in order to improve their quality. This article presents the mathematical and
computer tools used to perform these different tasks.

2.1 The pixels of an image

A digital image in gray levels is an array of values. Each box of this table, which stores a value,
is called a pixel. By noting n the number of rows and p the number of columns in the image, we
manipulate an array of n × p pixels. Figure 2.1, left, shows a visualization of a square table with
n = p = 240, which represents 240 × 240 = 57600 pixels. The digital cameras can record much
larger images, with several millions of pixels.

The values of the pixels are stored in a computer or a digital camera in the form of relative
integers between entre 0 et 255 = 28 − 1, making 256 possible values for each pixel. The value 0 is
black, and the value 255 is white. The intermediate values correspond to gray levels ranging from
black to white. Figure 2.1 shows a subset of 6 × 6 pixels taken from the previous image. You can
see both the values that make up the table and the gray levels that allow you to display the image
on the screen.

Figure 2.1: Sub-image of size 5× 5

21

2.2 Image Storage

2.2.1 Binary Codes

Storing large images on the hard drive of a computer takes a significant amount of places. Integer
numbers are stored in binary, in the form of a succession of 0 and 1. Each 0 and each 1 corresponds
to an elementary unit of information, called bit. To obtain the binary expression of a pixel having
the value 179, it is necessary to decompose this value as a sum of powers of two. We thus obtain

179 = 27 + 25 + 24 + 2 + 1,

where care has been taken to order the powers of two in decaying order. In order to make the binary
more explicit, we add “1×" before each power that appears in the expression, and “0×" before the
powers that do not appear

179 = 1× 27 + 0× 26 + 1× 25 + 1× 24 + 0× 23 + 0× 22 + 1× 21 + 1× 20.

Using such a decomposition, the value of each pixel, which is a number between 0 and 255, requires
log2(256) = 8bits. The binary writing of the value 179 of the pixel is thus (1, 0, 1, 1, 0, 0, 1, 1). Any
value between 0 and 255 can be written in this way, which requires the use of 8 bits. Indeed, there
are 256 possible values, and 256 = 28. To store the complete image, it is therefore necessary to use
n× p× 8bits. For the image shown in the previous figures, it is thus necessary to use

256× 256× 8 = 524288bits.

Equivalently, this image requires 57.6kb (kilobytes), since a kilobyte is equal to 8 bits.

2.2.2 Sub-sampling an Image

One row / column of 4 One row / column out of 8 One row / column of 16

Figure 2.2: Subsampling of an image

In order to reduce the required storage space of an image, the number of pixels can be reduced.
The easiest way to do this is to delete rows and columns in the original image. Figure 2.2, at the
top left, shows what is obtained if one row is kept out of 4 and one column out of 4. We thus have
divided by 4 × 4 = 16 the number of pixels of the image, and thus also divided by 16 the number
of bits required to store the image on a hard disc. In fig. 2.2, one can see the results obtained by
removing more and more rows and columns. Of course, the quality of the image degrades quickly.

22

2.2.3 Quantizing an image

Another way to reduce the memory space required for storage is to use fewer integers for each
value. For example, we can use only integers between 0 and 3, which will give an image with only 4
levels of gray. One can convert the original image to an image with 4 levels of values by performing
the replacements:
the values in 0, 1, . . . , 63 are replaced by the value 0 (black),
the values in 64, 1, . . . , 127 are replaced by the value 1 (light gray), The values in 128.1, . . . , 191
are replaced by the value 2 (dark gray),
the values in 192, . . . , 255 are replaced by the value 3 (white).

Such an operation is called quantization. Figure 2.3, in the center, shows the resulting image with
4 grayscale levels.

We have already seen that we can represent any value between 0 and 255 using 8 bits using
binary coding. In the same way, one can check that any value between 0 and 3 can be represented
using 2 bits. This thus results in a reduction of a factor 8/2=4 of the memory footprint necessary
for storing the image on a hard disk. Figure 2.3 shows the results obtained using less and less gray
levels.

4 gray levels 16 gray levels

Figure 2.3: Quantizing an image

As with the reduction of the number of pixels, the reduction of the number gray levels greatly
affects the quality of the image. In order to minimize the size of an image without changing its
quality, more complex methods of image compression. The most effective method is JPEG-2000. It
uses the theory of wavelets.

2.3 Noise Removal

2.3.1 Local Averaging

Images are sometimes of poor quality. A typical example of a defect is the noise which appears
when a picture is under-exposed, that is if there is not enough light. This noise corresponds to small
random fluctuations of the gray levels. Figure 2.5, on the left, shows such a noisy image.

23

Figure 2.4: Pixels neighborhood.

In order to remove the noise in the images, it is necessary to modify the pixel values. The simplest
operation is to replace the value a of each pixel by the average of a and the values b, c, d, e, f, g, h, i
of the 8 pixels that surround a. Figure 2.4 shows an example of a neighborhood of 9 pixels. A
modified image is thus obtained by replacing a by

a+ b+ c+ d+ e+ f + g + h+ i

9
,

since the average of 9 values is averaged. In our example, this average is

190 + 192 + 79 + 54 + 47 + 153 + 203 + 189 + 166

9
≈ 141.

By performing this operation for each pixel, a large part of the noise is removed, because this noise
is made up of random fluctuations, which are decreased by averaging. Figure 2.5, top left, shows
the effect of such a calculation. All the noise was not removed by this operation. In order to remove
more of noise, one can average more values around each pixel. Figure 2.5 shows the result obtained
by increasing the average of values.

Mean on 9 pixels Mean on 25 pixels Mean on 49 pixels

Figure 2.5: Mean with increasing width

Pixel averaging is very effective in removing noise in images, unfortunately it also destroys much
of the the information of the image. It can indeed be seen that the images obtained by averaging
are blurry. This is particularly visible near contours, which are not sharp.

24

2.3.2 Local Median

To reduce this blur, the mean can be replaced by the median. In the example of the neighborhood
of 9 pixels used in the previous section, the 9 sorted values are:

47, 54, 79, 153, 166, 189, 190, 192, 203.

The median of these nine values is 166. In order to remove more noise, it is enough to calculate the
median over a larger number of neighboring pixels, as shown in Figure 2.6. One can observe that
this method is more efficient than the mean calculation because the resulting images are less blurry.
However, just as with the calculation of averages, if we take neighborhoods that are too large, we
lose also information of the image, especially the edges of the objects are degraded.

Median on 9 pixels Median on 25 pixels Median on 49 pixels

Figure 2.6: Median filtering with increasing windowing size.

2.4 Detecting Edges of Objects

In order to locate objects in the images, it is necessary to detect their edges. These edges
correspond to areas of the image where pixel values change rapidly. It is the case for example when
passing from the boat (which is dark, ie. with small values) to the sea (which is clear, therefore
with large values).

In order to know if a pixel with a value a is along an edge of an object, the values b, c, d, e of its
four neighbors are taken into account, which have a common side with it (Figure 2.7). This allows
the edges of objects to be detected as accurately as possible.

A value ` is calculated according to the formula

` =
√

(b− d)2 + (c− e)2.

In our example, we thus obtain

` =
√

(192− 153)2 + (189− 54)2 =
√

19746 ≈ 141.

It may be noted that if ` = 0, then b = c and d = e. On the contrary, if ` is large, this means that
the neighboring pixels have very high values different, the pixel considered is therefore probably on
the edge of an object.

25

Figure 2.7: Example of a neighborhood of 5 pixels.

Figure 2.8 shows an image whose pixel value is min(`, 255). It is necessary to take the minium
with 255, because the value of ` can exceed the maximum displayable value (255, which corresponds
to white). These values are displayed with black when ` = 0, in white when ` is high, and gray levels
are used for the intermediate values. It can be seen that in the image on the right, the outlines of
the objects appear white, as they correspond to large values of `.

Original Image Contour map `

Figure 2.8: Edge detection.

2.5 Color Images

2.5.1 RGB Space

A color image is actually composed of three independent images, in order to represent the red,
green, and blue. Each of these three images is called a color channel. This representation in red,
green and blue mimics the human visual system. Figure 2.10 shows the three constituent channels
of the image shown on the left of Figure 2.9.

Each pixel of the color image thus contains three numbers (r, v, b), each being an integer between
0 and 255. If the pixel is equal to (r, v, b) = (255, 0, 0), it contains only information red, and is
displayed as red. Similarly, the pixels of (0, 255, 0) and (0, 0, 255) are respectively displayed green
and blue.

A color image can be displayed on the screen. from its three channels (r, v, b) using the rules of
additive color synthesis. These rules correspond to the way in which light rays combine, hence the

26

Original image Luminance

Figure 2.9: Color image.

Red canal Green canal Blue canal

Figure 2.10: Color channels

qualifier “additive”. Figure 2.11, left, shows the composition rules this additive synthesis of colors.
For example, a pixel with the values (r, v, b) = (255, 0, 255) is a mixture of red and green, displayed
as yellow.

2.5.2 CMJ Space

Another common representation for color images uses as background colors cyan, magenta and
yellow. It is calculated the three numbers (c,m, j) corresponding to each of these three channels
from the red, green and blue channels (r, v, b) as follows

c = 255− r, m = 255− v, j = 255− b.

For example, a pixel of pure blue (r, v, b) = (0, 0, 255) will become (c,m, j) = (255, 255, 0). Fig-
ure 2.12 shows the three channels (c,m, j) of a color image.

In order to display a color image on the screen from the three channels (c,m, j), the subtractive
color synthesis must be used. Figure 2.11, right, shows the composition rules of this subtractive

27

Additive synthesis Subtractive synthesis

Figure 2.11: Color Synthesis

Cyan canal Magenta canal Yellow canal

Figure 2.12: Channels CMJ

synthesis. They correspond in painting to the absorption of light by colored pigments, hence the
qualifier “subtractive”. Cyan, magenta and yellow are called primary colors.

It is thus possible to store on a hard disk a color image by storing the three channels, corre-
sponding to the (r, g, b) or (c,m, j). One can change color images in a similar way as graylevel
image, by changing each channel.

2.6 Changing the Contrast of an Image

2.6.1 Luminance

One calculates a grayscale image from a color image as the mean of the three channels. Thus,
for each pixel, a value

a =
r + v + b

3

is computed which is called luminance of the color. Figure 2.9 shows the transition from a color
image to a luminance image in grayscales.

28

2.6.2 Grayscale contrast manipulations

It is possible to make various changes to the image in order to modify his contrast. We consider
here a grayscale image. A simple manipulation consists in replacing each value a of a pixel of an
image by 255− a, which corresponds to the opposite gray intensity. The white becomes black and
vice-et-versa, giving a similar effect to that of the negative of film for cameras, see figure 2.13, left.

The image is lightened or darkened using an increasing function from [0, 255] to itself, which
is applied to the a values of the pixels. One can darken the image by using the square function.
More precisely, we define the new value of a pixel of the image as a2/255 (see figure 2.13 in the
center). Since the result is not generally an integer, it is rounded to the nearest integer. Similarly,
for lightening the image, the value a of each pixel is replaced by the rounding of

√
255a. Figure

2.13, on the right, shows the obtained result. It will be noted that these two operations (square
lightening and square root darkening) are inverse to one another.

Negative Square Square root

Figure 2.13: Changing the contrast.

2.6.3 Manipulations of Color Contrast

In order to manipulate the contrast of a color image, it is important to respect the color tones
as much as possible. It is therefore simpler to manipulate only the luminance component a =
(r+ v+ b)/3, while maintaining the residue (r− a, v− a, b− a) constant. For example, a change in
contrast can be defined by raising the luminance a to the ga > 0 in order to obtain

ã = 255×
(a

255

)γ
= 255× exp

(
γ × ln

(a

255

))
,

(with Convention ã = 0 when a = 0). It is noted that for γ = 1/2 (respectively γ = 2) the contrast
change is found by squaring (respectively square root) introduced in the previous section. And of
course, for γ = 1, the luminance is unchanged.

This change in contrast is then reflected on the color image by defining three channels (r̃, ṽ, b̃)
of a new image by

r̃ = max(0,min(255, r + ã− a)),
ṽ = max(0,min(255, v + ã− a)),

b̃ = max(0,min(255, b+ ã− a)).

29

It is important to take the maximum with 0 and the minimum with 255 so that the result remains
in the range [0.255], and is displayed correctly. Figure 2.14 shows the result for different values of
γ. For γ < 1, the image looks clearer, while for γ > 1, the image is darkened.

γ = 0, 5 γ = 0, 75 γ = 1 γ = 1, 5 γ = 2 γ = 3

Figure 2.14: Changing the contrast of a color image.

2.7 Images and Matrices

2.7.1 Symmetry and Rotation

An image is an array of numbers, with n lines and p columns. It is therefore easy to perform
some geometric transformations on the image. The values of the pixels that make up this table
(denoted A) can be represented as A = (ai,j)i,j or index i describes the set of numbers {1, . . . , n}
(the integers between 1 and n) and the index j the numbers {1, . . . , p}. ai,j is said to be the value
of the pixel at position (i, j).

The array of pixels thus indexed is represented as

A =

a1,1 a1,p
...

ai−1,j

. . . ai,j−1 ai,j ai,j+1 . . .
ai+1,j

...
an,1 an,p

,

This corresponds to the representation of the image in the form of a matrix. Transposing this matrix
corresponds to symmetry with respect to the main diagonal. This transposition is carried out on
each of the three color components (see figure 2.15, on the left).

It is also possible to carry out a rotation by a quarter turn clockwise on the image. This is
obtained by defining a matrix C = (ci,j)j,i of p lines and n columns by cj,i = an−i+1,j . Figure 2.15,
right, shows the action of this rotation on an image.

2.7.2 Interpolation Between Two Images

It is possible to carry out a transition between two images A and B. It is therefore assumed that
the two images have the same number n of lines and the same number p of columns. A = (ai,j)i,j
the pixels of image A and B = (bi,j)i,j the pixels of the image B.

30

Matrice A Matrix B (transposed) Matrix C (rotation)

Figure 2.15: Transpose and rotate.

For a value t set between 0 and 1, the image C = (ci,j)i,j is defined as

ci,j = (1− t)ai,j + tbi,j .

It is the formula of a linear interpolation between the two images. For a color image, this formula
is applied to each of the channels R, V and B.

It can be seen that for t = 0, the image C is equal to the image A. For t = 1, the image C
is equal to the image B. When the value t increases from 0 to 1, one thus obtains a fading effect,
since the image, which at first is close to image A resembles more and more the image B. Figure
2.16 shows the result obtained for 6 values of t distributed between 0 and 1.

Image A, t=0 t=0.2 t=0.4 t=0.6 t=0.8 Image B, t=1

Figure 2.16: Linear interpolation.

Conclusion

Mathematical processing of images is a very active field, where the theoretical advances are
obtained using fast computational algorithms. These algorithms have important applications for
the manipulation of digital contents. This article, however, only scratched the surface of the immense
list of treatments that can be subjected to an image. We refer to the website A Numerical Tour
of Signal Processing1 for many more examples of image processing and links to other resources
available online.

1http://www.numerical-tours.com/

31

http://www.numerical-tours.com/

Glossary

random: unpredictable value, such as noise disturbing images of bad qualities.
Bit: a basic unit for storing information in the form of 0 and 1 in a computer.
Channel: one of three elementary images that make up a color image.
Edges: the area of an image where the values of the pixels change rapidely, which corresponds
to the contours of the objects that make up the image.
Noise: small perturbations that degrade the quality of an image.
Square: the square b of a value a is a× a. It is noted a2.
Contrast: informal quantity that indicates how much difference there is between light and dark
areas of an image.
Image compression: a method to reduce the amount of memory required to store an image on
the hard disk.
Binary coding: writing of numeric values using only 0 and 1.
Blur: degradation of an image that makes the contours of objects unclear, and therefore difficult
to locate precisely.
Fade: linear interpolation between two images.
Color image: a set of three grayscale images, which can be displayed on a color screen.
Digital image: an array of values that can be displayed on the screen by assigning a gray level
to each value.
Inverse: operation that returns an image to its original state.
JPEG-2000: recent image compression method that uses a wavelet transform.
Luminance: average of the different channels in an image, which indicates the light output of
the pixel.
Matrix: array of values, represented as (ai,j)i,j .
Median: central value when sorting a set of values.
Average: the average of a set of values is their sum divided by their number.
Grayscale: grayscale used to display a digital image on the screen.
integers: numbers 0, 1, 2, 3, 4 ...
Byte: set of eight consecutive bits.
Wavelets: image transformation that is used by image compression JPEG-2000 method.
Ascending order: classifying a set of values from the smallest to the largest.
Pixel: a single element in the array of values that corresponds to a digital image.
Quantization: a method to reduce the set of possible values of a digital image.
square root: the square root b of a positive value a is the positive value b such that a = b × b.
It is denoted

√
a.

Resolution: the size of an image (number of pixels).
Exposed: photograph of a scene too dark for which the photographic lens did not stay open long
enough.
Additive synthesis: rule to construct any color from the three colors red, green and blue. This
is the rule that governs the mixing of the colors of light beams when illuminating a white wall.
Subtractive synthesis: rule to construct any color from the three cyan, magenta and yellow
colors. This is the rule that governs the mixing of colors in paint.

32

Chapter 3

Sparsity, Inverse Problems and
Compressed Sensing

Current standards for compressing music, image or video (MP3, JPG, or MPEG) all use methods
derived from non-linear approximation. These methods compute an approximation of the initial
data using a linear combination of a small number of elementary functions (such as sinusoids or
wavelets). These methods, initially used for approximation, denoising or compression, have been
applied more recently to more difficult problems, such as increasing the resolution or inversion of
operators in medical imaging. These extensions require the resolution of large-scale optimization
problems, and are the subject of intense research activity. One of the most recent advances in
this field, compressed sampling, uses the theory of random matrices in order to obtain theoretical
guarantees for the performance of these techniques. Compressed sampling allows Claude Shannon’s
theory of sampling and compression to be considered from a new angle. The compressibility of the
data allows for simultaneous sampling and compression.

This chapter presents the key mathematical concepts that have allowed evolution from classical
Shannon sampling to compressed sampling. The notion of sparse decomposition, which makes it
possible to formalize the idea of compressibility of information, is the main thread.

3.1 Traditional Sampling

In the digital world, most data (sound, image, video, etc.) are discretized in order to store,
transmit and modify them. From an analog signal, which is represented by a continuous function
s 7→ f̃(s), the measurement device calculates a set of discretized values f = (fq)

Q
q=1 ∈ RQ. Thus, Q

is the number of time samples for an audio piece or the number of pixels for an image. Figure 3.1
shows examples of discretized data. In the case of an image, f̃(s) represents the amount of light
arriving at a point s ∈ R2 of the camera’s focal plane, and fq =

∫
cq
f̃(s)ds is the total amount of

light illuminating the cq surface of a CCD sensor indexed by q. For simplicity, here we assume scalar
data (eg mono sound, grayscale image, or video), but the techniques described here may extend to
vector data (stereo sound, color image).

It is the theory developed by Claude Shannon [28] that laid the foundation for sampling (the
use of a discrete vector f to faithfully represent a continuous function f̃) but also those of lossless
compression. We will see how current research has made it possible to build on these foundations
lossy compression methods (i.e with a slight degradation of the quality), as well as to revisit the

33

Figure 3.1: Examples of a sound signal (1D data) and an image (2D data) discretized.

conventional sampling to give rise to the idea of compressed sampling.

3.2 Nonlinear Approximation and Compression

3.2.1 Nonlinear Approximation

The size Q of these data is generally very large (of the order of million for an image, of the
billion for a video) and it is necessary to calculate a more economical representation in order to
be able to store f or to transmit it on a network. All modern lossy compression methods (MP3,
JPEG, MPEG, etc.) use sparse decompositions (that is composed of few non-zero coefficients) in
a dictionary Ψ = (ψn)Nn=1 composed of elemental atoms ψn ∈ RQ. It is thus sought to approach f
with the aid of a linear combination

f ≈ Ψx
def.
=

N∑
n=1

xnψn ∈ RQ

where the x = (xn)Nn=1 ∈ RN are the coefficients that will be stored or transmitted. In order for
this representation to be economical, and for storage to take up little space, it is necessary that
a maximum of coefficients xn be zero, so that only the non-zero coefficients have to be stored.
Given a budget M > 0 of non-zero coefficients, the best possible combination is sought in order to
approximate `2 the initial data. The aim is to solve the optimization problem

x? ∈ argmin
x∈RN

{||f −Ψx||2 ; ||x||0 6M} where ||f ||22
def.
=

Q∑
q=1

|fq|2. (3.1)

Here we have noted ||x||0 def.
=] {n ; xn 6= 0} the number of non-zero coefficients of x, which is a

counting measure often referred to by language abuse as the “pseudo-norm” `0 (which is not a
standard!). This abuse of language will be explained in section 3.3, see in particular figure 3.4.

The problem (3.1) is in general impossible to solve: it is a combinatorial problem, which, without
further hypothesis on Ψ, requires the exploration of all combinations of M coefficients non-zero. It
has been proved that this problem is indeed NP-difficult [22].

34

f Ψx?,M = N/4 Ψx?,M = N/8 Ψx?,M = N/16

Figure 3.2: Approximate Examples f ≈ Ψx? with M = ||x?||0 which varies, for a f ∈ RN image of
N = 2562 pixels.

3.2.2 Approximation in an orthonormal basis

There is however a simple case, which is very useful for compression: this is the case where Ψ is
an orthonormal basis of RQ, ie Q = N and

〈ψn, ψn′〉 =

{
1 si n = n′,
0 sinon. where 〈f, g〉 def.

=

Q∑
q=1

fqgq.

This case is the one most often encountered for data compression, using for example discrete Fourier
orthogonal bases, local cosines (used for MP3, JPG and MPG) and wavelets (used for JPEG2000),
see the book [19]. In this case, we have the identity of Parseval which corresponds to the decompo-
sition of f in an orthonormal basis

f =
N∑
n=1

〈f, ψn〉ψn et ||f −Ψx||22 =
N∑
n=1

|〈f, ψn〉 − xn|2. (3.2)

These formulas show that the solution of (3.1) is very simple to calculate. Indeed, to minimize ||f −
Ψx||2, for each non-zero xn, one should choose xn = 〈f, ψn〉. And since we set a maximum budget
of M non-zero coefficients, we must choose the M largest coefficients |〈f, ψn〉| in the formula (3.2).
Mathematically, if we note |〈f, ψn1〉| > |〈f, ψn2〉| > . . . a sorting of the coefficients in descending
order, then a x? solution of (3.1) is given by

x?n =

{
〈f, ψn〉 si ∈ {n1, . . . , nM},
0 otherwise (3.3)

The figure 3.2 shows approximations f ≈ Ψx?, with a variable numberM = ||x?||0 of coefficients.
These approximations are performed using an orthogonal base of wavelets Ψ, called the Daubechies
4 base, which are similar to the functions used in the JPEG2000 image compression standard, and
are popular because there is a fast algorithm for calculate the scalar products (〈f, ψn〉)n with a
computation time proportional to Q (see the book [19, Chapter 7] for a complete description of
the theory of wavelets). It can be seen that the quality of the reconstructed image Ψx? degrades
when M decreases, but one can still considerably reduce the amount of information to be stored
(the M/Q compression ratio is small), while maintaining an acceptable visual quality. This funda-
mental observation corresponds to the fact (observed in practice) that natural images are very well

35

Image originale f Φf (flou) Φf (masquage)

Figure 3.3: Observation (noiseless, w = 0) y = Φf in the case of a convolution (Φf = ϕ ? f is a
convolution against a low pass filter ϕ) and missing data (Φ = diag(µq)

Q
q=1 is a masking operator).

approximated by a “sparse” linear combination of the form Ψx? with ||x?||0 6M . It is important to
note that, although the calculation of Ψx? from x? is a linear formula, the calculation of x? from f
is non-linear, as can be seen in the formula (3.3). The transition from f to its approximation Ψx? is
called a non-linear approximation. The theoretical justification of this observation is the object of
the study of nonlinear approximation theory, which seeks to prove that ||f −Ψx?|| decreases rapidly
when M increases under certain assumptions of regularity over f , for instance assuming that the
image is piecewise smooth, see [19, Chap. 9].

In order to obtain an complete compression algorithm, it is then necessary to use a technique
making it possible to convert the M coefficients (xn1 , . . . , xn2) into binary writing and also to store
the non-zero indices (n1, . . . , nM). This is done simply using techniques derived from information
theory, in particular entropy coding methods, see [19, Chap. 10].

3.3 Inverse Problems and Sparsity

3.3.1 Inverse Problems

Before f data can be stored, it is most of the time necessary to carry out a preliminary restoration
step, which consists in improving the quality of the data from observations of low quality, that is
to say –9 of low resolution, possibly blurred , entangled with errors and noisy. In order to take into
account the whole chain of data formation, we model mathematically the acquisition process in the
form

y = Φf + w ∈ RP (3.4)

where y ∈ RP are the P observations measured by the device, w ∈ RP is a measurement noise
(unknown), f ∈ RQ is the image (unknown) that one wishes to recover, and Φ : RQ → RP is an
operator modeling the acquisition apparatus, and which is assumed to be “linear". This means that
Φ may be considered as a (gigantic) matrix Φ ∈ R(P ×Q). It is important to note that most of the
time this matrix Φ is never explicitly stored, it is manipulated implicitly by means of fast operations
(convolution, masking, etc.).

This model, which may seem rather restrictive (in particular the hypothesis of linearity) makes
it possible to model a surprising quantity of situations that one meets in practice. For example,

36

• Denoising: Φ = IdRQ , P = Q and one is in the (simplest) situation in which one only seeks to
remove the noise w ;

• Deconvolution: (see Figure (3.3), center) Φf = ϕ ? f is a convolution by a filter ϕ modeling
for example the blur of a camera (either a blur of shake or a blur due to development) ;

• Missing data: (see Figure (3.3), right) Φ = diag(µq)
Q
q=1 is a diagonal masking operator, such

as µq = 1 if the data indexed by q (for example, one pixel) is observed, and µq = 0 if the data
is missing;

• tomographic imagery: Φ is a more complex linear operator, calculating integrals along straight
lines (the Radon transform), see [19, Sect. 2.4].

There are many other examples (in medical imaging, seismic, astrophysics, etc.), and in each case,
calculating a good approximation of f from y is very difficult. Indeed, with the exception of
denoising (ie Φ = IdRQ), the formula Φ−1y = f + Φ−1w can not be used either because Φ is not
invertible (for example for missing data), or because Φ has very small eigenvalues (for deconvolution
or tomography), so that Φ−1w is going to be very large, and thus Φ−1y is a very bad approximation
of f .

3.3.2 Sparse Regularization

To remedy this problem, we need to replace Φ−1 with an approximate “inverse” which takes into
account additional assumptions about the f signal we are looking for. Recent methods, which give
the best results on complex data, use an approximate inverse which is nonlinear. This may seem
contradictory because Φ is linear, but the use of nonlinear methods is crucial to take advantage
of realistic assumptions about complex data such as images. Based on the approximation and
compression techniques discussed in the previous section, current methods seek to exploit the fact
that one can approach f with a sparse approximation Ψx with ||x||0 6 M . Given a parameter
M > 0, we will look to approximate f by f? = Ψx? where x? is a solution of

x? ∈ argmin
x∈RN

{||y − ΦΨx||2 ; ||x||0 6M} (3.5)

We see that (3.5) is quasi-identical to (3.1), except that f ∈ RQ (unknown) has been replaced by
y ∈ RP , and that matrix Ψ ∈ RQ×N by matrix product ΦΨ ∈ RP×N . In the particular case of
denoising, Φ = IdRQ , the problems (3.2) and (3.5) are equivalent and have the same solution, so
that the nonlinear approximation solves the denoising problem .

In the case of any operator Φ, the problem (3.5) is however an optimization problem extremely
difficult to solve. Indeed, even if Ψ is an orthonormal basis, in general (except in the case of
denoising Φ = IdRQ), the matrix ΦΨ is not orthogonal, so that the formula (3.3) is not applicable,
and (3.5) is a NP-difficult combinatorial search problem.

3.3.3 `1 Regularization

The approximation of the solutions of the problem (3.5) using efficient methods is one of the most
active subjects of research in data processing (and more generally in applied mathematics, imagery,
statistics and machine learning). There are many methods, including greedy algorithms (see, for
example, [20]) and convex relaxation methods. We will focus on this second class of methods. One

37

α = 0 α = 1/2 α = 1 α = 3/2 α = 2

Figure 3.4: Balls Bα for different values of α.

way (heuristic) to introduce these techniques is to replace ||·||0 in the (3.5) problem with the function
|| · ||αα, which is set to α > 0 by

||x||αα
def.
=

N∑
n=1

|xn|α.

Figure 3.4 shows in the (unrealistic but convenient to draw) case of N = 2 coefficients, the balls of
the Bα

def.
= {x ; ||x||α 6 1} units associated with these functional || · ||α. It can thus be seen that Bα

“tend” to the “unit ball” associated with the counting measure || · ||0 as α tends to 0,

Bα
α→0−→ B0

def.
=
{
x ∈ [−1, 1]N ; ||x||0 6 1

}
,

the convergence of these sets (which is well visualized in the figure) being in the sense for example
of the Hausdorff distance. The limiting ball B0 is composed of extremely sparse vectors, since they
are composed of a single non-zero component.

One then has to take into account two conflicting points to choose a value of α:

• In order to have a functional enforcing the sparsity of vectors, we want to use a value of α as
low as possible to replace || · ||0 by || · ||α.

• In order to calculate the solution of (3.5) with || · ||α instead of || · ||0, it is important that the
|| · ||α be convex. The convexity is indeed essential in order to obtain a problem that is not
NP-difficile and to be able to benefit from fast calculation algorithms. These algorithms find
an exact solution x? in polynomial time or quickly converge to this solution.

The convexity constraint of || · ||α requires that the set Bα be convex, which equivalently means that
|| · ||α must be a norm. This imposes that α > 1. Taking these two constraints into account leads
naturally to the choice α = 1, so that we consider the convex optimization problem (that is, seeks
to minimize a convex function on a convex set)

x? ∈ argmin
x∈RN

{
||y − ΦΨx||2 ; ||x||1 =

N∑
n=1

|xn| 6 τ

}
, (3.6)

so that the retrieved image is defined as f? = Ψx?. It may be noted that a parameter τ > 0
was used here, which plays a role similar to parameter M which appears in (3.5). The question of
choosing this parameter τ is crucial. If the noise w is small, then we want that Φf? = ΦΨx? be
close to y, and so we will choose τ big. On the contrary, if the noise w is important, in order to

38

f Original Observations y Reconstruction f?

Figure 3.5: Examples of reconstruction with missing data, Φ = diag(µq)
Q
q=1 with µq ∈ {0, 1} and a

number of observed data] {q ; µq = 1} = 10%.

obtain a greater denoising effect, the value of τ is reduced. The choice of a τ “optimal” is a difficult
search problem, and there is no universal response, the existing strategies strongly depend on the
Φ operator as well as the atoms family Ψ .

The problem (3.6) was initially proposed by engineers in the fields of seismic imaging (see for
example [27]), and it was introduced jointly in signal processing under the name “basis pursuit” [9]
and in statistics under the name “Lasso” [30].

The problem (3.6), although convex, remains a difficult problem to solve because of the non-
differentiability of || · ||1 and large data size (N is very large). This is the price to pay for getting
good quality results. As will be explained in the following paragraph, it is in fact the nondifferen-
tiability of || · ||1 which makes it possible to obtain sparsity. The development of efficient algorithms
to solve (3.6) is a very active field of research, and we refer to [31, section 6] for a review of these
methods. Figure 3.5 shows an example of missing data interpolation performed by solving (3.6) in
a Ψ family of translationally invariant wavelets.

3.3.4 From Intuition to Theory

The figure 3.6 shows intuitively why the x? solution calculated by replacing || · ||0 by || · ||α in (3.5)
is better (in the sense that it is more sparse) if we choose α = 1 (that is, if we solve (3.6)) than if
we choose α = 2 (a similar conclusion is obtained for other values of α > 1). The figure is made
in the (very simple) case of N = 2 coefficients and P = 1 observations. The crucial point, which
makes the solution of (3.6) sparse, is that the ball B1 associated with the `1 standard is “pointed”
so that the x? solution is located along the axes. This is not the case for ball B2 associated with
standard `2, which gives a x? solution that is not along the axes, and therefore is not sparing. This
phenomenon, already visible in dimension 2, is actually accentuated when the dimension increases,
so that the approximation obtained by replacing || · ||0 by || · ||1 becomes better in large dimension.
This phenomenon is called the “blessing of dimensionality” by David Donoho [12]: although the data
become very expensive and complex to treat, there are effective analysis and processing techniques
when they are sufficiently sparse. To make this intuition rigorous, however, is difficult, and this is
the object of research still in progress for operators Φ such as convolutions [6, 16]. The analysis in
the case of the operators that one meets for example in medical imaging is an open mathematical
problem.

39

`1 minimisation `2 minimisation

Figure 3.6: Comparison of the minimization with constraints of type ||x||α 6 τ for α ∈ {1, 2}. A x?

solution is obtained when a tube {x ; ||Φx− y|| 6 ε} is sufficiently large (ie gradually growing ε) as
it is tangent in x? to the ball {x ; ||x||α 6 τ}.

3.4 Compressed sampling

There exists a particular class of operators Φ for which it is possible to analyze very precisely the
performances obtained when we solve (3.6). This is the case where Φ is drawn randomly according
to some distributions of random matrices. Using random matrices may seem strange, because the
operators mentioned above (convolution, tomography, etc.) are not at all. In fact, this choice is
motivated by a concrete application proposed jointly by Candès, Tao and Romberg [5] as well as
Donoho [13], and which is commonly called “compressed sensing”.

3.4.1 Single Pixel Camera

In order to illustrate the exposition, we will discuss the “single pixel camera” prototype devel-
oped at Rice University [15], and which is illustrated by the figure 3.7 (left). It is an important
research problem of developing a new class of cameras allowing to obtain both the sampling and
the compression of the image. Instead of first sampling very finely (ie with very large Q) the analog
signal f̃ to obtain a f ∈ RQ image then compressing enormously (ie with M small) using (3.3), we
would like to dispose directly of an economic representation y ∈ RP of the image, with a budget P
as close to M and such that one is able to “decompress” y to obtain a good approximation of the
image f .

The “single-pixel” hardware performs the compressed sampling of an observed scene f̃ (the letter
“R” in Figure 3.7), which is a continuous function indicating the amount of light f̃(s) reaching each
point s ∈ R2 of the focal plane of the camera. To do this, the light is focused against a set of Q
micro-mirrors aligned on the focal plane. These micro-mirrors are not sensors. Unlike conventional
sampling (described in Section 3.1), they do not record any information, but they can each be
positioned to reflect or absorb light. To obtain the complete sampling/compression process, one
very quickly changes P times the configurations of the micro-mirrors. For p = 1, . . . , P , one sets
Φp,q ∈ {0, 1}, depending on whether the micromirror at position q has been placed in the absorbing
(0) or reflective (value 1) position at step p of the acquisition. The total light reflected at step p is
then accumulated into a single sensor (hence the name “single pixel”, in fact it is rather a “single
sensor”), which achieves a linear sum of the reflected intensities to obtain the recorded yp ∈ R value.

40

Diagram of the device f f?, P/Q = 6

Figure 3.7: Left: diagram of the single-pixel acquisition method. Center: image f ∈ RQ “ideal”
observed in the focal plane of the micro-mirrors. Right: image f? = Ψx? reconstructed from
observation y ∈ RP with a compression factor P/Q = 6.

In the end, if the light intensity arriving on the surface cq of the mirror indexed by fq =
∫
cq
f̃(s)ds

is denoted (as in the 3.1 section) as q, the equation that links the discrete image f ∈ RQ “seen
through the mirrors” to the P measures y ∈ RP is

∀ p = 1, . . . , P, yp =
∑
q

Φp,n

∫
cn

f̃(s)ds = (Φf)p,

which corresponds exactly to (3.4). It is important to note that the mirrors do not record anything,
so in particular the f discrete image is never calculated or recorded, since the device directly
calculates the compressed representation y from the analog signal f̃ . The term w models here the
acquisition imperfections (measurement noise). The compressed sampling therefore corresponds
to the transition from the observed scene f̃ to the compressed vector y. The “decompression”
corresponds to the resolution of an inverse problem, whose goal is to find a good approximation of
f (the discrete image “ideal” as seen by the micro-mirrors) from y.

3.4.2 Theoretical Guarantees

An important feature of this inverse problem is that one can choose, as desired, the configurations
of the micro-mirrors, which amounts to saying that one can choose freely the matrix Φ ∈ {0, 1}P×Q.
The question is therefore to make the best choice, so that the inverse problem can be solved ef-
fectively. If we make the hypothesis that the signal f to be reconstructed is compressible in an
orthonormal basis Ψ (that is to say that f ≈ Ψx0 with M

def.
= ||x0||0 small) then several recent

works, starting with [5, 13], showed that method (3.6) is effective if Φ is chosen as a realization of
some random matrices. For the single-pixel camera, each Φp,n can then be randomly drawn with a
probability of 1/2 for the values 0 and 1. In practice, a pseudo-random generator is used, so that
both the person who compresses the data and the person who is going to decompress them knows
the matrix Φ perfectly (because they can communicate the seed of the generator). The figure 3.7
(right) shows an example of reconstruction obtained for the case of the single-pixel apparatus with
such a random choice of matrix Φ, with Ψ a translation-invariant family of wavelets (see [19, Section
5.2] for a description of this family).

41

It has been shown by [5, 13] that there exists a constant C such that if f = Ψx0 where x0 are
the coefficients of the image to be retrieved, where Ψ is an orthogonal basis therefore in particular
Q = N), and if the number P of measurements satisfies

P

M
> C log

(
N

M

)
where M

def.
= ||x0||0 (3.7)

then a solution f? = Ψx? computed by (3.6) tends to f when the w noise tends to 0 and τ tends
to+∞. This result is true “with high probability” on the random drawing of the matrix Φ, that is
to say a probability tending rapidly towards 1 when N increases. In particular, if there is no noise,
w = 0, taking τ → +∞, the method makes it possible to find exactly f if P satisfies (3.7). This
theory also allows to take account of “compressible” data, ie if we only assume that f is close to
(but not necessarily equal to) Ψx0 with M def.

= ||x0||0 small.
Intuitively, this theoretical result means that compressed sampling can do almost “as well” by

calculating Ψx? from y (solving (3.6)) than a usual compression method (MP3, JPEG , JPEG2000,
MPEG, etc.) that would know exactly the f signal and calculate the best approximation Ψx0

with M
def.
= ||x0||0 coefficients (solving (3.1) via the formula (3.2)). The precise meaning of the

qualifier “equally” corresponds to the C log(N/M) multiplying factor, which bounds P/M . This
factor corresponds to the “extra cost” of the compressed sampling method (which calculates P
measurements) compared to a usual compression method (which calculatesM coefficients). Despite
this additional cost, the compressed sampling method has many advantages: saving time and energy
(at the same time sampling and compression), “democratic” coding (all yn coefficients play the same
role, and therefore none has a dominant role, unlike the coding of the coefficients of x0 which have
an importance proportional to their amplitude), coding automatically encrypted (if Φ is not known,
f can not be found from y). The value of the C constant depends on the meaning given to “with
high probability”. If this probability bears only Φ, but must be true for all x0 (worst case analysis),
then it is very large (see [14]). If, on the other hand, if the high probability is both on Φ and
x0 (so that the theoretical result is true for almost all the signals) then it can be shown that for
example, for N/P = 4, we have C log(N/M) ∼ 4 (see [7]), which remains a significant overhead but
is acceptable for some applications.

The “single pixel” camera is a particular application of the compressed sampling technique.
Applications to photography are limited because the CCD sensors of cameras are powerful and
inexpensive. Compressed sampling is likely to have an impact on applications where measurements
are difficult to acquire or costly. Another source of potential applications is medical imaging, for
example by magnetic resonance imaging (MRI). In these fields, however, it is impossible to obtain
totally random matrices, so that the theory of compressed sampling can not be applied directly.
Encouraging results on these applications have however been obtained, see for example [1, 8].

Conclusion

Recent advances in data analysis have made it possible to extend the scope of compression in
order to deal with difficult inverse problems in imaging, but also in other fields (recommendation
system, network analysis, etc.). These advances have been made possible by the use of a very
broad spectrum of techniques in applied mathematics, covering both harmonic analysis, nonlinear
approximation, non-smooth optimization and probability, but also analysis and PDEs (which were
not mentioned in this article). Sparse methods associated with `1 regularization are only the tip

42

of the iceberg, and more advanced regularizations make it possible to obtain better results by
taking into account the complex geometric structures of the data. For more details on these latest
advances, we recommend reading the article [31], as well as visiting the web site “Numerical Tours of
Signal Processing” [23], which features many computer codes to carry out the numerical experiments
presented here, as well as many others.

Acknowledgments

I would like to thank Charles Dossal, Jalal Fadili, Samuel Vaiter, Stéphane Seuret and the
anonymous reviewer for their invaluable help.

43

44

Chapter 4

Numerical Optimal Transport and its
Applications

4.1 Optimal Transport of Monge

Gaspard Monge, in addition to being a great mathematician, took an active part in the French
Revolution, and created the École Polytechnique as well as the École Normale Supérieure. Motivated
by military applications, he formulated in 1781 the problem of optimal transport [21]. He asked
himself the question of how to calculate the most economical way of transporting soil between two
places to make embankments. In his original text, he made the assumption that the cost of moving
a unit of mass is equal to the distance traveled, but one can use any cost adapted to the problem
to be solved.

Monge’s problem
To illustrate the problem and its mathematical formulation, let’s look at the optimal way of

distributing croissants from bakeries to cafés in the morning in Paris. For simplicity, we will assume
that there are only six bakeries and cafés, which can be seen in Figure 4.1 (bakeries are in red
and cafés in blue). The cost to be minimized is the total journey time, and we note Ci,j the time
between the bakery i ∈ {1, . . . , 6} and the café j ∈ {1, . . . , 6}. For example, we have C3,4 = 10,
which means that there is a ten-minute commute between bakery number 3 and café number 4.

In order to meet the supply constraint (also known as mass conservation), each bakery must be

Figure 4.1: Cost matrix and associated connections. Left: a row of the cost matrix. Right: a
particular example of permutation.

45

Cost=64 Cost=65 Cost=66 Cost=152

Figure 4.2: Examples of permutations with different costs.

connected to one and only one café. As there are the same number of bakeries as café, this implies
that each café is also connected to one and only one bakery. We will note

σ : i ∈ {1, . . . , 6} 7−→ j ∈ {1, . . . , 6}

such a choice of connections. Figure 4.1 illustrates in the center and on the right the example

σ(1) = 5, σ(2) = 2, σ(3) = 6, σ(4) = 1, σ(5) = 3, σ(6) = 4. (4.1)

The mass conservation constraint means that σ is a bijection of the set {1, . . . , 6} within itself. We
also say that σ is a permutation.

The transport cost associated with such a bijection is the sum of the costs Ci,σ(i) selected by
the permutation σ, that is to say

Cost(σ)
def.
= C1,σ(1) + C2,σ(2) + C3,σ(3) + C4,σ(4) + C5,σ(5) + C6,σ(6). (4.2)

For example, for the bijection (4.1) shown in Figure 4.1, we obtain as cost

C1,5 + C2,2 + C3,6 + C4,1 + C5,3 + C6,4 = 10 + 7 + 15 + 10 + 14 + 9 = 65.

Monge’s problem is to look for the permutation σ which has the minimum cost, that is to solve
the optimization problem

min
σ∈Σ6

Cost(σ), (4.3)

where we noted Σ6 the set of permutations of the set {1, . . . , 6}.
Figure 4.2 shows that the permutation (4.1) is not the best: there exists for example another

permutation which has a cost of 64. But is this the best? It turns out that it is the case, since
we can indeed test on a computer all the permutations of {1, . . . , 6} and calculate their cost. How
many permutations are there in total? To make this count, we see that there are six possible
assignment choices from 1 to σ(1) ∈ {1, . . . , 6}, then five possible choices to assign 2 to σ(2) ∈
{1, . . . , 6}− {σ(1)}, and so on. The total number of possibilities is thus 6× 5× 4× 3× 2× 1 = 720
that we note 6!, “factorial 6”. If we consider a number n of bakeries, then the number of permutations
to test to find the best is n! = n× (n− 1)× . . .× 2× 1. This number grows extremely fast with n,
for example 70! ≈ 1.198 × 10100, to be compared with the 1011 neurons in the brain and the 1079

atoms in the universe. This exhaustive search strategy is only possible for very small values of n.

In 1D and 2D

46

Figure 4.3: Optimal transport in 1D along a metro line. The optimal bijection is σ : (1, 2, 3, 4, 5) 7→
(3, 2, 1, 5, 4).

Figure 4.4: Left: excerpt from Monge’s article [21]. Right: the optimal transport in 2D for a
Euclidean cost.

Section 4.2 explains how mathematical advances have made it possible to develop efficient tech-
niques for calculating an optimal transport σ even for large values of n. But it took almost 200 years
to get there. In some simple cases, however, the optimal transport can be calculated in a simple
way. The most basic case is when the points to be matched are along a 1D axis, for example if cafés
and bakeries are located along a subway line. It is also necessary that the cost Ci,j be the distance
along this axis (eg the metro travel time between the stations). In this case, simply rank the indices
i and j in ascending order (thus from left to right along the subway line) and match the first index
i to the first index j together, then the second index, etc. This process is illustrated in Figure 4.3.
The calculation time required to calculate the optimal transport by subway is therefore the time
required to classify the indices. The simplest algorithm for ranking is the one usually used to sort a
set of n cards: it is the insertion sort, which iteratively inserts each card in its place relative to the
cards already classified. It performs n(n− 1)/2 comparisons. For n = 70, this requires only 21415
operations, which makes the method usable, unlike the exhaustive search of all n! Permutations.
There are even faster algorithms (eg merge sort), which perform on the order of n log(n) operations,
and hence for n = 70, such methods require less than 1000 operations.

Unfortunately, it is no longer possible to use this sorting technique in more general cases. For
points in dimension 2, if we take as cost Ci,σ(i) the Euclidean distance (the flight distance) between
the points, then Gaspard Monge showed in his paper original (see Figure 4.4, left) that optimal
transport can not contain crossover. For example, as shown in Figure 4.4 (on the right), if we trace
all the segments between the points i 7→ j = σ(i) that the we connect by the bijection defined by an
optimal σ, these never cross each other. This geometrical observation is however not sufficient to
compute an optimal transport in 2D: there are indeed many permutations σ such that the associated
segments do not intersect. It will be necessary to analyze more finely the structure of the optimal
permutations in order to be able to calculate them in an efficient way. We will now see how Leonid
Kantorovich has reformulated the problem of Monge in order to achieve this.

47

4.2 Optimal Transport of Kantorovich

Leonid Kantorovitch is a Soviet mathematician and economist who revolutionized the theory
of optimal transport during the 1940s. His research stemmed from practical considerations that
occupied him before and after the Second World War. He played an important role in ensuring
an optimal distribution of resources, especially during the Leningrad siege. At the same time, he
has been involved in the development of modern optimization, which has had a huge impact in a
large number of applied fields. He obtained the Nobel Prize in Economics in 1975, because the first
applications (but certainly not the only!) of his theory have been in this field.

Kantorovich’s Problem
Kantorovich’s central idea is to modify Monge’s problem by replacing the set of permutations

with a larger but simpler set. First we notice that we can represent a permutation σ ∈ Σn using
a permutation matrix P which is a binary matrix (filled with 0 and 1) of size n × n such that
Pi,j = 0 unless j = σ(i) in which case Pi,σ(i) = 1. For example, for n = 3 points, the permutations
(1, 2, 3) 7→ (1, 2, 3) (the identity), (1, 2, 3) 7→ (3, 2, 1) and (1, 2, 3) 7→ (2, 1, 3) are represented by size
3× 3 matrices 1 0 0

0 1 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0

 and

0 1 0
1 0 0
0 0 1

 .

In the following, Pn is the set of n! Permutation matrices of size n× n.
Since the matrix is binary, with only n non-zero elements equal to 1, we can replace the sum of

n terms that appears in Cost(σ) defined in (4.2) by a sum over the set of n× n indices (i, j), that
is, if P is the permutation matrix associated with σ, we have

Cost(σ) =
n∑
i=1

n∑
j=1

Pi,jCi,j .

We can thus replace the problem of Monge (4.3) by the equivalent problem

min
P∈Pn

n∑
i=1

n∑
j=1

Pi,jCi,j . (4.4)

Kantorovich’s genius has been to remark that we can replace the discrete set Pn (that is to
say composed of a finite, but very large, set of n! Matrices) by a set which is “continuous” (so in
particular infinite) but which is simpler. Note that the permutation matrices of Pn are exactly the
matrices that have one and only one along each row and column. This can also be expressed as the
fact that a permutation matrix is a binary matrix whose sum of each row and of each column is 1,
that is to say

Pn =

P ∈ {0, 1}n×n ; ∀ i,
∑
j

Pi,j = 1,∀ j,
∑
i

Pi,j = 1

 .

What makes this set very complicated is the binary constraint, that is, these matrices are constrained
to be in {0, 1}n×n. Kantorovitch then proposes to “relax” this constraint by simply assuming that
the entries of P are between 0 and 1. This defines a larger set, the set of bistochastic matrices

Bn def.
=

P ∈ [0, 1]n×n ; ∀ i,
∑
j

Pi,j = 1, ∀ j,
∑
i

Pi,j = 1

 . (4.5)

48

The Kantorovitch problem is obtained by performing this replacement in (4.4), in order to solve

min
P∈Bn

n∑
i=1

n∑
j=1

Pi,jCi,j . (4.6)

The huge advantage of the Kantorovich (4.6) problem over that of Monge (4.4) is that the set of
bistochasic matrices is convex, ie if we consider two bistochasic matrices P,Q ∈ Bn, so their mean
P+Q

2 ∈ Bn is still bistochasic. This is not true for permutation matrices, since the average of two
binary matrices (P,Q) is not binary (except of course if P = Q). This convexity is the key to
the development of efficient algorithms. This new formulation has indeed benefited from a second
revolution initiated by George Dantzig [11], which, at the same time, proposed the algorithm of
the simplex. This one allows to solve efficiently a certain class of convex optimization problems:
linear programming problems, of which (4.6) is a particular case. In the case of the Kantorovitch
problem, there is indeed a simplex algorithm that has a complexity of the order of n3 operations,
which allows calculations to be made for large n, of the order several thousands.

Monge–Kantorovich Equivalence
The set of bistochastic matrices is larger than the set of permutations matrices, Pn ⊂ Bn, so

that we have the inequality

min
P∈Bn

n∑
i=1

n∑
j=1

Pi,jCi,j 6 min
P∈Pn

n∑
i=1

n∑
j=1

Pi,jCi,j (4.7)

between the problems of Kantorovich and Monge. But a fundamental theorem due to George
Birkhoff and John von Neumann [3, 33] ensures that in fact there is equality between the values
of these two minimizations. Indeed, this theorem shows that there is always a solution matrix of
the Kantorovitch problem which is a matrix of permutation, so that it is also a solution to Monge’s
problem. Beware however, in general there is no uniqueness of the solutions of these problems: there
may exist a bistochastic matrix solution of the Kantorovich problem which is not a permutation. The
combination of two spectacular advances, due to Kantorovich and Dantzig, made optimal transport
applicable to large scale problems, since the simplex algorithm can be used to solve these problems
in practice.

The Weighted Case
In addition to its practical interest, Kantorovich’s formulation has also allowed generalizing

Monge’s initial problem, by giving the right framework to formalize it and study it mathematically.
Indeed, Monge’s problem is quite limited. What happens for example if there is not the same
number n café and m bakeries? The initial problem (4.3) has no solution, because you can not put
in bijection two sets of different sizes. The right concept is not the number of bakeries and cafés,
but rather the (a1, . . . , an) production distributions (associated with bakeries) and the (b1, . . . , bm)
of café consumption. For example, if the first bakery produces 45 croissants a day, we will take
a1 = 45, and b3 = 34 means that the 3rd café consumes 34 croissants a day. In the case initially
considered, where n = m, all the quantities ai and bj are equal to 1. But in many concrete cases,
these quantities are arbitrary. These quantities must be positive, and satisfy

a1 + · · ·+ an = b1 + · · ·+ bm,

so that there is as much production as consumption. Kantorovich’s construction naturally adapts to
this case of general distributions, replacing the bistochasic matrices (4.5) by matrices of “coupling”

49

3 23 18 26 16 14
24
9
3
16
21
27

1 7 0 0 16 0
0 0 0 0 0 9
0 0 0 0 0 3
0 16 0 0 0 0
2 0 18 1 0 0
0 0 0 25 0 2

1

2

3

4

5

6

01020
1 2 3 4 5 6

0

10

20

P i,j

1

2

3

4

5

6

01020

1
2

3
4

5
6

0 10 20

(a) matrix (b) histograms (c) segments (d) bipartite graph

Figure 4.5: Different ways of representing a coupling matrix P ∈ B(a, b): (a) a table of numbers
whose rows and columns have prescribed sums; (b) a two-dimensional histogram whose square size
is propositional to Pi,j ; (c) a set of segments whose width is proportional is Pi,j . (d) a bipartite
graph, that is to say with two sets of vertices such that the edges are only between these two sets.

which satisfy the mass conservation constraint.

B(a, b)
def.
=

P ∈ [0, 1]n×m ; ∀ i,
∑
j

Pi,j = ai,∀ j,
∑
i

Pi,j = bj

 .

In the original case n = m and ai = bj = 1, then B(a, b) = Bn which corresponds to doubly stochastic
matrices. In the general case, whenever an entry Pi,j is non-zero, this means that there is some
transfer of “mass” (here a certain amount of croissants) between i and j. As shown in Figure 4.5,
we can visualize in different ways such a matrix P coupling two distributions (a, b). Unlike the
case of doubly stochastic matrix, for which there is always a solution that is a permutation, here
optimum coupling B(a, b) can have more than one non-zero entry Pi,j along a line indexed by i (see
Figure 4.5). This means that this bakery i is connected to several cafés, so that its production is
then separated into several batches distributed while meeting conservation constraint of the mass∑

j Pij = ai.
Kantorovich’s problem which generalizes (4.6) is then written

min
P∈B(a,b)

n∑
i=1

m∑
j=1

Pi,jCi,j (4.8)

which means that you have to pay Ci,j each time you transfer a unit of mass between i and j. Just
like the original problem (4.6), we can solve it effectively with the simplex algorithm. Figure 4.5
shows an example of optimal coupling.

4.3 Applications

Although the initial motivations of Monge and Kantorovitch were respectively military and eco-
nomic, the optimal transport finds countless applications, both theoretical but also more concrete.
Mathematically, one can consider “continuous” distributions of masses, somehow the limit when the
number of point n tends to infinity. This makes it possible to define the transport problem between
any probability measurements. This theoretical point of view is extremely fruitful, and it was the

50

Image (xi)
n
i=1 Image (yj)

n
j=1 Image (yσ(i))

n
i=1

Figure 4.6: Example of transferring color palettes using optimal transport. Top: The pixels are on
the display grid to form a color image. Bottom: The pixels are placed at their positions in R3 to
form a scatter plot.

French mathematician Yann Brenier who first showed equivalence in the continuous framework of
the formulations of Monge and Kantorotich [4]. These pioneering works showed the connection
between the transport problem and the partial differential equations, and led, among other things,
to the Fields medals of CÃ c©dric Villani (2010) and Alessio Figalli (2018).

Optimal transport has recently become the focus of more applied problems in data sciences,
especially to solve problems in image processing and machine learning. The first idea, the most
immediate, is to use the bijection σ to transform data, for example images. In this case, the pixels
(xi)

n
i=1 and (yj)

n
j=1of two color images are considered. Each pixel xi, yj ∈ R3 is a vector of dimension

3, which represents the intensities of each of the three elementary colors, red, green and blue. In
order to change the colors of the first image, and impose the palette of the second image, we calculate
the transport σ for the cost matrix Ci = ||xi − yj ||2 (that is, the square of the Euclidean norm in
R3), which is the square of the Euclidean distance between the pixels. The image with the modified
colors is (yσ(i))

n
i=1, ie we replace in the first image the pixel xi by the pixel yσ(i). This image looks

like the first, but has the color palette of the second image. Figure 4.6 illustrates this process to
impose the color palette of Picasso to a painting by CÃ c©zanne.

Optimal transport can also be used for more difficult problems, by only indirectly using the
bijection σ or the optimal coupling matrix P ∈ B(a, b). The central idea is that the quantity
associated with an optimal coupling P solution of (4.8)

W (a, b)
def.
=
∑
i,j

Pi,jCi,j

somehow defines the effort required to move the mass of the a distribution to the b distribution. It
allows to quantify how much these two distributions are “close”. For example, if Ci,j = ||xi − yj ||2
is the square of the Euclidean distance between points, then the quantity W (a, b)1/2 is a distance
between the distributions, in particular it satisfies W (a, b) = 0 if and only if a = b, and it satisfies

51

Figure 4.7: Example of barycentric interpolation between 3D forms, obtained by minimizing (4.9).

the inequality triangular. These properties are very important for applying transport to practical
problems.

A typical example of the application of this W quantity is to compute centroids between [2]
distributions. Figure 4.7 shows an example where we consider three distributions a, b, c (shown at
the three vertices of the triangles) which are uniform mass distributions inside 3D shapes (that is,
the mass ai associated with the ith point is 0 outside the first form and takes a constant value
inside). A weighted barycenter of these three distributions is calculated by mimicking the fact that
in a Euclidean space, the weighted centroid r of three points x, y, z minimizes the sum of distances
squared.

min
r
α||x− r||2 + β||y − r||2 + γ||z − r||2,

where the weights (α, β, γ) are the weightings of the centroid, which are positive reals and such that
α + β + γ = 1. The weighted barycenter d of (a, b, c) thus minimizes the weighted sum of optimal
transport distances

min
d

αW (a, d) + βW (b, d) + γW (c, d). (4.9)

By modifying the weights (α, β, γ), we modify the shape obtained by moving inside an optimal
transport triangle. This W distance can be used for many other applications where probability
distributions must be compared. This is the case in machine learning, for example to compare
texts using the distributions of words that compose them. Figure 4.8 illustrates the histograms of
appearance of words for two texts, where the size of the letters of the word i is proportional to the
mass ai. A difficult question in this case is which cost matrix Ci,j to use between two words (i, j).
It is a linguistics problem (to characterize the semantic proximity between words of a language),
which one can seek to solve at the same time as the optimal transport [17].

Conclusion

Optimal transport has seen many revolutions. Led by mathematicians such as Monge, Kan-
torovich, Danzig and Brenier, it has gradually become a fundamental theoretical and numerical

52

Figure 4.8: Examples of histograms of word distributions in two different texts (only the most
frequent words are shown).

tool. It is now at the heart of important questions in data science to model, numerically solve
and theoretically analyze problems in machine learning. The opportunities to develop new theories
and powerful algorithms are immense. For more information on the theoretical aspects of optimal
transport, one can consult the books [32, 26]. Numerical and applicative aspects are covered in the
book [24].

Acknowledgments

I would like to thank Vincent Beck, Gwenn Guichaoua and Marie-Noëlle Peyré for their careful
proofreadings.

53

54

Bibliography

[1] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: asymptotic
incoherence and asymptotic sparsity in compressed sensing. CoRR, abs/1302.0561, 2013.

[2] Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

[3] Garrett Birkhoff. Tres observaciones sobre el algebra lineal. Universidad Nacional de Tucumán
Revista Series A, 5:147–151, 1946.

[4] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on Pure and Applied Mathematics, 44(4):375–417, 1991.

[5] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Communications on pure and applied mathematics, 59(8):1207–1223, 2006.

[6] E.J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution.
Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.

[7] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. Willsky. The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12(6):805–849, 2012.

[8] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss. Variable density sampling with continuous
trajectories. SIAM Journal on Imaging Sciences, 7(4):1962–1992, 2014.

[9] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
journal on scientific computing, 20(1):33–61, 1999.

[10] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2006.

[11] George B Dantzig. Application of the simplex method to a transportation problem. Activity
Analysis of Production and Allocation, 13:359–373, 1951.

[12] D. L. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality.
Lecture “Math Challenges of the 21st Century”, 2000.

[13] D. L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):1289–
1306, 2006.

[14] C. Dossal, G. Peyré, and J. Fadili. A numerical exploration of compressed sampling recovery.
Linear Algebra and Applications, 432(7):1663–1679, 2010.

55

[15] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.
Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine,
25(2):83–91, March 2008.

[16] V. Duval and G. Peyré. Exact support recovery for sparse spikes deconvolution. Foundations
of Computational Mathematics, 15(5):1315–1355, 2015.

[17] Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian QWeinberger. Supervised
word mover’s distance. In Advances in Neural Information Processing Systems, pages 4862–
4870, 2016.

[18] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the Institute of Radio Engineers, 40(9):1098–1101, 1952.

[19] S. G. Mallat. A wavelet tour of signal processing. Elsevier/Academic Press, Amsterdam, third
edition, 2009.

[20] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans-
actions on Signal Processing, 41(12):3397–3415, 1993.

[21] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie
Royale des Sciences, pages 666–704, 1781.

[22] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing,
24(2):227–234, 1995.

[23] G. Peyré. The numerical tours of signal processing - advanced computational signal and im-
age processing, www.numerical-tours.com. IEEE Computing in Science and Engineering,
13(4):94–97, 2011.

[24] Gabriel Peyré and Marco Cuturi. Computational optimal transport. to appear in Fundation
and Trends in Machine Learning, 2018.

[25] J. Rissanen and G. Langdon. Arithmetic coding. IBM Journal of Research and Development,
23(2):149–162, 1979.

[26] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkhauser, 2015.

[27] F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM
Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

[28] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal,
27(3):379–423, 1948.

[29] C. E. Shannon. Communication in the presence of noise. Proc. Institute of Radio Engineers,
37(1):10–21, 1949.

[30] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society. Series B. Methodological, 58(1):267–288, 1996.

[31] S. Vaiter, G. Peyré, and J. Fadili. Low Complexity Regularization of Linear Inverse Problems,
chapter Sampling Theory, a Renaissance, pages 103–153. Springer-Birkhäuser, 2015.

56

www.numerical-tours.com

[32] Cedric Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics Series.
American Mathematical Society, 2003.

[33] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment
problem. Contributions to the Theory of Games, 2:5–12, 1953.

57

	Claude Shannon and Data Compression
	Numeric Data and Coding
	Encoding and Decoding
	Example of an Image
	Uniform Coding
	Logarithm and Uniform Coding
	Variable-length Encoding
	Prefix Coding and Decoding
	Codes and Trees

	The Shannon Bound
	Minimum Length Code and Random Modeling
	Empirical Frequencies
	Entropy
	Average number of bits of a source
	Shannon Bound for Coding
	Transformation of information

	Conclusion

	Image Processing
	The pixels of an image
	Image Storage
	Binary Codes
	Sub-sampling an Image
	Quantizing an image

	Noise Removal
	Local Averaging
	Local Median

	Detecting Edges of Objects
	Color Images
	RGB Space
	CMJ Space

	Changing the Contrast of an Image
	Luminance
	Grayscale contrast manipulations
	Manipulations of Color Contrast

	Images and Matrices
	Symmetry and Rotation
	Interpolation Between Two Images

	Sparsity, Inverse Problems and Compressed Sensing
	Traditional Sampling
	Nonlinear Approximation and Compression
	Nonlinear Approximation
	Approximation in an orthonormal basis

	Inverse Problems and Sparsity
	Inverse Problems
	Sparse Regularization
	1 Regularization
	From Intuition to Theory

	Compressed sampling
	Single Pixel Camera
	Theoretical Guarantees

	Numerical Optimal Transport and its Applications
	Optimal Transport of Monge
	Optimal Transport of Kantorovich
	Applications

